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Multispecies Bhatnagar-Gross-Krook models and the Onsager reciprocal relations
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It is shown that most of the existing versions of the Bhatnagar-Gross-Krook model—those whose coefficient
are independent of the molecular velocity—do not satisfy the Onsager relations. This circumstance poses a
problem when calibrating these models, making their transport properties match those of a specific fluid.
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I. INTRODUCTION

In their seminal 1954 paper [1], Bhatnagar, Gross, and
Krook (BGK) proposed a phenomenological model describ-
ing kinetic processes in a pure gas, and two years later,
Gross and Krook extended this result to gas mixtures [2].
Even though neither of these models follows from the first
principles, they are believed to provide a qualitatively correct
approximation of the Boltzmann kinetic equation, and a lot
of work has been done to generalize and extend the BGK
approach. In application to mixtures, the effort has mostly
gone into making the BGK model more adaptable, so that it
would be able to describe a wide range of real fluids (e.g.,
Refs. [3–17] ).

Note, however, that the multispecies BGK model has never
been tested for compliance with the Onsager reciprocal re-
lations, which impose certain constraints on the transport
coefficients. Models derived from the first principles satisfy
them automatically, whereas phenomenological models may
or may not do so. An example of a noncompliant model can
be viewed in the Enskog theory of dense fluids [18], and an
example of a compliant one, in the so-called modified Enskog
theory [19,20]. The noncompliance with the Onsager relations
casts doubt on the model’s physical relevance, and it is no
coincidence that the modified Enskog theory has eventually
been shown to follow from the first principles for a fluid of
hard spheres [21,22].

As demonstrated in the present paper, the most common
version of the BGK model (which includes the original result
of Gross and Krook [2] as a particular case) does not comply
with the Onsager reciprocal relations. According to one of
those, the coefficient of the temperature gradient in the mass
flux should be interlinked in a certain way with the coefficient
of the density gradient in the heat flux. According to the BGK
model, however, the former is zero, whereas the latter is pro-
portional to the coefficient of the density gradient in the mass
flux—hence, cannot be zero. Not only does this undermine
the physical relevance of the model, this also makes the BGK
model impossible to calibrate, i.e., choose the values of the
parameters involved to ensure that the transport properties of
the fluid under consideration are described correctly.
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In Sec. II of this paper, one the most general BGK-type
models will be formulated, and in Sec. III, it will be shown
to not comply with the Onsager relations. Other BGK-type
models are briefly discussed in Sec. IV. For simplicity, only
binary (two-species) mixtures will be considered, but the re-
sulting conclusions apply to the general case as well.

II. FORMULATION: THE BGK MODEL
FOR BINARY MIXTURES

Consider a mixture of two monatomic gases, described by
the distribution functions fi(t, r, v), where i is the species
number, t is the time, r is the position vector, and v, the molec-
ular velocity. The macroscopic number density ni, velocity Vi,
and temperature Ti of the ith species are given by

ni =
∫

fid
3v, (1)

niVi =
∫

v fid
3v, (2)

3niTi =
∫

mi|v − Vi|2 fid
3v, (3)

where mi is the molecular mass, and Ti is measured in energy
units (so that the Boltzmann constant equals unity).

The most general form of the multispecies BGK model
(e.g., [15,23]) consists in

∂ f1

∂t
+ v · ∇ f1 = ν11(M1 − f1) + ν12(M12 − f1), (4)

∂ f2

∂t
+ v · ∇ f2 = ν22(M2 − f2) + ν21(M21 − f2), (5)

where νi j are the frequencies of collisions between the
molecules of ith and jth species,

Mi = ni

(
mi

2πTi

)3/2

exp

(
−mi|v − Vi|2

2Ti

)
, (6)

M12 =
(

m1

2πT12

)3/2

n1 exp

(
−m1|v − V12|2

2T12

)
, (7)

M21 =
(

m2

2πT21

)3/2

n2 exp

(
−m2|v − V21|2

2T21

)
, (8)
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are various Maxwellian distributions, and

V12 = V1 + β1(V2 − V1), (9)

V21 = V2 + β2(V1 − V2), (10)

T12 = T1 + α1(T2 − T1) + γ1|V1 − V2|2, (11)

T21 = T2 + α2(T1 − T2) + γ2|V2 − V1|2. (12)

Note that the parameters νi j , αi, βi, and γi may depend on the
macroscopic characteristics n1, n2, V1, V2, etc.—hence, may
vary with t and r, but not with v. Various particular cases of
models (1)–(12) have been examined in Refs. [2,3,5–8,11,24].

Equations (1)–(12) form a closed set for f1(t, r, v) and
f2(t, r, v). One can readily show that they conserve mass,
i.e., satisfy

∂n1

∂t
+ ∇ · (n1V1) = 0,

∂n2

∂t
+ ∇ · (n2V2) = 0. (13)

As for the momentum and energy, Eqs. (1)–(12) do not con-
serve them automatically, but only subject to the following
constraints:

α1 = α

ν12
, α2 = α

ν21
, (14)

β1 = β

ν12m1
, β2 = β

ν21m2
, (15)

γ1 = 1

3ν12

(
β − β2

ν12m1
+ 3γ

)
, (16)

γ2 = 1

3ν21

(
β − β2

ν21m2
− 3γ

)
, (17)

where the coefficients α, β, and γ may depend on r and
t . The above constraints are equivalent to those derived in
Refs. [15,23], albeit presented in a different form.

Given constraints (14)–(17), Eqs. (1)–(12) imply that

∂ (m1n1V1 + m2n2V2)

∂t
+ ∇ ·

∫
v ⊗ v(m1 f1 + m2 f2)d3v = 0,

(18)
∂

∂t

(
3

2
n1T1 + m1|V1|2

2
+ 3

2
n2T2 + m1|V2|2

2

)

+ ∇ ·
∫ |v|2

2
v(m1 f1 + m2 f2)d3v = 0, (19)

which reflect the momentum and energy conservation,
respectively.

III. TRANSPORT FLUXES UNDER
THE DIFFUSION APPROXIMATION

A. The standard hydrodynamics

Within the framework of the Enskog-Chapman approach
(e.g., Ref. [25], chapter 6), the mass and heat fluxes are given

by

Ji = −mini

( ∑
j

Di jd j + Bi
∇T

T

)
, (20)

Q = −κ∇T −
∑

i

Cidi, (21)

where

d j = ∇ n j

n1 + n2
+

(
n j

n1 + n2
− ρ j

m1n1 + m2n2

)∇p

p
(22)

is the “diffusion driving force” of the ith species, and the
pressure is

p = (n1 + n2)T . (23)

Di j , Bi, Ci, and κ are the transport coefficients: Di j is the
diffusivity, Bi is the thermodiffusivity (it describes the Soret
effect, i.e., the mass flux due to a temperature gradient), Ci de-
scribes the Dufour effect (i.e., heat flux due to a concentration
gradient), and κ is the thermal conductivity.

Most importantly, Ci is linked to Bi via one of the Onsager
reciprocal relations,

Ci = pBi.

and the other Onsager relation requires that the diffusivity
matrix be symmetric,

Di j = Dji.

In addition to the above relations, the coefficients Di j and Bi

should also satisfy∑
i

Di j = 0,
∑

i

Bi = 0

(see Ref. [25]). Thus, for a binary mixture, one can express
Di j , Bi, and Ci through only two coefficients—say, D and B—
so that

D11 = ρ2

ρ1
D, D22 = ρ1

ρ2
D, (24)

D21 = D12 = −D, (25)

B1 = B

m1n1
, B2 = − B

m2n2
, (26)

C1 = (n1 + n2)T

m2n2
B, C2 = − (n1 + n2)T

m1n1
B. (27)

In this paper, expressions (20)–(27) will be used under the
diffusion approximation—which includes the isobaricity as-
sumption (more details given later)—i.e., p ≈ const. Thus,
expressions (20)–(27) yield

J1 ≈ −D
(m1n1 + m2n2)(n2∇n1 − n1∇n2)

(n1 + n2)2 + B
∇n1 + ∇n2

n1 + n2
,

(28)

J2 ≈ −D
(m1n1 + m2n2)(n1∇n2 − n2∇n1)

(n1 + n2)2 − B
∇n1 + ∇n2

n1 + n2
,

(29)

Q ≈ −B
T (n1∇n2 − n2∇n1)

m1n1m2n2(n1 + n2)2 − κ
∇n1 + ∇n2

(n1 + n2)2 . (30)
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In the next subsection, these expressions will be compared
to their BGK counterparts. This is, generally, how the latter
could be calibrated, so that its coefficients are related to the
measured values of D, B, and κ of the gas mixture under
consideration.

B. The multispecies BGK model

To derive the hydrodynamic approximation of a kinetic
model, one should assume that the spatial scale of the solu-
tion exceeds the length l of the free path, and the solution’s
temporal scale exceeds l/v where v is the mean velocity.
Mathematically, these assumptions amount to “stretching” the
coordinates and time, i.e., replacing

∂

∂t
→ ε

∂

∂t
, ∇ → ε∇, (31)

where ε is a small parameter. One should then assume that the
distribution function is nearly Maxwellian, with the velocity
V and temperature T being the same for all the species, i.e.,

fi = ni

( mi

2πT

)3/2
exp

(
−mi|v − V|2

2T

)
+ ε f (1)

i + O(ε2).

(32)

In application to a BGK-type model, the hydrodynamic ap-
proximation was considered in Ref. [9], who also let

Vi = V + εV(1)
i + O(ε2), (33)

Ti = T + εT (1)
i + O(ε2), (34)

while leaving ni nonexpanded. Substituting (32)–(34) into the
rescaled versions of Eqs. (4) and (5), one can find f (1)

i and
then use Eqs. (2) and (3) to find V(1)

i and T (1)
i , while Eq. (1)

for ni does not seem to be needed. Such a nonstraightforward

procedure was chosen in Ref. [9] because of the highly nonlin-
ear structure of the BGK model, making the straightforward
calculation of higher-order corrections, such as the transport
fluxes, cumbersome.

In the present paper, a slightly different approach is em-
ployed, where the transport coefficients are calculated under
the diffusion approximation instead of the hydrodynamic one.
The difference between the two approximations is twofold.
First, the diffusion flow is slow, so that scaling (31) should be
replaced with

∂

∂t
→ ε2 ∂

∂t
, ∇ → ε∇. (35)

Second, the diffusion flow is weak—so that expansions (32)–
(33) should be replaced with

fi = n(0)
i

( mi

2πT

)3/2
exp

(
−mi|v|2

2T

)
+ ε f (1)

i + O(ε2), (36)

Vi = εV(1)
i + O(ε2), Ti = T + εT (1)

i + O(ε2), (37)

and the density should also be expanded,

ni = n(0)
i + εn(1)

i + O(ε2). (38)

Under such an approximation, the transport fluxes emerge
from the leading order of the expansion.

Having rescaled the BGK equations (4) and (5) according
to (35), one should substitute into them expansions (36)–(38).
Vi j and Ti j should also be expanded [similarly to how Vi and
Ti are expanded in (37)], as well as all the coefficients,

νi j = ν
(0)
i j + O(ε), αi = α

(0)
i + O(ε),

βi = β
(0)
i + O(ε), γi = γ

(0)
i + O(ε).

Equations (4) and (5) are linear algebraic equations, and one
can readily deduce that

f (1)
1 =

[
n(1)

1

n(0)
1

+ m1|v|2 − 3T

2T

ν
(0)
11 T (1)

1 + ν
(0)
12 T (1)

12(
ν

(0)
11 + ν

(0)
12

)
T

+ m1v · ν
(0)
11 V(1)

1 + ν
(0)
12 V(1)

12(
ν

(0)
11 + ν

(0)
12

)
T

]
M (0)

1

− v

ν
(0)
11 + ν

(0)
12

·
(

∇n(0)
1

n(0)
1

+ m1|v|2 − 3T

2T

∇T

T

)
M (0)

1 ,

f (1)
2 =

[
n(1)

2

n(0)
2

+ m2|v|2 − 3T

2T

ν
(0)
22 T (1)

2 + ν
(0)
21 T (1)

21(
ν

(0)
22 + ν

(0)
21

)
T

+ m2v · ν
(0)
22 V(1)

2 + ν
(0)
21 V(1)

21(
ν

(0)
22 + ν

(0)
21

)
T

]
M (0)

2

− v

ν
(0)
22 + ν

(0)
21

·
(

∇n(0)
2

n(0)
2

+ m1|v|2 − 3T

2T

∇T

T

)
M (0)

2 ,

where

M (0)
i = n(0)

i

( mi

2πT

)3/2
exp

(
−mi|v|2

2T

)
.

Substituting these expressions into the leading order of
Eqs. (1)–(3), one can verify that Eq. (1) is satisfied identically,
and Eqs. (2)–(3) and (9)–(12) yield

∇(
n(0)

1 T (0) + n(0)
2 T (0)

) = 0, (39)

V(1)
1 = V(1) − ∇(

n(0)
1 T (0)

)
2β (0)n(0)

1 n(0)
2

, (40)

V(1)
2 = V(1) − ∇(

n(0)
2 T (0)

)
2β (0)n(0)

1 n(0)
2

,

(41)

T (1)
12 = T (1)

1 = T (1)
21 = T (1)

2 = T (1),
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where V(1)(r, t ) and T (1)(r, t ) are undetermined functions
(neither will appear in the final expressions for the fluxes).
Note that β1 and β2, which appear in the original set, have
been expressed through β using (15).

Physically, Eq. (39) reflects the isobaric nature of diffu-
sion and heat conduction (the same result follows from the
standard hydrodynamic equations or any other model). In-
troducing the leading-order pressure p(0) (which may depend
only on t), one can rewrite (39) in the form

T (0) = p(0)

n(0)
1 + n(0)

2

. (42)

Next, introduce the mass-averaged velocity,

V̄ = m1n1V1 + m2n2V2

m1n1 + m2n2
,

and the diffusion flux of the ith species,

Ji = mini(Vi − V̄).

Using (40) and (41), one can calculate Ji and then use (42) to
eventually obtain

J1 = −ε
T (0)m1m2

(
n(0)

2 ∇n(0)
1 − n(0)

1 ∇n(0)
2

)
β (0)

(
m1n(0)

1 + m2n(0)
2

)(
n(0)

1 + n(0)
2

) + O(ε2),

J2 = −ε
T (0)m1m2

(
n(0)

1 ∇n(0)
2 − n(0)

2 ∇n(0)
1

)
2β (0)

(
m1n(0)

1 + m2n(0)
2

)(
n(0)

1 + n(0)
2

) + O(ε2).

Comparing these expressions to their “correct” counterparts
(28) and (29), one can see that the two results can be rec-
onciled by choosing a certain value of β only if B = 0 (no
thermodiffusivity). One might think that the BGK model may
still work for mixtures whose thermodiffusivity is indeed
small—e.g., that of water vapor and air (see the estimates in
Refs. [26,27])—but, unfortunately, a further problem arises
even in this case. To illustrate it, consider the heat flux,

Q =
∫ |v|2

2
v(m1 f1 + m2 f2)d3v − 5(n1T1 + n2T2)V̄,

which, to leading order, is

Q = −ε
5T (0)2(m2 − m1)

(
n(0)

2 ∇n(0)
1 − n(0)

1 ∇n(0)
2

)
β (0)

(
m1n(0)

1 + m2n(0)
2

)(
n(0)

1 + n(0)
2

)

+ ε

[
n(0)

1

m1
(
ν

(0)
11 + ν

(0)
12

) + n(0)
2

m2
(
ν

(0)
22 + ν

(0)
21

)
]

5T (0)2
(∇n(0)

1 + ∇n(0)
2

)
n(0)

1 + n(0)
2

+ O(ε2). (43)

Comparing this expression to its “correct” counterpart (30)
with B = 0, one can see that the two results coincide only in
the limit β → ∞ which makes the whole diffusive flux equal
zero, not only its thermodiffusive part.

One way or another, no such value of the parameter β exists
that makes the BGK fluxes satisfy the Onsager reciprocal
relation—neither for the general case nor for a fluid with zero
thermodiffusivity.

IV. CONCLUDING REMARKS

It should be emphasized that the results of the present
paper apply to some, but not all, of the existing BGK-type
models. Apart from the model examined above, they apply to
that of Refs. [9,10], which consists of Eqs. (1)–(10), but with
Eqs. (11) and (12) replaced with

T12 = T1 + α1(T2 − T1) + γ1(|V1|2 − |V2|2),

T21 = T2 + α2(T1 − T2) + γ2(|V2|2 − |V1|2).

Even though these expressions differ from their counterparts
examined here, the expressions for V12 and V21 are still the
same, and this is enough for noncompliance with the Onsager
relations. As for models where the collision frequencies νi j

depend on the molecular velocity (e.g., [14,16] ), those need
to be tested separately. The present results do not cover them.

Note also that, even though the models examined in this pa-
per do not formally satisfy the Onsager relations, they satisfy

them asymptotically in the limit

m1

m2
→ 0. (44)

To understand why, observe that the ratio of the first to sec-
ond terms of heat flux (43) is proportional to m1/m2—hence,
condition (44) allows one to neglect the first term. After that,
expression (43) matches the standard heat flux expression (21)
with Ci = 0, and so the corresponding Onsager relation holds.
Note also that asymptotic limit (44) is important physically,
as it describes ionized plasma (where the mass of electrons
is indeed much smaller than that of ions). The asymptotic
compliance with the Onsager relations occurs also in the limit
m1/m2 → 1, in which case the first term in expression (43)
vanishes.

One should not assume, however, that BGK-type mod-
els cannot satisfy the Onsager relations exactly. The model
proposed in Ref. [24], for example, does have the correct
transport properties—and also satisfies the so-called indiffer-
entiability principle (i.e., if the molecules of the species have
identical mechanical parameters, the distribution function of
the mixture satisfies the single-species BGK equation). Un-
fortunately, this model does not seem to comply with the H
theorem, as pointed out in Ref. [9].

Overall, a “perfect” multispecies kinetic model should sat-
isfy the following requirements:

(i) conservation of mass, momentum, and energy;
(ii) H theorem;
(iii) indifferentiability principle;
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(iv) positivity of the temperature and concentration;
(v) ability to represent fluids with arbitrary values of the

Prandtl and Schmidt numbers, and an arbitrary ratio of the
bulk and shear viscosities;

(vi) Onsager reciprocal relations.
So far, none of the existing BGK-type models has been

shown to comply with all of the above requirements (see, for
example, the review sections of Refs. [13,17]). This does not
mean, however, that a fully compliant model does not exist in

principle, and so one should hope that such will be developed
in the future.

Finally, note that requirements (v) and (vi) of the above
list are particularly important for end users, i.e., researchers
who need a practical tool to work with applications (like the
present author, who looks for a tool to model evaporation of
water into air). These requirements allow one to calibrate the
model, so that its transport properties match those of the fluid
under consideration.
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