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Surprisingly high probability of evaporation for a molecule passing through the Knudsen layer
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The most important characteristics of the Knudsen layer are the temperature jump �T between the liquid and
vapor and the probability θK that a molecule, emitted by the liquid into the vapor, reaches infinity (as opposed
to bouncing back due to collisions). In the present paper, the linearized Bhatnagar-Gross-Krook model is used
to calculate �T and θK and show that, in the absence of macroscopic gradients of temperature and density,
θK ≈ 96.3%. It is then examined how �T and θK are affected by a combination of a temperature gradient (heat
flux) and the matching density gradient, such that the resulting pressure field is uniform.
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I. INTRODUCTION

When studying evaporation, one can distinguish two tran-
sient regions: the liquid-vapor interface where the van der
Waals force creates a barrier for molecules escaping from the
liquid, and the Knudsen layer where the escaped molecules
gradually equilibrate with the rest of the vapor (see Fig. 1).
Within the framework of the classical Hertz-Knudsen-Schrage
approach [1–3] and its modifications [4,5], the Knudsen layer
is characterized by the evaporation probability θK (also called
the “mass adjustment coefficient”) and the liquid-vapor tem-
perature jump �T . The interface, in turn, is characterized just
by the corresponding probability θI , as interfaces are typically
too thin to accommodate a significant temperature change.
If θK , �T , and θI are known, the Hertz-Knudsen-Schrage
theory predicts the evaporation rate, i.e., the mass flux into
the macroscopic region.

There can be several approaches to finding θK , �T , and θI .
The last of these can be calculated using the Enskog-Vlasov
kinetic theory [6] or its moment approximation [7], but this
task has not been accomplished yet, probably because of
the mathematical difficulties involved. Exploring the Knudsen
layer is easier: it is described by the Boltzmann kinetic theory
which is much simpler that its Enskog-Vlasov counterpart,
and there exist many papers where the Knudsen layer is
examined using the Boltzmann equation (e.g., [8,9]) or its
moment approximation (e.g., [10–21]), or Bhatnagar-Gross-
Krook-style kinetic models (e.g., [22–24]).

Note, however, that the flux exiting the interface provides
a boundary condition for the Knudsen layer. Thus, even if
one knows everything about the latter, the overall evaporation
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rate still cannot be calculated without the parameter θI of the
interface.

This difficulty is best illustrated using the Hertz-Knudsen-
Schrage approach. First, it will be applied to the Knudsen
layer alone.

Let the distribution f0 of molecules exiting the interface
be Maxwellian and correspond to the temperature T0 and
pressure p0 (the subscript 0 implies that these parameters are
measured at z = 0, where z is the vertical coordinate; see
Fig. 1). Integrating f0 over molecules with velocities directed
away from the interface, one can calculate the mass flux en-
tering the Knudsen layer from the liquid side,

F0→K = p0√
2πT0

.

When the molecules are passing through the Knudsen layer,
they generally collide with liquid-bound molecules, and
sometimes the former bounce back toward the liquid whereas
the latter do not bounce back toward infinity. As a result, the
flux escaping to infinity is

F0→K→∞ = θK
p0√
2πT0

, (1)

where θK is the probability that a molecule either passes
through the Knudsen layer and evaporates or bounces back
into the liquid, but sends a “replacement” to infinity.

To estimate the flux of molecules moving in the opposite
direction, observe that, at infinity, the vapor is in equilibrium;
hence, its distribution f∞ is definitely Maxwellian, with a
temperature T∞, pressure p∞, and the macroscopic velocity
equal to E/ρ∞ (where E is the evaporation rate). Integrating
f∞ over liquid-bound molecules, one obtains

F∞→K = ρ∞T∞√
2πT∞

exp

(
− E2

2ρ2∞T∞

)

+ E

2
erf

(
E

ρ∞
√

2T∞

)
− E

2
(2)

(for more details, see a similar calculation in Ref. [25]). The
bounce-back probability for liquid-bound molecules is the
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FIG. 1. Steady evaporation (a schematic). It is implied that the
liquid is pumped from below with a flux matching the evaporation
rate. θI and θK are the probabilities for a molecule to pass through
the interface and Knudsen layer, respectively.

same as that for their infinity-bound counterparts [4]; hence,
the flux exiting the Knudsen layer on the liquid side is

F∞→K→0 = θK F∞→K . (3)

Recalling that the evaporation rate is

E = F0→K→∞ − F∞→K→0,

one can reduce Eqs. (1)–(3) to a single equation for E ,

E = θK
p0√
2πT0

− θK

[
ρ∞T∞√
2πT∞

exp

(
− E2

2ρ2∞T∞

)

+ E

2
erf

(
E

ρ∞
√

2T∞

)
− E

2

]
. (4)

In this paper, evaporation is examined under two extra as-
sumptions:

T∞ ≈ T0, p∞ ≈ p0,

in which case Eq. (4) yields to leading order

E ≈ 2θK

2 − θK

p0√
2πT0

(
p0 − p∞

p0
+ 1

2

T∞ − T0

T0

)
. (5)

This expression relates the evaporation rate to the relative
humidity (the first term in parentheses) and liquid-vapor tem-
perature jump (the second term). The latter is unknown, and,
thus, E can be determined only if formula (5) is comple-
mented with an expression for T∞.

Note that the above derivation does not rely on the specifics
of the Knudsen layer, so (5) can be just as well applied to the
interface: one only needs to replace θK → θI . One can even
apply (5) to the whole system—the interface plus the Knudsen
layer—by replacing θK with the overall probability

θ = θIθK

θI + θK − θIθK
.

Thus, even if one calculates θK , one still cannot find θ and
eventually E without knowing θI .

There is a notable exception to this rule, however: the
simulations of Refs. [26,27] suggest that, at low temperatures,

the overall probability θ is close to unity–which can occur
only if θK and θI are both close to unity. Not only does this
result deliver a value for θI , but also provides a means to check
the value of θK when it is found theoretically. Unfortunately,
the conclusions of Refs. [26,27] cannot be confirmed via
experiments due the discord among those: the values of θ

measured by different authors for the same fluid at the same
temperature vary between 0.01 and 1 [28,29].

In the present paper, the probability θK is calculated,
together with the temperature jump �T = T∞ − T0, using
a kinetic model formulated in Sec. II. In Sec. III A, it is
shown that, in the absence of macroscopic gradients of tem-
perature and density, θK ≈ 1. This conclusion holds for all
temperatures and, thus, extends the low-temperature result of
Refs. [26,27].

The effect of density and temperature gradients is ex-
amined in Sec. III B, and estimated for water in Sec. III C.
According to the latter, the gradients associated with the
vaporization-heat flux is too weak to be important, but a suffi-
ciently strong external gradient can even make undersaturated
vapor condense.

II. FORMULATION

A. The Bhatnagar-Gross-Krook model

Consider a liquid and its vapor, occupying the domains
z < 0 and z > 0, respectively, and let the latter be undersatu-
rated, so the former evaporates. If the evaporation is steady in
time and homogeneous in the directions perpendicular to the z
axis, the distribution function f (z, v, u) of the vapor depends
on z, the vertical component v of the molecular velocity, and
its horizontal component u.

The mean density ρ, vertical velocity V , and temperature
T depend on z and are given by

ρ = 2π

∫ ∞

−∞

∫ ∞

0
f u du dv, (6)

V = 2π

ρ

∫ ∞

−∞

∫ ∞

0
v f u du dv, (7)

RT = 2π

3ρ

∫ ∞

−∞

∫ ∞

0
(v − V )2 f u du dv, (8)

where R is the specific gas constant and the factor of 2π ap-
pears because the integration over the polar angle has already
been carried out.

According to the steady-state Bhatnagar-Gross-Krook
(BGK) model [30], f satisfies the following equation:

v
∂ f

∂z
= M − f

τ
, (9)

where

M = 2πρ

(2πRT )3/2 exp

[
−u2 + (v − V )2

2RT

]
, (10)

is the local Maxwellian distribution, and τ is an empiric
parameter representing the characteristic time between two
successive collisions experienced by the same molecule. The
dependence of τ on the local ρ and T is supposed to be
deduced from experimental data, but it will not be discussed
here.
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To apply Eqs. (6)–(10) to the Knudsen layer, introduce the
temperature T0 of the liquid and the corresponding saturated
vapor density ρ0. Let the vapor passing through the interface

due to evaporation have a Maxwellian distribution and be
saturated (the latter corresponds to the hypothesis θI = 1 as-
sumed by Hertz [1]). Then one obtains the following boundary
condition:

v > 0 ⇒ f = ρ0

(2πRT0)3/2 exp

(
−u2 + v2

2RT0

)
at z = 0. (11)

The vapor coming from infinity, in turn, is also Maxwellian, but with different characteristics,

v < 0 ⇒ f → ρ∞
(2πRT∞)3/2 exp

[
−u2 + (v − V∞)2

2RT∞

]
as z → ∞, (12)

where ρ∞ and T∞ are related to the relative humidity H at
infinity via

ρ∞T∞
ρ0T0

= H, (13)

i.e., H is determined as the ratio of the vapor pressure to its
saturated value.

It is worth noting that condition (11) is a hypothesis (as it is
not obvious that the vapor emitted by the liquid is necessarily
Maxwellian), whereas condition (12) reflects the fact that the
vapor at infinity is in equilibrium.

B. Nondimensionalization

The following nondimensional variables will be used:

znd = z

λ0
, vnd = v

(RT0)1/2 ,

ρnd = ρ

ρ0
, Vnd = V

(RT0)1/2 , Tnd = T

T0
,

Mnd = (RT0)3/2

ρ0
M, fnd = (RT0)3/2

ρ0
f , τnd = τ

τ0
,

where τ0 is the BGK collision time corresponding to ρ0 and
T0, and

λ0 = (RT0)1/2τ0 (14)

is the mean-free path.
Rewriting boundary-value problem (6)–(13) in terms of the

above variables and omitting the subscript nd , one can verify
that the resulting problem is identical to the original one, but
with

ρ0 = 1, T0 = 1.

C. Linearization

To simplify the problem, assume that the vapor is close to
saturation, i.e.,

H = 1 + H̃ ,

where |H̃ | � 1. Assume also that

ρ = 1 + ρ̃, V = Ṽ , T = 1 + T̃ ,

ρ∞ = 1 + ρ̃∞, V∞ = Ṽ∞, T∞ = 1 + T̃∞,

f = 1

(2π )3/2 exp

(
−u2 + v2

2

)
+ f̃ , τ = 1 + τ̃ ,

where the tilded variables are O(H̃ ), hence, small. Substitut-
ing the above expressions into Eqs. (6)–(13), one obtains to
leading order

ρ̃ = 2π

∫ ∞

−∞

∫ ∞

0
f̃ u du dv, Ṽ = 2π

∫ ∞

−∞

∫ ∞

0
v f̃ u du dv, T̃ = 2π

∫ ∞

−∞

∫ ∞

0

u2 + v2 − 3

3
f̃ u du dv, (15)

v
∂ f̃

∂z
= 1

(2π )3/2

(
ρ̃ + u2 + v2 − 3

2
T̃ + vṼ

)
exp

(
−u2 + v2

2

)
− f̃ , (16)

v > 0 ⇒ f̃ = 0 at z = 0, (17)

v < 0 ⇒ f̃ = 1

(2π )3/2

(
ρ̃∞ + u2 + v2 − 3

2
T̃∞ + vṼ∞

)
exp

(
−u2 + v2

2

)
as z → ∞, (18)

ρ̃∞ + T̃∞ = H̃ . (19)

It can be readily deduced from Eqs. (15)–(19) that
dṼ

dz
= 0,

which comes as no surprise as Ṽ represents the linear part of the nondimensional mass flux and, hence, must be spatially uniform
(because the problem is steady). Thus, in what follows, Ṽ will be treated as a constant. The boundary-value problem (15)–(19)
involves three independent variables (z, u, v), but it can be reduced (see Appendix A) to a much simpler one-variable problem,

ρ̃(z) + Ṽ AρV (z) =
∫ ∞

0
[Bρρ (z − z′) ρ̃(z′) + BρT (z − z′) T̃ (z′)]dz′, (20)
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T̃ (z) + Ṽ ATV (z) =
∫ ∞

0
[BT ρ (z − z′) ρ̃(z′) + BT T (z − z′) T̃ (z′)]dz′, (21)

1

2
Ṽ = −

∫ ∞

0
[BV ρ (z′) ρ̃(z′) + BV T (z′) T̃ (z′)]dz′, (22)

where the coefficients are

AρV = C1, ATV = C3 − C1

3
, (23)

Bρρ = C−1, BρT = C1 − C−1

2
, (24)

BT ρ = C1 − C−1

3
, BT T = C3 − 2C1 + 5C−1

6
, (25)

BV ρ = C0, BV T = C2 − C0

2
, (26)

and

Cn(z) = 1

(2π )1/2

∫ ∞

0
vn exp

(
−v2

2
− |z|

v

)
dv. (27)

As shown in Appendix B, the function C−1(z) is singular
as z → 0 – hence, Bρρ (z), BρT (z), BT ρ (z), and BT T (z) are
singular too. These singularities are integrable, however, so
they do not pose a problem for Eqs. (20)–(22) (where Bρρ ,
etc. are the kernels). It is also shown in Appendix B that both
A and B coefficients decay exponentially as z → ∞.

Next, boundary condition (19) can be rewritten in the form

ρ̃ + T̃ → H̃ as z → ∞. (28)

It turns out that the solution of Eqs. (20)–(22) subject to
condition (28) is not unique. To understand why, note that
there must be a solution describing steady transfer of heat
from, or to, infinity, i.e., such that

T̃ = −Q̃ z + O(1) as z → ∞, (29)

where Q̃ is the nondimensional heat flux. Given the above
asymptotics, boundary condition (28) implies that

ρ̃ = Q̃ z + O(1) as z → ∞. (30)

The fact that asymptotics (29) and (30) are mathematically
consistent with Eqs. (20)–(22) is shown in Appendix C.

Thus, a heat flux must be accompanied by a density
gradient—which comes as no surprise, as the pressure field
must be spatially uniform (otherwise an accelerating flow
would arise).

For given H̃ and Q̃, Eqs. (20)–(22) and boundary condi-
tions (28) and (29) fully determine ρ̃(z), T̃ (z), and Ṽ .

III. SOLUTIONS DESCRIBING THE KNUDSEN LAYER

This section examines solutions with Q̃ = 0 and Q̃ 	= 0
(Secs. III A and III B, respectively). In both cases, Eqs. (20)–
(22) were solved numerically, using the algorithm described
in Appendix D.

A. Solutions with zero heat flux, Q̃ = 0

Due to linearity of Eqs. (20)–(22) and (28)–(30), their solu-
tion depends linearly on H̃ (the deviation of the humidity from

unity). Thus, it is sufficient to solve the problem for a single
value of H̃ – say, H̃ = −1 (where the minus makes the vapor
at infinity undersaturated). The solution for this case was com-
puted and plotted in Fig. 2, and the corresponding evaporation
rate is Ṽ ≈ 0.663. Observe that the global variability of the

FIG. 2. The solution of boundary-value problem (20)–(22) and
(28)–(30) with H̃ = −1 and Q̃ = 0: (a) the density ρ̃(z), (b) the tem-
perature T̃ (z), (c) the pressure p̃(z) = ρ̃(z) + T̃ (z). The horizontal
dotted lines show the limiting (z → ∞) values of ρ̃, T̃ , and p̃. Note
that the global change of ρ̃ is 22% and that of T̃ , 8% (in both cases,
relative to their respective values at infinity).
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vapor characteristics is small, and the large amount of white
space in this figure illustrates this smallness.

Figure 2 also shows that, near the interface, the vapor den-
sity differs from its saturated value (ρ̃(0) 	= 0), and the vapor
temperature differs from the liquid temperature (T̃ (0) 	= 0).
This observation, however, does not contradict to boundary
condition (11), which constrains the distribution of the incom-
ing molecules, so that the full density ρ and temperature T can
differ from ρ0 and T0, respectively.

Thus, Ṽ is related to H̃ by

Ṽ ≈ −0.6632 H̃ . (31)

Let T̃∞ be the value of T̃ (z) as z → ∞. Physically, this quan-
tity is the nondimensional liquid-vapor temperature jump, and
computationally, it is related to H̃ by

T̃∞ ≈ 0.2094 H̃ . (32)

The physical meaning of results (31)–(32) becomes clear if
they are “redimensionalized,” i.e., rewritten in terms of the
dimensional evaporation rate E = ρ0(RT0)1/2Ṽ , the dimen-
sional temperature jump �T = T0T̃∞, and the full humidity
H = 1 + H̃ ,

E ≈ 0.6632 ρ0(RT0)1/2(1 − H ), (33)

�T ≈ −0.2094 T0(1 − H ). (34)

Comparing formula (33) to the Hertz-Knudsen-Schrage
equation (5), one can deduce that the coefficient θK in the
latter is

θK ≈ 0.9629.

Thus, the probability for a molecule to bounce back when
passing through the Knudsen layer is less than 4%.

The surprisingly low value of the “bounce-back probabil-
ity” 1 − θK is probably connected to the weak variability of
the vapor characteristics noted above. Indeed, imagine for the
sake of argument that the vapor’s density and temperature
in the Knudsen layer are fully uniform—in which case the
numbers of molecules entering it and leaving it on the other
side should be equal—so that θK is exactly unity. Then, it is
reasonable to conjecture that, if the vapor variability is weak,
then 1 − θK is small.

It is also interesting to estimate the temperature jump
across the Knudsen layer for, say, 90% humidity and a “room
temperature” T0 = 25 ◦C, in which case expression (34) yields
�T ≈ −8 ◦C. Such a value is large enough to be important for
heat and mass transfer in the outer region (due to the sensitiv-
ity of the saturated pressure of water to the temperature; see,
for example, Fig. 1 of Ref. [31]).

B. Solutions with nonzero heat flux, Q̃ �= 0

To examine the effect of nonzero Q̃, one can set H̃ = 0.
This does not cause loss of generality, as the problem’s linear-
ity allows one to simply add the contribution of H̃ computed
in the previous section. For the same reason, one needs to
examine a single value of the heat flux—say, Q̃ = 1—and
eventually find

Ṽ ≈ −0.5246 Q̃, (35)

T∞ ≈ −1.6743 Q̃, (36)

FIG. 3. The solution of boundary-value problem (20)–(22) and
(28)–(30) with H̃ = 0 and Q̃ = 1: (a) the nonlinear part of the den-
sity, ρ̃(z) − Q̃z, (b) the nonlinear part of the temperature, T̃ (z) + Q̃z,
(c) the pressure p̃(z) = ρ̃(z) + T̃ (z). The horizontal dotted lines in
panels (a)–(b) show the limiting (z → ∞) values of the quantities
plotted, and in panel (c) the dotted line coincides with the horizontal
axis. Note that the quantities plotted in panels (a)–(b) change both by
37% (relative to their values at infinity).

where T̃∞ is defined as the limit of T̃ (z) + Q̃z as z → ∞. The
solution computed for this case is illustrated in Fig. 3. Note
that, to make comparison between Figs. 2 and 3 meaningful,
the latter shows ρ̃(z) and T̃ (z) with their linear components
subtracted. Observe the noticeably stronger variability of the
the solution in the latter figure (the quantitative characteristics
of variability are given in the captions of Figs. 2 and 3).

To “redimensionalize” Eqs. (35) and (36), introduce the
dimensional heat flux by

Q = κ0T0

λ0
Q̃,
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where the mean free path λ0 is given by (14), and the vapor’s
thermal conductivity, by

κ0 = 5ρ0R2T0

2
τ.

These two formulas were derived similarly to the derivation
of Ref. [32] for a similar model.

Thus, the dimensional analogs of (35) and (36) are

E ≈ −0.2098 Q

RT0
, (37)

�T ≈ −0.6697 T0Q

ρ0(RT0)3/2 . (38)

C. Discussion

(1) Combining formulas (33) and (34) (Q̃ = 0) and (37)
and (38) (H̃ = 0), one obtains

E

ρ0(RT0)1/2 ≈ 0.6632(1 − H ) − 0.2098 Q

ρ0(RT0)3/2 , (39)

�T

T0
≈ −0.2094(1 − H ) − 0.6697 Q

ρ0(RT0)3/2 , (40)

where E is the dimensional evaporation rate and H , the full
humidity.

Equations (39) and (40) are the main result of the present
paper. To draw a connection between them and the existing
literature, rewrite (39)–(40) in the form[

1 − H
−�T

T0

]
= G

[ E
ρ0(RT0 )1/2

Q
ρ0(RT0 )3/2

]
,

where

G =
[

1.5078 0.3163
0.3157 0.7359

]

is sometimes referred to as the “matrix of interfacial coeffi-
cients.” As shown in Refs. [22,23] for the linearized BGK
model, and in Ref. [8] for its Boltzmann-equation equiva-
lent, G should be positive-definite and symmetric. The latter
property can be used to estimate the numerical accuracy of
this paper’s results: evidently, the diagonal terms of G equal
0.316 ± 0.0003, suggesting that the accuracy is 0.1%. Note
also that det G ≈ 1.0097, and it is unclear whether its prox-
imity to unity has a physical meaning (for example, it might
somehow be connected to the fact that θK ≈ 1).

(2) To estimate the importance of nonzero Q, recall that
evaporation implies continuous delivery of vaporization heat
to the interface. The corresponding heat fluxes come from
both sides of the interface: Q is the flux coming from the vapor
side, and that coming from the liquid side will be denoted by
Q(l ). Their sum should amount to the total heat required for
evaporation, i.e.,

Q(l ) − Q = E�, (41)

where � is the vaporization heat per unit mass.
For a flat interface in an unbounded space, the fluxes satisfy

the following proportion (derived in Ref. [33] and, in a simpler

way, in Appendix E):

−Q

Q(l )
= (ρ0c0κ0)1/2(

ρ
(l )
0 c(l )

0 κ
(l )
0

)1/2 , (42)

where ρ0, c0, and κ0 are the vapor’s density, specific heat
at constant pressure, and thermal conductivity, respectively;
and ρ

(l )
0 , c(l )

0 , and κ
(l )
0 are the corresponding parameters of the

liquid.
Expressing Q from Eqs. (41) and (42) and substituting it

into (39), one obtains

E

[
1 − (ρ0c0κ0)1/2

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2

0.2098 �

RT0

]

≈ 0.6632 ρ0(RT0)1/2(1 − H ). (43)

To estimate the importance of the heat flux (the second term in
the square brackets), consider water at, say, T0 = 25 ◦C. Using
Ref. [34] to specify �, and Ref. [35] for the other parameters,
one obtains

(ρ0c0κ0)1/2

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2

0.2098 �

RT0
≈ 2.11×10−3.

As follows from this estimate and Eq. (43), the heat flux from
the vapor side is unimportant in this case. Physically, this
occurs because most of the heat is delivered from the liquid
side.

Next, consider an external heat flux—created, for example,
using a flat heating element mounted above the interface (as
done in Ref. [36]). To see if such a flux can be important,
assume, for the sake of an argument, that it supplies all the
vaporization heat needed for evaporation, i.e., Q = −E�, in
which case Eqs. (39) and (40) yield

E

(
1 − 0.2098 �

RT0

)
≈ 0.6632 ρ0(RT0)1/2(1 − H ). (44)

Estimating the Q-related term in this equation for water at
T0 = 25 ◦C, one can see that the contribution of the heat flux
is an order-one effect,

0.2198 �

RT0
≈ 3.726.

Furthermore, Eq. (44) shows that the sign of E in this case is
opposite to that of (1 − H ), i.e., the heat flux makes undersat-
urated vapor condense!

One should realize, however, that the density gradient is
probably just as important in this case as the heat flux. Indeed,
boundary condition (30) makes ρ̃ change linearly toward in-
finity, and this circumstance ought to affect the evaporation
rate just as strongly as the linear change of T̃ does.

As much as one might be interested in separating the ef-
fects of the heat flux and density gradient, one cannot do so
for the case of a pure fluid, where the two are interlinked by
boundary conditions (29) and (30). This will have to be done
for a mixture.

IV. CONCLUDING REMARKS

The main result of this paper are expressions (39) and (40)
for the evaporation rate E and temperature jump �T across
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the Knudsen layer, in terms of the relative humidity H and
macroscopic heat flux Q (the latter is also a measure of the
density gradient).

It follows from expression (39) that a heat flux and the
matching density gradient can strongly affect the Knudsen
layer, but it is impossible to clarify which one of the two is
more important. They do not arise separately in pure fluids: if
it is at rest or moving as a whole, the temperature and density
gradients have to add up to a uniform pressure field (pressure
inhomogeneities give rise to an accelerating flow, physically
irrelevant to evaporation).

This effect of the heat flux alone can only be clarified if one
considers evaporation of a liquid into a mixture, say, of vapor
and air. If the partial density of the vapor is smaller than that
of air (which it indeed is in Earth’s atmosphere), the pressure
field typically equilibrates at the expense of a slight change
of the air density, so that the vapor density gradient does not
have to be present. One’s intuition suggests that, in this case,
the heat flux alone would be unable to make undersaturated
vapor condense, but it should still be important quantitatively.

Note also that all existing multicomponent BGK models
do not satisfy the Onsager reciprocal relations [37]. As a

result, they cannot be calibrated, i.e., their parameters cannot
be fixed to make the transport properties of the model match
the properties of the vapor–air mixture. This means that the
problem of evaporation of a liquid into a mixture of vapor
and air will have to be examined using the multicomponent
Boltzmann equation.
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APPENDIX A: DERIVATION OF EQS. (20)–(22)

Eq. (24) can be viewed as an ordinary differential equa-
tion (linear, first order) where f̃ is the unknown, z is the
independent variable, and the dependence of f̃ on u and v is
treated as parametric (this approach was suggested for a sim-
ilar problem in Ref. [22–24]). Subject to boundary conditions
(17) and (18), the solution of Eq. (24) is

f̃ = ± 1

(2π )3/2v

∫ z

0

[
ρ̃(z′) + u2 + v2 − 3

2
T̃ (z′) + vṼ (z′)

]
exp

(
−u2 + v2

2
− z − z′

v

)
dz′ for v ≷ 0.

Substituting this expression into Eqs. (15) and changing the order of integration dz′dv → dv dz′, one obtains

ρ̃(z) =
∫ ∞

0
[Bρρ (z − z′) ρ̃(z′) + BρT (z − z′) T̃ (z′) + DρV (z − z′) Ṽ (z′)]dz′, (A1)

T̃ (z) =
∫ ∞

0
[BT ρ (z − z′) ρ̃(z′) + BT T (z − z′) T̃ (z′) + DTV (z − z′) Ṽ (z′)]dz′, (A2)

Ṽ (z) =
∫ ∞

0
[DV ρ (z − z′) ρ̃(z′) + DV T (z − z′) T̃ (z′) + DVV (z − z′) Ṽ (z′)]dz′, (A3)

where

DρV = C0 sgn z, DTV = C2 − C0

3
sgn z, DV ρ = C0 sgn z, DV T = C2 − C0

2
sgn z, DVV = C1, (A4)

and the rest of the coefficients are given by expressions (24)–
(26), with Cn given by (27).

One can simplify Eqs. (A1)–(A3) by taking advantage of
the fact that Ṽ does not dependent on z. Letting Ṽ = const
and using expressions (23) and (A4) to show that∫ ∞

0
BρV (z − z′) dz′ = −AρV (z),

∫ ∞

0
BTV (z − z′) dz′ = −ATV (z),

one can verify that Eqs. (A1) and (A2) reduce to (20) and (21),
as required. To reduce Eq. (A3) to (22), one needs to first set
z = 0 in the former (which is allowable because both sides of
(A3) are constants) and then use expressions (A4) to show that

DV ρ (−z′) = −BV ρ (z′), DV T (−z′) = −BV T (z′),∫ ∞

0
DVV (−z′) dz′ = 1

2
.

APPENDIX B: PROPERTIES OF THE COEFFICIENTS
IN EQS. (20)–(22)

Consider definition (27) of Cn(z), let z → ∞, and use the
steepest descent method to show that

Cn ∼ |z|n/3

2
√

3
exp

(
−3|z|2/3

2

)
as z → ∞.

Thus, Cn decay exponentially as z → ±∞, and so do the
coefficients AρV , Bρρ , etc., because they are related to Cn by
Eqs. (23)–(26).

Next, observe that the integral in Eq. (27) converges for
non-negative n; hence, Cn(z) with n � 0 are finite and continu-
ous at all z. This property and the exponential decay at infinity
(proved above) makes them integrable. Thus, to ensure that
the coefficients AρV , Bρρ , etc., are integrable too, one needs
to also prove integrability of C−1 [which is the only Cn with a
negative n in Eqs. (23)–(26)].
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To examine the behavior of C−1 as z → 0, consider first C1

and use definition (27) to show that

z
d3C1

dz3
+ C1 = 1

(2π )1/2

∫ ∞

0

(
v − |z|

v2

)

× exp

(
−v2

2
− |z|

v

)
dv for z > 0.

The integral on the right-hand side of this equality can readily
be evaluated and shown to equal zero, resulting in the follow-
ing differential equation:

z
d3C1

dz3
+ C1 = 0 for z > 0. (B1)

Definition (27) of Cn implies also that

C1 = 1

(2π )1/2 ,
dC1

dz
= −1

2
at z = 0. (B2)

Applying the Frobenius method to Eq. (B1), one can find
the expansions of its three linearly independent solutions, and
then use (B2) to obtain

C1(z) ∼ 1

(2π )1/2

[
1 − 1

2
z2 ln z + O(z4 ln z)

]
− 1

2
[z + O(z3)]

+ b[z2 + O(z4)] as z → +0, (B3)

where b is an undetermined constant.
Now, one can use (27) to verify that

C−1 = d2C1

dz2
for z > 0.

This equality and asymptotics (B3) show that C−1(z) has an
integrable singularity at z = 0:

C−1 ∼ − ln z

(2π )1/2 as z → +0.

Thus, all Cn with n � −1 are integrable, and so are all the
coefficients of Eqs. (20)–(22) [because the latter are related to
the former by Eqs. (23)–(26)].

APPENDIX C: ASYMPTOTICS (29)–(30)

To prove that asymptotics (29) and (30) are consistent with
Eqs. (20)–(22), one needs to show that, as z → ∞, the lin-
early growing terms in the first two of these equations cancel
out. Equation (22), in turn, does not involve z, and hence is
irrelevant to the limit z → ∞. Note also that the coefficients
AρV and ATV decay exponentially as z → ∞ and, thus, should
be omitted from the limiting form of Eqs. (20) and (21). Note
also, the exponential decay of the kernels Bρρ , BρT , BT ρ , and
BT T suggests that the main contribution to the integrals in
Eqs. (20) and (21) comes from the region z′ ∼ z. As a result,
one can change in the limiting form of Eqs. (20) and (21) the
integration intervals from (0,∞) to (−∞,∞).

Letting also ρ̃(z) = Q̃z and T̃ (z) = −Q̃z, one can reduce
Eqs. (20) and (21) to

Q̃z =
∫ ∞

−∞
[Bρρ (z − z′) − BρT (z − z′)]Qz′dz′,

−Q̃z =
∫ ∞

−∞
[BT ρ (z − z′) + BT T (z − z′)]Qz′dz′.

To prove that these equalities are identities, one should sub-
stitute into them expressions (24), (25), and (27), and then
evaluate the resulting integrals with respect to z′ and v (in that
order).

APPENDIX D: NUMERICAL ALGORITHM
FOR SOLVING EQS. (20)–(22)

When solving numerically Eqs. (20)–(22), the main diffi-
culty stems from the singularity of kernels Bρρ (z − z′), etc. at
z′ = z. It was handled by replacing ρ̃(z′) and T̃ (z′) with

[ρ̃(z′) − ρ̃(z)] + ρ̃(z) and [T̃ (z′) − T̃ (z)] + T̃ (z),

respectively, and evaluating the integrals involving ρ̃(z) and
T̃ (z) in Eqs. (20)–(22) using expressions (23)–(27). Eventu-
ally, one obtains

ρ̃(z) Aρρ (z) + T̃ (z) AρT (z) + Ṽ AρV (z) =
∫ ∞

0
{Bρρ (z − z′) [ρ̃(z′) − ρ̃(z)] + BρT (z − z′) [T̃ (z′) − T̃ (z)]}dz′ + Q̃Dρ (z), (D1)

ρ̃(z) AT ρ (z) + T̃ (z) AT T (z) + Ṽ ATV (z) =
∫ ∞

0
{BT ρ (z − z′) [ρ̃(z′) − ρ̃(z)] + BT T (z − z′) [T̃ (z′) − T̃ (z)]}dz′ + Q̃DT (z), (D2)

1

2
Ṽ + ρ̃(0) + 1

2 T̃ (0)

(2π )1/2
= −

∫ ∞

0
{BV ρ (z′) [ρ̃(z′) − ρ̃(0)] + BV T (z′) [T̃ (z′) − T̃ (0)]}dz′, (D3)

where

Aρρ = C0, AρT (z) = C2 − C0

2
, AT ρ = C2 − C0

3
, AT T = C4 − 2C2 + 5C0

6
,

and the rest of the coefficients and the functions Cn are
determined by (23)–(27). The singularity of the integrands
in Eqs. (D1) and (D2) is O(|z − z′| ln |z − z′|), which is
weaker than the ln |z − z′| singularity in the original equa-
tions (20) and (21), and the singularity in Eq. (D3) is

O(|z − z′|2 ln |z − z′|), which is weaker than the |z − z′|
ln |z − z′| singularity in the original equation (22).

Equations (D1)–(D3) were discretized on a mesh with
constant step and solved as a large set of linear algebraic
equations. At all interior nodes (with nonzero z), the integrals
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involved where computed using the trapezoidal rule which has
a reduced error near the singularity (because the integrand is
locally odd). At z = 0, the singularity occurs at the boundary
of the integration interval in z′, so that the error of the trape-
zoidal rule is relatively large. In this case, the integral over the
first two steps in z′ was computed using a formula specifically
designed for functions with this kind of singularity, and the
trapezoidal rule was used for the rest of the domain.

APPENDIX E: DERIVATION OF EQ. (42)

Even though evaporation is steady, one cannot derive the
fluxes delivering vaporization heat to the interface from the
steady heat-conduction problem (whose solutions include an
arbitrary spatially uniform heat flux, and it is unclear which
of its values corresponds to the naturally arising pattern).
Instead, one should consider the initial-value problem and let
the evolution choose in which proportion the heat comes to
the interface from the liquid and vapor.

Consider the following heat-conduction problem:

ρ
(l )
0 c(l )

0

∂T̃

∂t
= κ

(l )
0

∂2T̃

∂z2
if z < 0, (E1)

ρ0c(v)
0

∂T̃

∂t
= κ

(v)
0

∂2T̃

∂z2
if z > 0, (E2)

where ρ0, c0, and κ0 are the vapor’s density, specific heat at
constant pressure, and thermal conductivity, respectively; and
ρ

(l )
0 , c(l )

0 , and κ
(l )
0 are the corresponding parameters of the liq-

uid. Observe that Eqs. (E1) and (E2) do not include the terms
describing the temperature advection by the evaporative flow:
such terms are quadratic in H̃ (the deviation of the humidity
from unity)—hence, they are beyond the linear approximation
used in this paper. Note also that Eqs. (E1) and (E2) assume
that the interfacial thickness is zero, which is a reasonable
assumption in a calculation of macroscopic fluxes.

Equations (E1) and (E2) are to be solved with the following
matching conditions at the interface:

(T̃ )z→+0 = (T̃ )z→−0, (E3)

−κ0

(
∂T̃

∂z

)
z→+0

+ κ
(l )
0

(
∂T̃

∂z

)
z→−0

= −E�, (E4)

where the right-hand side of condition of (E4) describes con-
sumption of vaporization heat. Assume also that there are no
external heat sources,

∂T̃

∂z
→ 0 as z → ±∞, (E5)

and that the initial temperature field is uniform,

T̃ = 0 at t = 0. (E6)

Equations (E1)–(E6) form an initial-boundary-value problem
for T̃ (z, t ).

To derive Eq. (42), one does not need the full solution of
Eqs. (E1)–(E6), but only the following characteristics:

Q(l ) = −κ
(l )
0

(
∂T̃

∂z

)
z→−0

, (E7)

Q = −κ0

(
∂T̃

∂z

)
z→+0

. (E8)

To calculate them, introduce the Laplace transform of T̄ (z, t ),

T̂ (s, t ) =
∫ ∞

0
T̃ (z, t ) e−st dt,

and apply the Laplace transformation to Eqs. (E1)–(E5). Solv-
ing the resulting boundary-value problem for an ODE with
piecewise-constant coefficients, one obtains

T̂ (s, t ) = − E�

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2 s−3/2 exp

[(
cls

κl

)1/2

z

]
if z < 0, (E9)

T̂ (s, t ) = E�̂

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2 s−3/2 exp

[
−

(
cvs

κv

)1/2

z

]
if z > 0. (E10)

Calculation of the inverse transforms of these expressions is cumbersome, but possible, yet unnecessary. Instead, apply the
Laplace transformation to the flux expressions (E7) and (E8) and, taking into account Eqs. (E9) and (E10), obtain

Q̂(l )(s) =
(
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2
E�

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2 s−1, Q̂(s) = − (ρ0c0κ0)1/2E�

(ρ0c0κ0)1/2 + (
ρ

(l )
0 c(l )

0 κ
(l )
0

)1/2 s−1.

Since the inverse transform of s−1 is 1, the above expressions entail Eq. (42), as required.
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