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An asymptotic theory, describing turbulent diffusion due to wave-induced random motion in 
incompressible or compressible fluids, is constructed. It is shown that even weakly nonlinear 
waves cause irreversible stretching of material lines. The results obtained are applied to the 
Rossby-wave-induced motion in the atmosphere or ocean. An expression for the effective 
coefficient of diffusivity is calculated, which indicates that the diffusion due to Rossby waves 
can be strongly anisotropic even for an isotropic wave spectrum. 

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 

The transport of a passive tracer in a fluid with negligi- 
ble molecular diffusion is governed by the following equa- 
tion: 

2 + vjcuj = 0, (1) 

where t and x = (x,y,z) are the time and the space coordi- 
nates, c (x,t) is the concentration of the tracer and uj (x, t) is 
the velocity of the fluid (j = x,y,z). The case of an incom- 
pressible fluid (Vi uj = 0) will be considered first. 

Let uj (x,t) be a random function with nonzero mean: 

c = (c) + c’, CW 
where ( ) denotes averaging over the ensemble of realiza- 
tion, (uj) = 0. Similarly, 

uj = (Uj) + 2.4;. (2b) 
Substitution of (2) into ( 1) and averaging yield 

+ + Vj( (C)(Uj)) + (c’uj’), = 0. (3) 

Evidently, this equation alone cannot determine all the un- 
known functions ((c), (c’ui)); and to close it, we must use 
some hypothesis, relating the turbulent flux of the tracer to 
its mean concentration. The simplest example of such rela- 
tion is 

(C’ZQ = KjiVi(C), (4) 
where Kji is the so-called turbulent diffusivity tensor. The 
relationship (4) was originally suggested by Taylor’ for the 
case of spatially homogeneous stationary turbulence in an 
incompressible fluid. Later Batchelor,’ assuming the Gaus- 
sian distribution of the displacement of the tracer particles, 
obtained the following expression for the diffusivity tensor: 

Kji = + (5) 
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where BjiL) is the so-called Lagrangian correlation function: 

B;:)(T) =~(u,(X(t),t)u,(X(t + T),t+ 7)); 

dX dt = u(X,t), X(0) =x. 

Unfortunately, theoretical or experimental determination of 
this quantity is a very complicated problem; but if the fluid 
motion is induced by small-amplitude waves, BjiLL’ can be 
approximated by the Eulerian (conventional) correlation 
function: 

By’ ~B?)(T) = (u;(x;t)uj(x,t + 7)) (6) 
(e.g., Phythian,3 Lundgren and Pointin and Weinstock’). 
Formulas (5) and (6) have also been applied to a determin- 
istic or even deterministic and steady motion (Andrews and 
McIntyre,6 Plumb,7 and Middleton and Lode?), while 
Mclaughlin et al.’ modified it to describe the case of short- 
scaie steady random velocity fields. 

It is worth noting that all the papers mentioned 
above’-’ considered spatially homogeneous turbulence in in- 
compressible fluids. In addition to this, authors,‘-4 assumed 
the probability distribution of the fluid velocity (or the dis- 
placement of the tracer particles) to be Gaussian. 

The present paper is devoted to the calculation of the 
effective diffusivity coefficient for the fluids with random 
wave-induced motion. Within the context of geophysical ap- 
plication, the correlation period of the wave-induced motion 
is likely to be much smaller than the time scale of the diffu- 
sion, while its spatial scale is usually of the same order as the 
diffusion spatial scale. These conditions enable us to calcu- 
late the diffusivity tensor using a direct perturbation tech- 
nique, which is not based on any a priori assumption con- 
cerning probability distribution of any quantity and can be 
applied to the case of compressible fluids as well. 

-As a particular example, we consider fluid motion in- 
duced by a random spectrum of Rossby waves. It should be 
emphasized, that from the geophysical point of view these 
waves play an important role in the large- and mesoscale 
( 100-1000 km) dynamics of the Earth’s atmosphere and 
oceans (cf. Pedlosky”). We shall consider the simplest- 
barotropic-model of Rossby waves, where the fluid velocity 
does not depend on the vertical dimension and the “e&c- 
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tive” number of spatial variables is reduced to two. In addi- 
tion, we shall assume the wave amplitude to be small and use 
the so-called weakly nonlinear approach to wave turbulence 
(e.g., Reznik and Soomere” and Zakharov’*). With the 
help of this simplified model we hope (i) to obtain quantita- 
tive understanding of the horizontal structure of the atmos- 
pheric/oceanic diffusion and (ii) to develop a general ap- 
proach to the calculation of diffusivity coefficient for Auids 
with weakly nonlinear wave motion. 

9. II. TURBULENT DIFFUSION IN FLUIDS WITH WAVE- 
INDUCED RANDOM MOTION 

A. The case of incompressible fluid 

The nondimensional variables should be introduced as 
follows: 

c = E, 
f 

LX=-----, f==--&-, 4 
r uj =x2 (7) 
L(d) 1 (I) u 

where Lo1 is the characteristic spatial scale of the diffusion, 
T(t) is the characteristic wave period, and Uis the rms of the 
turbulent velocity. Substitution of (7) into ( 1) yields (tildes 
are omitted) 

$ + evjcuj = 0, 

where tr = UT,,, /L,,, . We shall consider the case ~4 1; i.e., 
T<d) % T<t, 9 where T,d, is the time scale of the diffusion. 

Evidently, the fluctuations of the concentration are of 
the order of E: 

c = (c) + EC’, 

while the mean component of the velocity of the fluid is as- 
sumed to be equal to zero: ( ui ) = 0. The equations, govern- 
ing the mean concentration and its fluctuations, are 

(3 (4 
at 

+ ;vj (c’u; ) = 0, 

ad 
dt= 

- u;v;{c) - EVj(C’Uj - (c’zg,. (9a) 

The latter equation should be supplemented with the initial 
condition 

c’(x,O) = 0. (9b) 
The solution of the Cauchy problem (9) can be found in the 
form of an asymptotic series 

c’ = c’(“) + EC’(‘) + . . . . (10) 
where 

c’(O)(x,t) = - 
I 

fu;(x,~,vj(c(x,~,,d~, (lla> 
0 

C’on + “(x,t) =* - 
J 

“v, [ U;(X,T)Ct(~n)(X,T) 

- ~~;(x,~)c.‘“‘(x,7)~]d7. (llb) 
Substitution of ( 11) and ( 10) into (8) yields a closed-form 
equation governing (c) . Taking into account the lowest-or- 
der term only, we have 

J (c(x,t>) 
at’ 

- Ezvj 
f 

i(u;(x,t)u;(x,T)) 
0 

XVi(C(XyT))dTz O(2). (12) 
Then, using the Eulerian correlation function (6) and the 
“slow” time variable T = &, we rewrite Eq. ( 12) as 

a(c(m) -v 

dT / P 
Bj,EiE’(~,~) 

- T/Z 

XVi(C(X,T+ t?~))d~= O(E). 
Finally, taking the limit ~-0, we obtain the desired equation 
governing (c(x,T)): 

a (4 - = VjKjJi (c), 
dT 

where 

I 

m 
Kji(x) = B,j;E’(~,~)d~ (14) 

0 

[we have taken into account here that Bjp)(x,r) is an even 
function of r] . As could be expected beforehand, the diffu- 
sivity coefficient ( 14) coincides with the “exact” expression 
(5) with the only difference being in the particular expres- 
sion for the correlation function. This difference is signifi- 
cant, since, in contrast with BjlLi”’ (x,7), the Eulerian correla- 
tion function could be more easily determined in a 
laboratory or field experiment. 

B. The case of compressible fluid 

The case of a compressible fluid ( Vj uj # 0) is more com- 
plicated. The compressibility-modified diffusion equation 
appears to be 

(15) 

where 

Pj(X) = 
P 

_ _(u;(~;t)V,uj(x,t + 7))dT. 

If the wave spectrum is anisotropic, PI +O, and the effect of 
compressibility can strongly influence the process of turbu- 
lent diffusion [compare ( 13) and ( 15) 1. 

Ill. AN EXAMPLE: LINEAR BAROTROPK ROSSBY 
WAVES 

The equation governing barotropic Rossby waves is (cf. 
Pedlosky”) 

(16) 

where \I, is the streamfunction: 

u’ = -i!!! 
x 

u’ 2% 

ay ’ Y ax ’ 
u: = 0; (17) 

p is the gradient of Coriolis parameter and A is the two- 
dimensional Laplace operator. The general solution to the 
linearized equation (16) can be written in the form of a 
Fourier integral: 

Y(x,t) = 
59 Phys. Fluids A, Vol. 4, No. 1, January 1992 E. S. Beniiov and E. Wolanski 59  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to

IP:  129.31.170.75 On: Mon, 18 Jan 2016 15:41:16



wherek= (k,,k,,) isthewavevector,w(k) = -pk,/k*is 
the frequency of Rossby waves, k = 1 k] , and ak is a symmet- 
ric function of k: 

a -k =a?, (18) 
where the asterisk denotes the complex conjugate. For sim- 
plicity, we assume that the wave field is spatially homoge- 
neous, i.e., (a,a,) = E,S(k + k’), where S(k) is the Dirac 
delta function and E(k) can be interpreted as the energy 
spectrum of Rossby waves. The equality ( 18 ) yields 

E -E -k - k’ (19) 
In terms of Ek, the correlation matrix of the fluid velocity, 
derived from Eq. ( 14) and expressed in terms of Ek, is 

Bxx = 

Bx, = - f( $+)Ek cos(wr)dk. 

Then, substituting Bji into (14) and making use of the for- 
mula 

s 

co 
cos(wr)dr = ?rS(w), 

0 

we obtain 

Kxr=rr Co 
~~~~-~~ 

2p s -m_(k,)2E, l/c,=o dky, Kxy =Kyy 70. 

One can see that (i) linear Rossby waves do not transfer the 
tracer along the north-south (meridional) direction; and 
(ii) the main contribution into the diffusion process is given 
by waves of zero frequency. The physical meaning of these 
facts will be discussed in the next section. 

IV. DISCUSSION 
( 1) Expressions for high-order corrections to the diffu- 

sion equation ( 13 ) can be classified into three groups: 

a (4 -= VjK,iVi (c) + Gi + G2 + G3. 
ItIT 

Here 

s 

- T/Z 

G, = - Vj Bji(T)dTVi(c( T)) + ..*, (20a) -~ 

G2= -m+ 
s 

=Bji(T)TdTVi a(C(T)’ + . . . . (20b) 
0 dT 

G3 = EVj CQjiVi + -&inViVn ) (c(O) + ***) 

where 

Qji =P J+ (U;w:,(t+Q 
-co --m 

POC) 

xV,u!(t + ~1 + r2))dr1 drz, 

Mjin = 
SP 

b;‘(t>u:, (t + 7,) 
-co -02 

(21a) 

xu:(t + r1 + Tz))dTl dTp Wb) 
The corrections G, are associated with the fact that random 

fluctuations c’ for a certain length of time “remember” the 
initial condition (9b). With time elapsing these corrections 
vanish (i.e., G, -+ 0 with T+ CO ). The corrections G2 describe 
weak transfer of the tracer by waves ofjinite frequency (as 
we saw in the previous section, the main contribution into 
the diffusion process is given by waves of zero frequency). 
Finally, G3 takes into account high-order corrections c’rm), 
m>2 and corresponds to the correlations in higher moments 
of fluid velocity field. 

(2) Introducing the nondimensional parameter 
6 = L(,, /Lo, (L,,, is the correlation radius of the turbu- 
lence and L(d) is the spatial scale of the diffusion), we esti- 
mate the first term in the expression for G3 as [cf. (20~) and 
(21a) 1 

Qji - l/S, G, - e/S. 

Evide-ntly, if the spatial scale of the turbulent motion is SUB- 
ciently small (L&&S), our expansion is invalid [ G3 = 0( 1) 1. 
This is reasonable, since for the case of spatially homoge- 
neous “strong” turbulence in incompressible fluids we could 
obtain nothing but the equalities (4) and (5). 

(3) As we have seen above, the d@usivity coeficient is 
determined by waues with zero frequency. Indeed, in the case 
of linear-wave-induced motion of high frequency, the orbits 
of fluid particles are closed and the distribution of the tracer 
is exposed to fast periodic distortion, resulting in no mixing 
(diffusion) at all. Thus, waves with periods smaller than the 
time scale of the diffusion cannot interact with slow changes 
in the tracer concentration field and produce nontrivial 
transfer of the tracer particles. Bearing in mind that 
?d) 3 T(t) 7 we can see that only injinitely slow waves (i.e., 
waves with zero frequency) can contribute to the diffusivity 
coefficient within the framework of the zeroth order of the 
perturbation scheme. The corrections associated with the 
contribution of finite-frequency waves are taken intp ac- 
count in the higher orders. 

(4) It is worth noting that the numerical simulation of 
the kinetic equation for weak Rossby wave turbulence (cf. 
Reznik and Soomere”) demonstrated that the zero-fre- 
quency component of the spectrum has a relatively high level 
and, consequently, can cause strong mixing. 

(5) We can also provide a simple physical explanation 
of the zero values of diffusivity coefficient responsible for the 
meridional diffusion in the above example. Apparently, they 
vanish because the meridional component of zero-frequency 

.wave-itiduced velocity is equal to zero (zero-frequency 
Rossby waves correspond to a zonal flow with random pro- 
file). 

V. AN EXAMPLE: WEAKLY NONLINEAR BAROTROPIC 
ROSSBY WAVES 

The d%rence between linear and (weakly) nonlinear 
wave spectra is that the latter comprises the so-called com- 
binational harmonics. In contrast with the ordinary (reso- 
nant) waves, frequencies and wave vectors of these harmon- 
ics do not satisfy the dispersion relation, but are “composed” 
of frequencies and wave vectors of resonant waves: 
1; = Zk, , i;, = Zw (k, ) . Accordingly, a weakly nonlinear 
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Bossby wave field is described by the following expression 
(cf. the Appendix) : 

Y(x,t) = 
I( >( 

$ ak exp(iwt) + 
II 

iU!kfk, a,, ak 1 

Xexp[i(w, + w,)t]S(k - k, - k,)dk, dk, 

+ 
111 

U’Z’ 
kk,k,k,ak,uk,ak, exp[i(wl + @2 + %)f 1 

*S(k - k, - k2 -k&k, dk,dk, + ..a 
> 

Xexp( - zkx)dk, (22) 

where u&$, and Uii’2k)k k are symmetric functions: I21 
UC” = U’l’ 

kk,ka kk,k, 9 (23a) 

u (2) 
kV,k, = U’2’ 

kk,k,k, 
= U’2, 

kk,k,k, = 
u (2) 

kk,k,k, * (23b) 

In addition, the condition of Y (x,t) being real yields 
U’” 

--k-k, -k, = - G;k,, 

(24) 
U’2’ 

-k-k,-kk,.-k, = 
U’2’ 

kk,k,k 

(the explicit expressions for U,!$, and UL$k, are given in 
the Appendix). Substituting (22) and ( 17) into the expres- 
sion for the correlation function ( 14), we can split the 
fourth-order moments of ak through the moments of the 
second order: 

b2k,ak./k;ak;) = Ek,Ek, [W, + k; VW -t kS) 

+ 6th + k; )&k, + k; I] 

+ E,,Eks&k, -I- WWG + k; 1. 

This procedure is justified because the distribution of any 
weakly nonlinear wave field is close to Gaussian distribution 
(e.g., Zakharovr2). Using ( 19)) (23 ), (24)) and the equality 
corresponding to the zero value of the Rossby-wave Stokes 
drift, 

U”’ -0 
O,k, - k - 9 

we obtain 

k,, + kx2 2 (1) 
,k, +k2, (Uk+kzJbd2 

xcos[(w, + w2)71 + [ Wk,k, cos(w,?-) 

f CykJq COS(@,d] Ek,& dk,dkz + -a., 1 
where 

W W, =3(k,,/k,)2U~~,!,)k,,k,,-kk,. 
Evidently, Wk,k, S( w, ) = 0; and after the substitution of Byy 
into the expression for diffusivity coefficient ( 14), the sec- 
ond term in B,,,, turns into zero: 
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kx, + k, 2 
,k, + k,, 

> 
(U:f:kz,k,ekz 1’ 

.Ek, EkZ&w, + wzldk, dk,. 

Similarly, 
(k, + k, 1 #,a, + k,,z ) 

lb + k,12 > 

X(U”’ 1 
2 

k, + WM, 

*Ek, Ek2&% + o,)d k, d k,. 

(2% 

(25b) 
Bearing in mind that Rossby waves, as a dynamic system, are 
isotropic in respect to the inversion of they axis: 

6L - $1 =&c&J, 
U”’ 

k,. I k,&,, - ky,&, - $2 = - U”’ _ k.~.k,k,,,l,,,;k,,.k 
[cf. (A4) 1; we can see that Kx, = 0 for all symmetric 
[E(k,, -k,) = E(k,,k,,)] wave spectra. 

VI. DISCUSSION 

( 1) The expressions (25) for the diffusivity coefficients 
have clear physical meaning. Indeed, the integrals in (25) 
sum up the contributions of all second-order combinational 
harmonics, while the corresponding delta functions “cut 
out” the harmonics with zero frequency only. Since the zero- 
frequency combinational harmonics can be formed by pairs 
of linear waves with nonzero frequencies, the nonlinear cor- 
rections to the dzjiisivity tensor depend on the whole wave 
spectrum. 

(2) It must be emphasized that in the case of weakly 
nonlinear waves, the meridional mixing is much weaker than 
the zonal mixing. 

(3) The nonzero values of the diffusivity coefficients 
indicate the irreversible stretching of material lines, caused by 
Rossby waves. This conclusion seems to be rather important 
for the understanding of the Rossby wave turbulence itself. 

(4) It is also worth noting that the diffusion due to lin- 
ear or nonlinear Rossby waves differs significantly from that 
caused by steady waves. In the latter case (studied by An- 
drews and McIntyre,6 Plumb,’ and Middleton and Loder’), 
the mixing is produced by the Stokes drift, which is, in the 
instance of Rossby waves, equal to zero. 

VII. CONCLUDING REMARKS 
Two problems have been discussed in this paper. 
First, we have developed an asymptotic technique for 

the calculation of the coefficient of diffusion due to random- 
wave-induced motion in fluids. In contrast with the methods 
developed by the previous authors, this technique permits us 
to calculate the higher-order corrections to the diffusivity 
coefficient and can be applied to compressible fluids as well. 

Second, we have calculated the diffusivity coefficient for 
the case, where the fluid motion is induced by linear or weak- 
ly nonlinear spectra of barotropic Rossby waves. It was 
shown that the dzgusion due to Rossby-wave-induced motion 
is strongIy anisotropic, the zonal diffusivity coefficient being 
much greater than the meridional one. 
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We emphasize that the results obtained can be easily 
generalized for other types of random wave motion (such as 
surface or internal gravity waves). In particular, the impor- 
tant conclusion about the irreversible stretching of material 
lines by Rossby wave turbulence can be applied to any nonlin- 
ear-wave-induced motion (even if the latter does not com- 
prise a shear-flow component). The effect of weak nonlin- 
earity seems to be sufficient for this phenomenon to occur. 

APPENDIX: WEAKLY NONLINEAR SPECTRUM OF 
ROSSBY WAVES 

In terms of the Fourier transform 

Y (x,t)exp(zkx)dx, 

the Rossby wave equation can be written as follows: 

& Y, - iwY, 

= Vkk,k2:yk, yk+ - k, - k,)d k, d k,, 

where 

V Wkz =- ; (-j+x,k, --k,,kz)( z-2). 

(Al) 

Equation (A 1) can be solved via iterations: 

Yk = YiO’ + Y:‘) + . . . . (A21 
YioO, = ak exp(icot). Wa) 

The first iteration is 

yp = 
u 

i(w - w1 - w2) - 1vkk,k,ak,ak2 

*exp[i(w, + w,)t ]6(k - k, - k,)dk, dk,. 
Mb) 
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Comparing (A2) and (A3) to (22), we can see that 
U(l) 

kk,k, = (@ - @l - ‘=2) - %kk,k,* (A4) 
Evidently, if w - w, - w2 -+O, U&1,, + 00. This singularity 
corresponds to strong resonances between Rossby wave tri- 
plets and has nothing to do with combinational harmonics of 
zero -frequency. Correspondingly, if wr = - w2 and 
w(k, + k,) = 0, the singularity disappears. 

The coefficient U,$ikzk, can be calculated in a similar 
way. 
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An asymptotic theory, describing turbulent diffusion due to wave-induced random motion in 
incompressible or compressible fluids, is constructed. It is shown that even weakly nonlinear 
waves cause irreversible stretching of material lines. The results obtained are applied to the 
Rossby-wave-induced motion in the atmosphere or ocean. An expression for the effective 
coefficient of diffusivity is calculated, which indicates that the diffusion due to Rossby waves 
can be strongly anisotropic even for an isotropic wave spectrum. 

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 

The transport of a passive tracer in a fluid with negligi- 
ble molecular diffusion is governed by the following equa- 
tion: 

2 + vjcuj = 0, (1) 

where t and x = (x,y,z) are the time and the space coordi- 
nates, c (x,t) is the concentration of the tracer and uj (x, t) is 
the velocity of the fluid (j = x,y,z). The case of an incom- 
pressible fluid (Vi uj = 0) will be considered first. 

Let uj (x,t) be a random function with nonzero mean: 

c = (c) + c’, CW 
where ( ) denotes averaging over the ensemble of realiza- 
tion, (uj) = 0. Similarly, 

uj = (Uj) + 2.4;. (2b) 
Substitution of (2) into ( 1) and averaging yield 

+ + Vj( (C)(Uj)) + (c’uj’), = 0. (3) 

Evidently, this equation alone cannot determine all the un- 
known functions ((c), (c’ui)); and to close it, we must use 
some hypothesis, relating the turbulent flux of the tracer to 
its mean concentration. The simplest example of such rela- 
tion is 

(C’ZQ = KjiVi(C), (4) 
where Kji is the so-called turbulent diffusivity tensor. The 
relationship (4) was originally suggested by Taylor’ for the 
case of spatially homogeneous stationary turbulence in an 
incompressible fluid. Later Batchelor,’ assuming the Gaus- 
sian distribution of the displacement of the tracer particles, 
obtained the following expression for the diffusivity tensor: 

Kji = + (5) 

“Present affiliation: School of Mathematics, U&xsity of New South 
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where BjiL) is the so-called Lagrangian correlation function: 

B;:)(T) =~(u,(X(t),t)u,(X(t + T),t+ 7)); 

dX dt = u(X,t), X(0) =x. 

Unfortunately, theoretical or experimental determination of 
this quantity is a very complicated problem; but if the fluid 
motion is induced by small-amplitude waves, BjiLL’ can be 
approximated by the Eulerian (conventional) correlation 
function: 

By’ ~B?)(T) = (u;(x;t)uj(x,t + 7)) (6) 
(e.g., Phythian,3 Lundgren and Pointin and Weinstock’). 
Formulas (5) and (6) have also been applied to a determin- 
istic or even deterministic and steady motion (Andrews and 
McIntyre,6 Plumb,7 and Middleton and Lode?), while 
Mclaughlin et al.’ modified it to describe the case of short- 
scaie steady random velocity fields. 

It is worth noting that all the papers mentioned 
above’-’ considered spatially homogeneous turbulence in in- 
compressible fluids. In addition to this, authors,‘-4 assumed 
the probability distribution of the fluid velocity (or the dis- 
placement of the tracer particles) to be Gaussian. 

The present paper is devoted to the calculation of the 
effective diffusivity coefficient for the fluids with random 
wave-induced motion. Within the context of geophysical ap- 
plication, the correlation period of the wave-induced motion 
is likely to be much smaller than the time scale of the diffu- 
sion, while its spatial scale is usually of the same order as the 
diffusion spatial scale. These conditions enable us to calcu- 
late the diffusivity tensor using a direct perturbation tech- 
nique, which is not based on any a priori assumption con- 
cerning probability distribution of any quantity and can be 
applied to the case of compressible fluids as well. 

-As a particular example, we consider fluid motion in- 
duced by a random spectrum of Rossby waves. It should be 
emphasized, that from the geophysical point of view these 
waves play an important role in the large- and mesoscale 
( 100-1000 km) dynamics of the Earth’s atmosphere and 
oceans (cf. Pedlosky”). We shall consider the simplest- 
barotropic-model of Rossby waves, where the fluid velocity 
does not depend on the vertical dimension and the “e&c- 
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tive” number of spatial variables is reduced to two. In addi- 
tion, we shall assume the wave amplitude to be small and use 
the so-called weakly nonlinear approach to wave turbulence 
(e.g., Reznik and Soomere” and Zakharov’*). With the 
help of this simplified model we hope (i) to obtain quantita- 
tive understanding of the horizontal structure of the atmos- 
pheric/oceanic diffusion and (ii) to develop a general ap- 
proach to the calculation of diffusivity coefficient for Auids 
with weakly nonlinear wave motion. 

9. II. TURBULENT DIFFUSION IN FLUIDS WITH WAVE- 
INDUCED RANDOM MOTION 

A. The case of incompressible fluid 

The nondimensional variables should be introduced as 
follows: 

c = E, 
f 

LX=-----, f==--&-, 4 
r uj =x2 (7) 
L(d) 1 (I) u 

where Lo1 is the characteristic spatial scale of the diffusion, 
T(t) is the characteristic wave period, and Uis the rms of the 
turbulent velocity. Substitution of (7) into ( 1) yields (tildes 
are omitted) 

$ + evjcuj = 0, 

where tr = UT,,, /L,,, . We shall consider the case ~4 1; i.e., 
T<d) % T<t, 9 where T,d, is the time scale of the diffusion. 

Evidently, the fluctuations of the concentration are of 
the order of E: 

c = (c) + EC’, 

while the mean component of the velocity of the fluid is as- 
sumed to be equal to zero: ( ui ) = 0. The equations, govern- 
ing the mean concentration and its fluctuations, are 

(3 (4 
at 

+ ;vj (c’u; ) = 0, 

ad 
dt= 

- u;v;{c) - EVj(C’Uj - (c’zg,. (9a) 

The latter equation should be supplemented with the initial 
condition 

c’(x,O) = 0. (9b) 
The solution of the Cauchy problem (9) can be found in the 
form of an asymptotic series 

c’ = c’(“) + EC’(‘) + . . . . (10) 
where 

c’(O)(x,t) = - 
I 

fu;(x,~,vj(c(x,~,,d~, (lla> 
0 

C’on + “(x,t) =* - 
J 

“v, [ U;(X,T)Ct(~n)(X,T) 

- ~~;(x,~)c.‘“‘(x,7)~]d7. (llb) 
Substitution of ( 11) and ( 10) into (8) yields a closed-form 
equation governing (c) . Taking into account the lowest-or- 
der term only, we have 

J (c(x,t>) 
at’ 

- Ezvj 
f 

i(u;(x,t)u;(x,T)) 
0 

XVi(C(XyT))dTz O(2). (12) 
Then, using the Eulerian correlation function (6) and the 
“slow” time variable T = &, we rewrite Eq. ( 12) as 

a(c(m) -v 

dT / P 
Bj,EiE’(~,~) 

- T/Z 

XVi(C(X,T+ t?~))d~= O(E). 
Finally, taking the limit ~-0, we obtain the desired equation 
governing (c(x,T)): 

a (4 - = VjKjJi (c), 
dT 

where 

I 

m 
Kji(x) = B,j;E’(~,~)d~ (14) 

0 

[we have taken into account here that Bjp)(x,r) is an even 
function of r] . As could be expected beforehand, the diffu- 
sivity coefficient ( 14) coincides with the “exact” expression 
(5) with the only difference being in the particular expres- 
sion for the correlation function. This difference is signifi- 
cant, since, in contrast with BjlLi”’ (x,7), the Eulerian correla- 
tion function could be more easily determined in a 
laboratory or field experiment. 

B. The case of compressible fluid 

The case of a compressible fluid ( Vj uj # 0) is more com- 
plicated. The compressibility-modified diffusion equation 
appears to be 

(15) 

where 

Pj(X) = 
P 

_ _(u;(~;t)V,uj(x,t + 7))dT. 

If the wave spectrum is anisotropic, PI +O, and the effect of 
compressibility can strongly influence the process of turbu- 
lent diffusion [compare ( 13) and ( 15) 1. 

Ill. AN EXAMPLE: LINEAR BAROTROPK ROSSBY 
WAVES 

The equation governing barotropic Rossby waves is (cf. 
Pedlosky”) 

(16) 

where \I, is the streamfunction: 

u’ = -i!!! 
x 

u’ 2% 

ay ’ Y ax ’ 
u: = 0; (17) 

p is the gradient of Coriolis parameter and A is the two- 
dimensional Laplace operator. The general solution to the 
linearized equation (16) can be written in the form of a 
Fourier integral: 

Y(x,t) = 
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wherek= (k,,k,,) isthewavevector,w(k) = -pk,/k*is 
the frequency of Rossby waves, k = 1 k] , and ak is a symmet- 
ric function of k: 

a -k =a?, (18) 
where the asterisk denotes the complex conjugate. For sim- 
plicity, we assume that the wave field is spatially homoge- 
neous, i.e., (a,a,) = E,S(k + k’), where S(k) is the Dirac 
delta function and E(k) can be interpreted as the energy 
spectrum of Rossby waves. The equality ( 18 ) yields 

E -E -k - k’ (19) 
In terms of Ek, the correlation matrix of the fluid velocity, 
derived from Eq. ( 14) and expressed in terms of Ek, is 

Bxx = 

Bx, = - f( $+)Ek cos(wr)dk. 

Then, substituting Bji into (14) and making use of the for- 
mula 

s 

co 
cos(wr)dr = ?rS(w), 

0 

we obtain 

Kxr=rr Co 
~~~~-~~ 

2p s -m_(k,)2E, l/c,=o dky, Kxy =Kyy 70. 

One can see that (i) linear Rossby waves do not transfer the 
tracer along the north-south (meridional) direction; and 
(ii) the main contribution into the diffusion process is given 
by waves of zero frequency. The physical meaning of these 
facts will be discussed in the next section. 

IV. DISCUSSION 
( 1) Expressions for high-order corrections to the diffu- 

sion equation ( 13 ) can be classified into three groups: 

a (4 -= VjK,iVi (c) + Gi + G2 + G3. 
ItIT 

Here 

s 

- T/Z 

G, = - Vj Bji(T)dTVi(c( T)) + ..*, (20a) -~ 

G2= -m+ 
s 

=Bji(T)TdTVi a(C(T)’ + . . . . (20b) 
0 dT 

G3 = EVj CQjiVi + -&inViVn ) (c(O) + ***) 

where 

Qji =P J+ (U;w:,(t+Q 
-co --m 

POC) 

xV,u!(t + ~1 + r2))dr1 drz, 

Mjin = 
SP 

b;‘(t>u:, (t + 7,) 
-co -02 

(21a) 

xu:(t + r1 + Tz))dTl dTp Wb) 
The corrections G, are associated with the fact that random 

fluctuations c’ for a certain length of time “remember” the 
initial condition (9b). With time elapsing these corrections 
vanish (i.e., G, -+ 0 with T+ CO ). The corrections G2 describe 
weak transfer of the tracer by waves ofjinite frequency (as 
we saw in the previous section, the main contribution into 
the diffusion process is given by waves of zero frequency). 
Finally, G3 takes into account high-order corrections c’rm), 
m>2 and corresponds to the correlations in higher moments 
of fluid velocity field. 

(2) Introducing the nondimensional parameter 
6 = L(,, /Lo, (L,,, is the correlation radius of the turbu- 
lence and L(d) is the spatial scale of the diffusion), we esti- 
mate the first term in the expression for G3 as [cf. (20~) and 
(21a) 1 

Qji - l/S, G, - e/S. 

Evide-ntly, if the spatial scale of the turbulent motion is SUB- 
ciently small (L&&S), our expansion is invalid [ G3 = 0( 1) 1. 
This is reasonable, since for the case of spatially homoge- 
neous “strong” turbulence in incompressible fluids we could 
obtain nothing but the equalities (4) and (5). 

(3) As we have seen above, the d@usivity coeficient is 
determined by waues with zero frequency. Indeed, in the case 
of linear-wave-induced motion of high frequency, the orbits 
of fluid particles are closed and the distribution of the tracer 
is exposed to fast periodic distortion, resulting in no mixing 
(diffusion) at all. Thus, waves with periods smaller than the 
time scale of the diffusion cannot interact with slow changes 
in the tracer concentration field and produce nontrivial 
transfer of the tracer particles. Bearing in mind that 
?d) 3 T(t) 7 we can see that only injinitely slow waves (i.e., 
waves with zero frequency) can contribute to the diffusivity 
coefficient within the framework of the zeroth order of the 
perturbation scheme. The corrections associated with the 
contribution of finite-frequency waves are taken intp ac- 
count in the higher orders. 

(4) It is worth noting that the numerical simulation of 
the kinetic equation for weak Rossby wave turbulence (cf. 
Reznik and Soomere”) demonstrated that the zero-fre- 
quency component of the spectrum has a relatively high level 
and, consequently, can cause strong mixing. 

(5) We can also provide a simple physical explanation 
of the zero values of diffusivity coefficient responsible for the 
meridional diffusion in the above example. Apparently, they 
vanish because the meridional component of zero-frequency 

.wave-itiduced velocity is equal to zero (zero-frequency 
Rossby waves correspond to a zonal flow with random pro- 
file). 

V. AN EXAMPLE: WEAKLY NONLINEAR BAROTROPIC 
ROSSBY WAVES 

The d%rence between linear and (weakly) nonlinear 
wave spectra is that the latter comprises the so-called com- 
binational harmonics. In contrast with the ordinary (reso- 
nant) waves, frequencies and wave vectors of these harmon- 
ics do not satisfy the dispersion relation, but are “composed” 
of frequencies and wave vectors of resonant waves: 
1; = Zk, , i;, = Zw (k, ) . Accordingly, a weakly nonlinear 
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Bossby wave field is described by the following expression 
(cf. the Appendix) : 

Y(x,t) = 
I( >( 

$ ak exp(iwt) + 
II 

iU!kfk, a,, ak 1 

Xexp[i(w, + w,)t]S(k - k, - k,)dk, dk, 

+ 
111 

U’Z’ 
kk,k,k,ak,uk,ak, exp[i(wl + @2 + %)f 1 

*S(k - k, - k2 -k&k, dk,dk, + ..a 
> 

Xexp( - zkx)dk, (22) 

where u&$, and Uii’2k)k k are symmetric functions: I21 
UC” = U’l’ 

kk,ka kk,k, 9 (23a) 

u (2) 
kV,k, = U’2’ 

kk,k,k, 
= U’2, 

kk,k,k, = 
u (2) 

kk,k,k, * (23b) 

In addition, the condition of Y (x,t) being real yields 
U’” 

--k-k, -k, = - G;k,, 

(24) 
U’2’ 

-k-k,-kk,.-k, = 
U’2’ 

kk,k,k 

(the explicit expressions for U,!$, and UL$k, are given in 
the Appendix). Substituting (22) and ( 17) into the expres- 
sion for the correlation function ( 14), we can split the 
fourth-order moments of ak through the moments of the 
second order: 

b2k,ak./k;ak;) = Ek,Ek, [W, + k; VW -t kS) 

+ 6th + k; )&k, + k; I] 

+ E,,Eks&k, -I- WWG + k; 1. 

This procedure is justified because the distribution of any 
weakly nonlinear wave field is close to Gaussian distribution 
(e.g., Zakharovr2). Using ( 19)) (23 ), (24)) and the equality 
corresponding to the zero value of the Rossby-wave Stokes 
drift, 

U”’ -0 
O,k, - k - 9 

we obtain 

k,, + kx2 2 (1) 
,k, +k2, (Uk+kzJbd2 

xcos[(w, + w2)71 + [ Wk,k, cos(w,?-) 

f CykJq COS(@,d] Ek,& dk,dkz + -a., 1 
where 

W W, =3(k,,/k,)2U~~,!,)k,,k,,-kk,. 
Evidently, Wk,k, S( w, ) = 0; and after the substitution of Byy 
into the expression for diffusivity coefficient ( 14), the sec- 
ond term in B,,,, turns into zero: 
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kx, + k, 2 
,k, + k,, 

> 
(U:f:kz,k,ekz 1’ 

.Ek, EkZ&w, + wzldk, dk,. 

Similarly, 
(k, + k, 1 #,a, + k,,z ) 

lb + k,12 > 

X(U”’ 1 
2 

k, + WM, 

*Ek, Ek2&% + o,)d k, d k,. 

(2% 

(25b) 
Bearing in mind that Rossby waves, as a dynamic system, are 
isotropic in respect to the inversion of they axis: 

6L - $1 =&c&J, 
U”’ 

k,. I k,&,, - ky,&, - $2 = - U”’ _ k.~.k,k,,,l,,,;k,,.k 
[cf. (A4) 1; we can see that Kx, = 0 for all symmetric 
[E(k,, -k,) = E(k,,k,,)] wave spectra. 

VI. DISCUSSION 

( 1) The expressions (25) for the diffusivity coefficients 
have clear physical meaning. Indeed, the integrals in (25) 
sum up the contributions of all second-order combinational 
harmonics, while the corresponding delta functions “cut 
out” the harmonics with zero frequency only. Since the zero- 
frequency combinational harmonics can be formed by pairs 
of linear waves with nonzero frequencies, the nonlinear cor- 
rections to the dzjiisivity tensor depend on the whole wave 
spectrum. 

(2) It must be emphasized that in the case of weakly 
nonlinear waves, the meridional mixing is much weaker than 
the zonal mixing. 

(3) The nonzero values of the diffusivity coefficients 
indicate the irreversible stretching of material lines, caused by 
Rossby waves. This conclusion seems to be rather important 
for the understanding of the Rossby wave turbulence itself. 

(4) It is also worth noting that the diffusion due to lin- 
ear or nonlinear Rossby waves differs significantly from that 
caused by steady waves. In the latter case (studied by An- 
drews and McIntyre,6 Plumb,’ and Middleton and Loder’), 
the mixing is produced by the Stokes drift, which is, in the 
instance of Rossby waves, equal to zero. 

VII. CONCLUDING REMARKS 
Two problems have been discussed in this paper. 
First, we have developed an asymptotic technique for 

the calculation of the coefficient of diffusion due to random- 
wave-induced motion in fluids. In contrast with the methods 
developed by the previous authors, this technique permits us 
to calculate the higher-order corrections to the diffusivity 
coefficient and can be applied to compressible fluids as well. 

Second, we have calculated the diffusivity coefficient for 
the case, where the fluid motion is induced by linear or weak- 
ly nonlinear spectra of barotropic Rossby waves. It was 
shown that the dzgusion due to Rossby-wave-induced motion 
is strongIy anisotropic, the zonal diffusivity coefficient being 
much greater than the meridional one. 
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We emphasize that the results obtained can be easily 
generalized for other types of random wave motion (such as 
surface or internal gravity waves). In particular, the impor- 
tant conclusion about the irreversible stretching of material 
lines by Rossby wave turbulence can be applied to any nonlin- 
ear-wave-induced motion (even if the latter does not com- 
prise a shear-flow component). The effect of weak nonlin- 
earity seems to be sufficient for this phenomenon to occur. 

APPENDIX: WEAKLY NONLINEAR SPECTRUM OF 
ROSSBY WAVES 

In terms of the Fourier transform 

Y (x,t)exp(zkx)dx, 

the Rossby wave equation can be written as follows: 

& Y, - iwY, 

= Vkk,k2:yk, yk+ - k, - k,)d k, d k,, 

where 

V Wkz =- ; (-j+x,k, --k,,kz)( z-2). 

(Al) 

Equation (A 1) can be solved via iterations: 

Yk = YiO’ + Y:‘) + . . . . (A21 
YioO, = ak exp(icot). Wa) 

The first iteration is 

yp = 
u 

i(w - w1 - w2) - 1vkk,k,ak,ak2 

*exp[i(w, + w,)t ]6(k - k, - k,)dk, dk,. 
Mb) 
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Comparing (A2) and (A3) to (22), we can see that 
U(l) 

kk,k, = (@ - @l - ‘=2) - %kk,k,* (A4) 
Evidently, if w - w, - w2 -+O, U&1,, + 00. This singularity 
corresponds to strong resonances between Rossby wave tri- 
plets and has nothing to do with combinational harmonics of 
zero -frequency. Correspondingly, if wr = - w2 and 
w(k, + k,) = 0, the singularity disappears. 

The coefficient U,$ikzk, can be calculated in a similar 
way. 
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