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ABSTRACT

The dynamics of saturated vapor between two intersecting walls is examined. It is shown that, if the angle / between the walls is sufficiently
small, the vapor becomes unstable, and spontaneous condensation occurs in the corner, similar to the so-called capillary condensation of
vapor into a porous medium. As a result, an ever-growing liquid meniscus develops near the corner. The diffuse-interface model and the
lubrication approximation are used to demonstrate that the meniscus grows if and only if /þ 2h < p, where h is the contact angle corre-
sponding to the fluid/solid combination under consideration. This criterion has a simple physical explanation: if it holds, the meniscus sur-
face is concave—hence, the Kelvin effect causes condensation. Once the thickness of the condensate exceeds by an order of magnitude the
characteristic interfacial thickness, the volume of the meniscus starts to grow linearly with time. If the near-vertex region of the corner is
smoothed, the instability can be triggered off only by finite-size perturbations, such that it includes enough liquid to cover the smoothed area
by a microscopically thin liquid film.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095845

I. INTRODUCTION

Saturated vapor and liquid are supposed to be in equilibrium—
thus, if a small amount of the latter is placed in a container filled with
the former, no exchange of mass should occur.

This simple conclusion—no matter how natural—is misleading:
if the liquid is placed in a sufficiently acute (or not too obtuse) corner,
mass exchange does occur. This result is obtained in the present paper
for a narrow range of parameters, using an elaborate mathematical
model—but it has a simple qualitative explanation and, thus, is likely
to hold generally.

Consider a small meniscus in a corner formed by two walls inter-
secting at an angle / (see Fig. 1) and introduce the microscopic con-
tact angle h at which the meniscus free boundary approaches the
walls. Theoretically, h is specific to the fluid/substrate combination
under consideration (e.g., Ref. 1), but in reality the walls are never per-
fectly flat and chemically homogeneous. Microscopic imperfections
give rise to a hysteresis interval, i.e., a certain spread in h (e.g., Ref. 2);
in what follows, it is assumed narrow—hence, insignificant—and is
neglected.

Now, let / and h be such that

/þ 2h < p; (1)

in which case the free surface of the meniscus is concave (see Fig. 1).
As a result, the Kelvin effect3–10 gives rise to a vapor-to-liquid mass
flux, making the meniscus absorb fluid from the surrounding vapor
and grow—in a manner, similar to the effect of capillary condensation
of vapor into a porous medium (e.g., Ref. 11). If, on the other hand,
condition (1) does not hold, the surface of the meniscus is convex,
and the Kelvin effect makes it dry up. This explains physically the
nonexistence of solutions describing static liquid ridges12 and three-
dimensional drops13—in both cases, on a flat substrate and sur-
rounded by saturated vapor.

The two possible behaviors of menisci could be described
using the classical Navier–Stokes equations, coupled to a model of
vapor diffusion in the surrounding air, with a boundary condition
describing condensation and/or evaporation at the interface (e.g.,
Refs. 3–8, 10, and 14–19). Alternatively (as done in the present
paper), the problem can be examined using the diffuse-interface
model (DIM): it includes both hydro- and thermodynamics and,
thus, consistently describes all of the effects arising in the problem
at hand.

The diffuse-interface model (DIM) was invented as a tool for
modeling interfaces based on two assumptions put forward by Ref. 20
in application to equilibrium interfaces in fluids:
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1. the van der Waals intermolecular force (responsible for phase
transitions) can be described by a pair-wise potential,

2. the characteristic length of this potential is much smaller than
the interfacial thickness.

In recent times, the DIM was incorporated into non-equilibrium
fluid dynamics (see Refs. 21 and 22 and references therein) and applied
to numerous problems including nucleation and collapse of
bubbles,23–26 phase separation in polymer blends,27,28 contact lines,29,30

contact lines in fluids with surfactants,31,32 Faraday instability,33,34

Rayleigh–Taylor instability,35 etc. The DIM was shown to follow from
the Enskog–Vlasov kinetic theory36,37—the same way the usual com-
pressible hydrodynamics follows from Enskog’s theory of dense fluids.38

The DIM as a single equation applicable, under certain conditions, to all
systems with phase transitions and interfaces was formulated in Ref. 39.
An incompressible version of the DIM was formulated in Ref. 40 and
applied to various problems involving contact lines (e.g., Refs. 41–44).

The DIM has been used for modeling settings involving the
Kelvin effect. It was argued in Refs. 12 and 13 that two- and three-
dimensional sessile drops cannot be static due to the Kelvin-effect-
induced evaporation. The dynamics of a spherical drop floating in
under- or oversaturated vapor of the same fluid was examined in Ref.
45: it was shown that the evaporation in this case is caused by advec-
tion of vapor by an outward flow due to a weak imbalance between
the chemical potentials of the liquid and vapor. In mixtures, this
mechanism acts alongside the diffusion (say, of vapor in air examined
in Refs. 3–8, 10, and 14–19)—but in pure fluids (which do not diffuse),
it is the onlymechanism of evaporation. This makes the DIM an excel-
lent tool for studying phase transitions in pure fluids.

The present paper applies the original (compressible) version of
the DIM to a pure fluid bounded by two intersecting walls, under an
additional assumption that the angle between the walls is almost
straight (/ � p) and they are made of a hydrophilic material (h� 1).
This way, one can simplify the problem through the lubrication
approximation—and even more so, since the lubrication approxima-
tion for a flat substrate (/ ¼ p) is already in place,46 as is a framework
for estimating the DIM parameters for a specific fluid.47

In Sec. II of the present paper, the problem will be formulated
mathematically. Sections III and IV examine solutions describing static
and evolving menisci, respectively. The lubrication approximation of
the DIM is derived in Appendix B and summarized in Sec. V in a

self-contained form that can be used for modeling thin drops with
moving contact lines. Section V also provides an estimate of the
dimensional timescale of capillary condensation of liquid films for a
real-life example.

II. FORMULATION
A. Thermodynamics

The thermodynamic properties of a fluid can be described by
the dependence of its internal energy e and entropy s (both specific,
or per unit mass) on the density q and temperature T.48 The func-
tions eðq; tÞ and sðq; tÞ are not fully arbitrary as they should satisfy
the fundamental thermodynamic (Gibbs) relation, which can be
written in the form

@e
@T
¼ T

@s
@T

: (2)

Then, the equation of state (the expression for the pressure p as a func-
tion of q and T) is given by

p ¼ q2 @e
@q
� T

@s
@q

� �
; (3)

and the specific chemical potential, or Gibbs free energy, by

G ¼ e� Tsþ p
q
: (4)

It follows from (2)–(4) that

@p
@q
¼ q

@G
@q

; (5)

@p
@T
¼ q

@G
@T
þ s

� �
; (6)

@G
@T
¼ �

@ qsð Þ
@q

: (7)

These identities will be needed later, as well as the definition of the
parameter,

B ¼ p� q2 @e
@q

:

Bðq;TÞ is not one of the standard thermodynamic functions, but it is
convenient when thermodynamics is coupled to fluid dynamics. It
characterizes the production/consumption of thermal energy due to
mechanical compression/expansion of the fluid (more details to fol-
low). Using definition (3) of p, one can represent B in the form

B ¼ �q2T
@s
@q

: (8)

B. Governing equations

A flow of a non-ideal fluid can be characterized by the density
q, temperature T, and velocity v ¼ ðu; v;wÞ—depending on the
spatial coordinates ðx; y; zÞ and time t. Also assume that the fluid is
affected by a bulk force F, which will be later identified with the
intermolecular attraction (sometimes referred to as the van der
Waals attraction).

Using the identity

FIG. 1. A liquid meniscus in a corner (the region occupied by the solid is shaded).
In the configuration shown, the contact angle h is such that /þ 2h < p, so spon-
taneous condensation occurs.
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1
q

$p ¼ s$T þ $G

[which follows from (5) and (6)], one can write the standard hydrody-
namic equations in the form

@q
@t
þ $ � qvð Þ ¼ 0; (9)

@v
@t
þ v � $ð Þv þ s$T þ $G ¼ 1

q
$ �Pþ F; (10)

qc
@T
@t
þ v � $T

� �
þ B$ � v ¼ P : $v þ $ � j$Tð Þ; (11)

where the dotless product of two vectors produces a second-order ten-
sor, the symbol “:” denotes the double scalar product of such tensors,

P ¼ ls $v þ $vð ÞT � 2
3
I $ � vð Þ

� �
þ lb I $ � vð Þ (12)

is the viscous stress tensor, I is the identity matrix, ls (lb) is the
shear (bulk) viscosity, j is the thermal conductivity, and c is the
heat capacity at constant volume (the traditionally used subscript V
is omitted).

Note that ls, lb, j, c, and B depend generally on q and T.
Observe also that the term involving B in Eq. (11) describes the pro-
duction or consumption of thermal energy due to the fluid’s compres-
sion ($ � v < 0) or expansion ($ � v > 0), respectively.

The diffuse-interface model (DIM) assumes the following expres-
sion for the van der Waals force:

F ¼ K$$2q; (13)

where the Korteweg parameter K is a fluid-specific constant, not
depending on q and T.

Equations (9)–(12) (with an unspecified force F) have been
derived by Ref. 38 from Enskog’s theory of dense fluids. For numerous
other derivations, through irreversible thermodynamics and similar
models, see the references cited by Refs. 36 and 48. The full set
(9)–(13), including the expression for F, was derived in Ref. 36 from
the Enskog–Vlasov kinetic equation.

C. Boundary conditions at the substrate

Assume that the fluid is bounded below by a solid substrate
whose shape is given by z ¼ Hðx; yÞ—see Fig. 2. This implies the no-
flow boundary condition,

v ¼ 0 at z ¼ H: (14)

Let the substrate be kept at a fixed temperature,

T ¼ T0 at z ¼ H: (15)

Physically, this boundary condition implies that the substrate is
sufficiently thick, and the heat conductivity of the material it is
made of is sufficiently large—in which case it is able to “hold” its
temperature regardless of the heat flux coming from the fluid. Also
note that the results of this work are not sensitive to the choice of
the boundary condition for the temperature, and so (15) could be
replaced with, say, the condition of insulation (zero heat flux).

Due to the presence of higher-order derivatives of q in expression
(13) for the van der Waals force, an extra boundary condition is
required for the density. There are several versions of such in the liter-
ature (e.g., Refs. 22 and 49), of which the simplest one is used in this
work,

q ¼ q0 at z ¼ H; (16)

where q0 is a phenomenological parameter. The physical meaning of
this condition can be clarified by considering the van der Waals force
acting on the fluid in the near-substrate boundary layer: the solid
attracts it toward the substrate, while the fluid outside the boundary
layer pulls it away from the substrate. The former force is fixed,
whereas the latter grows with the near-substrate density, so the balance
is achieved when the density assumes a certain value—which is pre-
cisely what condition (16) prescribes.

In addition to the advantage of simplicity, condition (16) can be
derived under the same assumptions as the DIM itself.47 Furthermore,
since the expected effect of spontaneous condensation depends only
on the curvature of the meniscus interface (as argued in the
Introduction), the model used for the boundary condition is not essen-
tial. Condensation occurs at the liquid/vapor interface, so the fluid/
substrate interaction affects it weakly.

D. Boundary conditions far above the substrate

Assume that, far above the substrate, the tangential stress and
vertical heat flux are both zero,

@v
@z
! 0 as z ! þ1; (17)

@T
@z
! 0 as z ! þ1: (18)

As explained in the Introduction, this paper is concerned with the
dynamics of saturated vapor—thus, assume

q! qv as z ! þ1: (19)

The saturated vapor density qv, together with the matching liquid den-
sity ql, depends on the temperature and is determined by the so-called
Maxwell construction,

FIG. 2. Formulation of the problem.
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Gðqv;TÞ ¼ Gðql;TÞ; (20)

pðqv;TÞ ¼ pðql;TÞ: (21)

One should also require that the vapor and liquid be thermodynami-
cally stable, which amounts to

@p
@q

� �
q¼qv

� 0;
@p
@q

� �
q¼ql

� 0;

i.e., an increase in q should not reduce the pressure. Note that p in
the above inequalities can be replaced with the chemical potential G
as their derivatives with respect to q are of the same sign [see iden-
tity (5)]. An illustration of the Maxwell construction can be found in
Fig. 3.

For realistic Gðq;TÞ and pðq;TÞ and a sufficiently low (subcriti-
cal) temperature T, Eqs. (20) and (21) admit a unique solution for the
pair ðqv; qlÞ such that qv < ql . For a sufficiently high (supercritical) T,
(20) and (21) can only be satisfied by the trivial solution qv ¼ ql ,
which physically means that only one phase exists. Everywhere in this
paper, the temperature is assumed to be subcritical.

Physically, the Maxwell construction ensures that a liquid/vapor
interface is in equilibrium: the equalities of the chemical potential and
pressure in the two phases guarantee the thermodynamic and
mechanical equilibria, respectively. Mathematically, conditions (20)

and (21) can be derived from the DIM (see below) or any other ade-
quate model by adapting the governing equations for the static isother-
mal flat interface in an unbounded space.

Let the near-substrate density prescribed by boundary condition
(16) be such that

qv < q0 < ql: (22)

If this condition does not hold, the substrate becomes either perfectly
hydrophobic (q0 � qv) or perfectly hydrophilic (q0 � ql).

22,47 In the
former case, condensation cannot occur on the substrate (because it
repulses the liquid phase), whereas the latter implies immediate con-
densation regardless of all other parameters.

E. How can liquid and vapor be distinguished
in a continuous density field?

Since the DIM assumes the density to vary continuously (as
opposed to being restricted to q ¼ qv or q ¼ ql), one needs a formal
definition of the position of the interface between the phases. The sim-
plest option is to assume that the fluid with q > 1

2 ðqv þ qlÞ should be
treated as liquid and vice versa.

Thus, the liquid/vapor interface is defined to be located at the
height z ¼ H þ h, where hðx; y; tÞ is such that

qðx; y;H þ h; tÞ ¼ 1
2

qv þ qlð Þ: (23)

To ensure that h> 0, one should require [in addition to restriction
(22)] that

q0 >
1
2

qv þ qlð Þ:

Given this condition, a layer exists adjacent to the substrate,
H < z < H þ h, which should be mathematically treated as liquid.
Most importantly, even if one considers a horizontally localized drop
or meniscus, this layer stretches to infinity in all horizontal directions
(see a schematic in Fig. 2)—which was probably what prompted22

to dub it a “precursor film.” Yet, physically, it corresponds to dry
substrate—or, equivalently, to the solid/vapor interface.

Let �h be the thickness of the precursor film on a flat unbounded
substrate; as shown below, �h depends on the fluid’s thermodynamic
properties and the Korteweg parameter K. One should keep in mind
that, by comparison with typical sizes of capillary menisci (ranging
from 0:1mm to 1 cm), �h is miniscule (on a nanoscale). In what fol-
lows, such scales will be referred to as “microscopic.”

III. STATIC MENISCI
A. Nondimensionalization

Let the fluid be at rest, v ¼ 0, which also implies steadiness of the
density field, @q=@t ¼ 0, and isothermality, T ¼ T0 (otherwise the
heat flux would generate a flow). With this in mind, and considering
for simplicity the two-dimensional (2D) case, one can reduce (9)–(13)
to a single equation for qðx; yÞ,

K
@2q
@x2
þ @

2q
@z2

� �
� Gðq;TÞ þ Gðqv;TÞ ¼ 0; (24)

where T0 was re-denoted T0 ! T and the value of the constant of
integration (the last term on the left-hand side) was deduced from

FIG. 3. An illustration of the Maxwell construction. Conditions (20) and (21) are
illustrated in panels (b) and (a), respectively, for the particular case of the van der
Waals fluid (42) and (43) with T¼ 0.26. Observe that @p=@q and @G=@q are posi-
tive at both q ¼ ql and q ¼ qv (so that the liquid and vapor phases are thermody-
namically stable).
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boundary condition (19). Physically, this (elliptic nonlinear) equation
describes the balance of the van der Waals force and pressure gradient.
For an illustration of the nonlinearity present in Eq. (24) (via the
dependence of G on q), the reader is referred to Fig. 3(b).

To nondimensionalize Eq. (24), introduce a characteristic density
., pressure P, and the interfacial thickness,

l ¼
ffiffiffiffiffiffiffiffi
K.2

P

r
: (25)

Estimates show that l is on a nanometer scale.24,26,47

As shown by Ref. 22, the vertical-to-horizontal aspect ratio of a
liquid film can be identified with

e ¼ ql � q0

ql
:

Thus, a meniscus can be regarded thin only if the near-wall density q0
is close to the liquid density ql.

The following nondimensional variables will be used:

xnd ¼
x

e�1l
; znd ¼

z
l
; Hnd ¼

H
l
; (26)

qnd ¼
q
.
; Tnd ¼

.RT
P

; (27)

pnd ¼
p
P
; Gnd ¼

.G
P
; (28)

where R is the specific gas constant. Also introduce

q0ð Þnd ¼
q0

.
; qvð Þnd ¼

qv

.
; qlð Þnd ¼

ql

.
: (29)

In terms of the new variables, Eq. (24) and boundary conditions (16)
and (19) take the form (the subscript nd omitted),

e2
@2q
@x2
þ @

2q
@z2
� Gðq;TÞ þ Gðqv;TÞ ¼ 0; (30)

q ¼ ql � e at z ¼ 0; (31)

q! qv as z ! þ1: (32)

B. 1D solutions of Eq. (30)

First consider the solution �qðzÞ of Eq. (30) that describes a flat
liquid/vapor interface in an unbounded space (i.e., without a sub-
strate). For this case, Eq. (30) and boundary condition (32) become

d2�q
dz2
� Gð�q;TÞ þ Gðqv;TÞ ¼ 0; (33)

�q ! qv as z ! þ1; (34)

whereas the substrate boundary condition should be replaced with

�q ! ql as z ! �1: (35)

Due to the translational invariance of boundary-value problem
(33)–(35), its solution is not unique. To make it such, require

�qð0Þ ¼ 1
2

ql þ qvð Þ: (36)

For a physically meaningful Gðq;TÞ; �qðzÞ is a kink-like function,
decreasing monotonically with increasing z.

The boundary-value problem for �qðzÞ can be used to derive the
Maxwell construction. Its first “half”—equality (20)—can be derived
by considering Eq. (33) in the limit z !�1. Equality (21), in turn,
can be obtained by multiplying (33) by d�q=dz and integrating; taking
into account identity (5) and fixing the constant of integration via
boundary condition (34), one obtains

1
2

d�q
dz

� �2

� �q Gð�q;TÞ � Gðqv;TÞ½ � þ pð�q;TÞ � pðqv;TÞ ¼ 0:

(37)

Considering this equation in the limit z !�1 and using the (already
proven) equality (20), one can obtain (21) as required.

The solution �qðzÞ of Eq. (37) subject to boundary condition (36)
can be readily found in an implicit form,ð�q

1
2 qlþqvð Þ

2�1=2dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q Gðq;TÞ � Gðqv;TÞ½ � � pðq;TÞ þ pðqv;TÞ

p ¼ �z:

(38)

Next, introduce a substrate and let it be flat (H ¼ const). The
solution describing this situation can be expressed in terms of
the function �qðzÞ: shifting it to satisfy the boundary condition
at the substrate, one obtains q ¼ �qðz �H � �hÞ where �h is such
that

�qð��hÞ ¼ q0: (39)

Physically, q ¼ �qðz �H � �hÞ describes the precursor film on a dry
substrate located at z¼H, and �h is the film’s nondimensional thick-
ness. Substituting (38) into (39), one obtains

�h ¼
ðql�e

1
2 qlþqvð Þ

2�1=2dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q Gðq;TÞ � Gðqv;TÞ½ � � pðq;TÞ þ pðqv;TÞ

p : (40)

It can be shown (see Appendix A1) that �h is logarithmically large,

�h ¼ ln e�1

C
þOð1Þ;

where

C ¼ @G
@q

� �
q¼ql

" #1=2
(41)

is real (because the liquid was assumed to be thermodynamically
stable—hence, ð@G=@qÞq¼ql

> 0).

C. An example: The van der Waals fluid

For the van der Waals fluid, the internal energy and entropy
(both nondimensional and specific) are

eðq;TÞ ¼ cT � q; sðq;TÞ ¼ c lnT � ln
q

1� q
;

where the heat capacity c has been nondimensionalized by the specific
gas constant R. The corresponding expressions for pressure (3) and
chemical potential (4) are
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pðq;TÞ ¼ Tq
1� q

� q2; (42)

Gðq;TÞ ¼ T ln
q

1� q
þ 1
1� q

þ c� c lnT
� �
�2qþ T 1þ c� c lnTð Þ: (43)

The solution of the Maxwell construction (20) and (21) for this case is
shown in Fig. 4(a) (note that the nondimensional critical temperature
of the van der Waals fluid is Tcr ¼ 8=27).

Note that, for many common fluids at room temperature,
T � 0:1 (see Table I of Ref. 50 where T is denoted by s). Thus, it is
worthwhile to examine the solution of the Maxwell construction in the
limit T ! 0. For the van der Waals fluid, it is46

ql ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4T
p

2
þOðe�1=TÞ; (44)

qv ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4T
p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4T
p e�1=T þOðT�1e�2=TÞ: (45)

Expression (45) shows that, if T is small, the vapor density is
exponentially small, and the same can be assumed for all physi-
cally meaningful equations of states, not only the van der Waals
one.

For T � 1, one can deduce from boundary-value problem
(33)–(36) that

�qðzÞ ¼

1þOðTÞ if z � �2�3=2p;
1
2

1� sin 21=2zð Þ þOðTÞ if � 2�3=2p � z � 2�3=2p;

0þOðTÞ if z � 2�3=2p:

8>>><
>>>:

(46)

D. Asymptotic description of static menisci

Consider a static configuration with the liquid phase confined to
a layer adjacent to the substrate, forming a 2D meniscus (liquid film).
This implies that, with increasing z, the density first grows from q0 to
approximately ql, and then decreases toward qv.

The asymptotic description of menisci with a small aspect ratio is
based on the observation that the general equation (30) for qðx; zÞ is
asymptotically close to (much simpler) Eq. (33) for �qðzÞ. Since the dif-
ference between the two equations is small, one can assume

qðx; zÞ � �qðz �H � hÞ; (47)

where the undetermined function h(x) is, physically, the distance
between the substrate and fluid/vapor interface (see Fig. 2).

On the basis of assumption (47), the following asymptotic equa-
tion for h(x) is derived in Appendix A:

r
d2ðH þ hÞ

dx2
¼ f ðh� �hÞ; (48)

FIG. 4. Various characteristics of interfaces and contact lines vs the temperature: (a) densities of the liquid and vapor phases (the black dot marks the critical point); (b) surface
tension; (c) precursor film’s thickness; (d) tan h, where h is the contact angle. The curves in panels (c) and (d) correspond to (1) e ¼ 0:1; (2) e ¼ 0:05; and (3) e ¼ 0:02.
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where

r ¼
ð1
�1

d�q
dz

� �2

dz (49)

is, physically, the surface tension, and the function

f ðnÞ ¼ 2C2 1� e�Cnð Þe�Cn; (50)

describes the effect exerted on the fluid by the substrate. Also recall
that the precursor film thickness �h is defined by (40) and coefficient C,
by (41).

The coefficients rðTÞ and �hðT; eÞ have been computed for the
van der Waals fluid [i.e., for G and p given by (42) and (43)] and
are shown in Figs. 4(b) and 4(c), respectively. The former figure
shows that the surface tension vanishes at the critical point (as it
should). Note also that, since qv ! ql as T ! Tcr [as illustrated in
Fig. 4(a)]—then, sooner or later, q0 ¼ ql � e becomes smaller than
qv. This violates assumption (22) and also makes �h negative, so
this part of the graphs in Fig. 4(c) has been truncated.

Before considering menisci in a corner (which is the ultimate
goal of this paper), it is instructive to examine the solution of Eq. (48)
for a flat substrate with the following boundary condition:

h! �h as x! þ1: (51)

Substituting H ¼ const into Eq. (48), multiplying it by dh=dz, inte-
grating with respect to z, and fixing the constant of integration via con-
dition (51), one can obtain a separable equation. Its solution will be
presented in a form that is best suited for physical interpretation,

h ¼ �h þ 1
C
ln 1þ exp

C x0 � xð Þtan h

e

� �
; (52)

where x0 is arbitrary and h is, at this stage, a constant such that

tan h ¼ 2C
r

� �1=2

e: (53)

The physical meaning of h can be deduced from the asymptotics of
solution (52) at minus-infinity,

h! � x
e
tan h as x! �1;

which describes a liquid/vapor interface inclined at an angle h [the fac-
tor of 1=e accounts for the different scalings of x and z in nondimen-
sionalization (26)]. Thus, h is the contact angle.

The dependence of h on T, computed for the van der Waals fluid
(42) and (43), is shown in Fig. 4(d). Observe that tan h!1 in both
small-temperature and near-critical limits (which can also be deduced
analytically from the asymptotic behavior of C and r as T ! 0 and
T ! Tcr). As a result, the lubrication approximation fails in these lim-
its, and so the results of this paper are not applicable.

Examples of solution (52), computed for the van der Waals fluid
and various temperatures, are shown in Fig. 5. Observe that the inter-
faces for T¼ 0.05 and T¼ 0.15 are almost parallel, which is a result of
the near-constancy of h in the middle part of Fig. 4(d).

E. Static menisci in a corner

Let the substrate form a corner of angle / (as in Fig. 2), so that
the substrate is described by

H ¼ jxj
e
tan

p� /
2

: (54)

Since the lubrication approximation used in this paper implies that
h� 1 and / � p, “tan ” can be omitted in (53) and (54), but it can be
just as well kept (so that the results obtained would look more
natural).

Given the substrate’s symmetry, the meniscus surface should also
be symmetric, which corresponds to the following boundary
condition:

dðH þ hÞ
dx

¼ 0 at x ¼ 0: (55)

Assume also that, far from the corner, the substrate is dry, which
implies

h! �h as x ! 61:

Since, in the problem at hand,

d2H
dx2
¼ 0 if x 6¼ 0;

the general equation (48) reduces for x 6¼ 0 to that for a flat substrate.
Using, thus, the same approach, one obtains

h ¼ �h þ 1
C
ln 1�

tan
1
2
ðp� /Þ

tan
1
2
ðp� /Þ � tan h

exp �Cjxj tan h
e

� �2
664

3
775:
(56)

Evidently, h is real—hence, physically meaningful—only if

1
2

p� /ð Þ � h: (57)

Not surprisingly, this condition (of existence of static menisci) is the
opposite of condition (1) of condensation.

Another restriction on the applicability of solution (56) originates
from the requirement that h be non-negative—hence,

FIG. 5. Examples of solution (52) for e ¼ 0:02 and three values of the temperature
(indicated in the figure).
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tan
1
2

p� /ð Þ � � eC
�h � 1

� �
tan h: (58)

Observe that this condition can fail only if / > 180	.
Examples of static menisci described by solution (56) are shown

in Fig. 6(a). They are all computed for the angle / such that the exis-
tence condition (57) holds everywhere except a narrow interval,

0:102 7�T � 0:103 3:

Evidently, when T approaches this interval, the core (middle part) of the
meniscus becomes increasingly thick. This does not violate the lubrica-
tion approximation, however, as the slope of the interface remains small.

As for condition (58), it can be violated—at least, for the van der
Waals fluid—only if T is very near its critical value and / is near 2p.
These requirements cut out a miniscule part of the problem’s parame-
ter space, not to mention that tan h is not small there—hence, the
lubrication approximation fails. This effectively means that restriction
(58) can be ignored.

Note, however, that substrates with a sharp corner—such as the
one given by (54)—violate the lubrication approximation. One can still
argue that the corner can be smoothed by an arc with a radius of cur-
vature much larger than the thickness of the meniscus, but much
smaller than the meniscus’s width. In this case, the lubrication approx-
imation holds, yet the solutions should be asymptotically close to that
for the sharp corner.

It turns out, however, that smoothing of the corner changes the
nature of the vapor instability, making this case worth studying.
The general tendency will be illustrated by the following example of
the substrate’s shape:

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
e
tan

p� /
2

� �2

þ H2
0e� x=DHð Þ2

s
; (59)

where the constants H0 and DH determine the amplitude and width of
smoothing, respectively. In this case, Eq. (48) cannot be solved

analytically, but its solution can be readily found using the MATLAB
function BVP4c (based on the three-stage Lobatto IIIa formula, see
Ref. 51).

Typical results are shown in Fig. 6(b). Comparing it with 6(a), one
might think that the smoothing reduces the size of the meniscus—which
is true, but applies mostly to near-critical menisci (such that
/þ 2h � p). This occurs because the smoothing expands their exis-
tence region beyond the restriction /þ 2h � p, and so near-critical
menisci for a sharp corner are “far-from-critical” for the smoothed one.

Consider, for example, the smoothed corner described by Eq.
(59) with

H0 ¼ 0:3; D ¼ 1; (60)

in which case numerical computations suggest that menisci exist if

tan
1
2

p� /ð Þ� 0:087 2:

For a sharp corner, in turn, the existence condition is given by restric-
tion (1) which amounts to

tan
1
2

p� /ð Þ � tan h � 0:085 9:

The difference between the two existence criteria would be too slight
to be important, should it not seem to invalidate the suggested physical
interpretation of the main result of this paper, condition (1). If con-
densation does not occur in a situation where (1) holds, does this
mean that concave menisci do not absorb moisture?

To resolve the apparent paradox, observe that a sufficiently small
drop can have its contact lines in the smoothed region and, thus, not be
sensitive to the global angle /—as a result, it could be static. On the
other hand, a sufficiently large drop with contact lines on the flat parts
of the walls should still be unstable.

Mathematically, the existence of a static meniscus—even a stable
one with respect to infinitesimal perturbation—does not necessarily

FIG. 6. Examples of static menisci with e ¼ 0:02, in a corner with tan 1
2 ðp� /Þ ¼ 0:085 875. Curves (1)–(4) correspond to T ¼ 0:025; 0:05; 0:075; 0:1. (a) Solution (56)

for the sharp corner. (b) The numerical solution for the smooth corner described by expressions (59) and (60).
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mean the vapor is stable with respect to finite-amplitude perturbations.
This issue will be clarified in Sec. IV by exploring the meniscus
evolution.

IV. EVOLVING MENISCI

As shown Sec. III, steady menisci in a sharp corner exist only
subject to condition (57), but it remains unclear what happens if (57)
does not hold. One can only assume that menisci evolve in this case.

To find out how exactly they evolve, two evolution equations,
corresponding to two asymptotic regimes, have been derived: regime 1
is applicable when qv 
 ql (see Appendix B 1) and regime 2, when
qv � ql (Appendix B 2). According to the former, the dynamics is
dominated by expansion (compression) of the fluid while it evaporates
(condensates)—whereas, in the latter, these effects are as strong as
advection by horizontal velocity. Motion-induced variations of tem-
perature are small in both cases, but they can be neglected only in the
latter regime (in the former, they still affect the leading-order dynam-
ics). Most importantly, regime 2 applies to many common fluids at
room temperature50—and, thus, will be discussed in detail; regime-1
solutions are qualitatively similar and, thus, will not.

Regime 2 (qv � ql) is governed by the following equation:

@h
@t
þ @

@x
QðhÞ @

@x
r
@2ðH þ hÞ

@x2
� f ðh� �hÞ

� �	 


¼ 1
e2A

r
@2ðH þ hÞ

@x2
� f ðh� �hÞ

� �
: (61)

Here, the function f is defined by (50) and the rest of the coefficients
are

A ¼ 0:142 19 lb:vðTÞ þ
4
3
ls:vðTÞ

� �
q2
l q
�5=2
v T1=2; (62)

QðhÞ ¼ 1
q2
l

ð1
0

q̂2ðz � hÞ
lsð�qðz � hÞ;TÞ dz; (63)

where ls:vðTÞ ¼ lsðqv;TÞ and lb:vðTÞ ¼ lbðqv;TÞ are the shear and
bulk viscosities of the vapor, respectively, lsðq;TÞ is the fluid’s shear
viscosity in the whole density range, and

q̂ðzÞ ¼
ð1
z

�qðz0Þ � qv

� �
dz0: (64)

To understand the physical meaning of Eq. (61), note that the two
terms involving f describe how the substrate affects the liquid/vapor
interface (since h is the distance between the two, it does not come as a
surprise that f ! 0 as h!1). Out of the two terms involving r, the
one on the left-hand side is the usual capillary term, whereas the one
on the right-hand side describes either evaporation or condensation
due to the Kelvin effect. Which among the two depends on the curva-
ture of the liquid/vapor interface: if it is convex (concave), this term is
negative (positive) and, thus, causes evaporation (condensation). Note
also that, if H ¼ const, Eq. (61) coincides with its flat-substrate coun-
terpart derived by Ref. 46.

To calculate the function Q(h) [given by (63) and (64)], one
needs to know the shear viscosity lsðq;TÞ and chemical potential
Gðq;TÞ within the full density range qv < q < ql . In this paper, the
simplest approximations are used for these parameters.

To qualitatively model the difference between the shear viscosity
of vapor and that of liquid, it is assumed that

ls ¼ q; (65)

where the coefficient of proportionality is implied to have been elimi-
nated by letting the nondimensionalization scale l be equal to the
shear viscosity of the liquid phase. Such a choice also makes both ls:v
and lb:v small.

As for Gðq;TÞ, the van der Waals expression (43) was used,
under the condition T � 1 (which ensures that qv � ql). In this case,
�qðzÞ is given by expression (46), and the liquid and vapor densities, by
(44) and (45)—or, to leading order,

ql ¼ 1; qv ¼ 0:

Substituting these equalities, together with (65) and (46), into expres-
sions (63) and (64), and assuming that h � 2�3=2p � 1:110 7 (which
is not restrictive, as h has already been assumed to be logarithmically
large), one obtains

QðhÞ ¼ 1
3
h3 þ 2�5=2p 1� p2

12

� �
� 1

3
h3 þ 0:098 595: (66)

For different Gðq;TÞ and lsðq;TÞ, the numeric factor in the above
formula would be different.

Equation (61) requires four boundary conditions: two of these
follow from the symmetry of the problem,

@ðH þ hÞ
@x

¼ @
3ðH þ hÞ
@x3

¼ 0 at x ¼ 0; (67)

and the others are

h! �h;
@h
@x
! 0 as jxj ! þ1: (68)

A. Numerical results

Equation (61) with its coefficients determined by (40), (41), (49),
(54), and (66) was solved numerically with boundary conditions (67)
and (68), using the method of lines,52 for numerous initial conditions
and in a wide range of the parameters involved. In all cases where the
condensation criterion (1) was satisfied, a meniscus grew as t !1.

A typical evolution is shown in Fig. 7, computed for the van der
Waals fluid (42) and (43) with

T ¼ 0:1; e ¼ 0:02; (69)

in which case the contact angle is tan h � 0:085 9. The corner was
such that

tan
1
2

p� /ð Þ ¼ 0:1; (70)

so that the vapor is weakly unstable. For simplicity, the bulk viscosity
of vapor was assumed to be zero,

lb:v ¼ 0; (71)

whereas its nondimensional shear viscosity was chosen to match
approximately the ratio of vapor and liquid viscosities of water at
room temperature,
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ls:v ¼ 0:01: (72)

The initial condition was

H þ h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
e
tan

p� /
2

� �2

þ h0e� x=Dhð Þ2

s
at t ¼ 0; (73)

with

h0 ¼ 1; Dh ¼ 1 (74)

[(73) looks similar to expression (59) for H, but they are not to be
confused].

The following features of Fig. 7 should be observed:

(i) Initially, a quick adjustment occurs [reflected by the large
difference between curves (0) and (1)].

(ii) At large times, the growth of the meniscus’ thickness and
the progress of its contact lines slow down.

Another feature is quantified in Fig. 8—which shows the thick-
ness of the meniscus and the slope of the interface vs x for curve 5 of
Fig. 7:

(iii) For large times, the “core” of the meniscus assumes a
spherical-cup shape (under lubrication theory, this corre-
sponds to a parabolic dependence of h on x).

Indeed, observe that, in the core, the interfacial slope changes lin-
early from 0 (horizontal interface) to

@ðH þ hÞ
@x

¼ 1
e

tan
1
2

p� /ð Þ � tan h

� �
(75)

(the angle between the interface and substrate equals h). As seen in
Fig. 8(b), @ðH þ hÞ=@x assumes value (75) on the boundary separating

the core and the near-contact-line zone. In the latter, the thickness of
the meniscus is close to that of the precursor film.

Figure 9 shows the typical evolution of a meniscus in a smoothed
corner, computed forH(x) given by (59) and (60) with

tan
p� /
2
¼ 0:087 1: (76)

The fluid parameters are given by (69) and the initial condition by
(73) with

h0 ¼ 3:5; Dh ¼ 0:5: (77)

Even though a steady solution exists in this case, the meniscus grows
as t !1. It would not grow and become static, only if the amplitude
of the initial perturbation is sufficiently small—e.g., if h0 ¼ 3:5 in per-
turbation (77) is replaced with h0 � 2:9. One should keep in mind,
however, that, since h is nondimensionbalized by the interfacial thick-
ness l, both these values of h0 should be regarded microscopic.

Extensive numerical experiments with various initial conditions
showed that, to make the meniscus grow, its initial volume has to be
sufficiently high, but its shape is unimportant: if it is too “narrow” or

FIG. 7. An example of a meniscus growing in a sharp corner, for parameters
(69)–(74). The curves show “snapshots” of the solution at t ¼ 300 n, where n is the
curve number (thus, curve 0 is the initial condition).

FIG. 8. The cross-section of the growing meniscus in a sharp corner, for parame-
ters (69)–(74) and t¼ 1500 (corresponds to curve 5 in Fig. 7): (a) thickness of the
meniscus, h(x); (b) slope of the interface, @ðH þ hÞ=@x. The near-contact-line
zone is shaded. The dotted line in panel (b) corresponds to the slope given by (75).
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too “wide,” it spreads out or contracts, respectively. The end result of
the adjustment is a meniscus with almost flat surface, with its further
evolution depending on how wide it is. For growth, it should cover an
area comparable to the smoothed part of the corner—otherwise it
tends to the existing steady state and becomes static.

Most importantly, the adjusted meniscus does not have to be
thick to initiate growth; its nondimensional thickness can be
order-one. In dimensional terms, this means that the instability is
triggered off by microscopic perturbations, i.e., those representing
a liquid film whose thickness is comparable to the interfacial
thickness.

As for the large-time evolution of menisci in a smoothed corner,
it is qualitatively the same as that of their sharp-corner counterparts—
i.e., both kinds of menisci demonstrate features (ii) and (iii).

B. The large-time behavior

Features (ii) and (iii) of the meniscus evolution listed in
Subsection IVA allow one to deduce a simple asymptotic description
of the large-time evolution.

Indeed, feature (iii) suggests that, as t !1, the “outer” solution
(in the meniscus core) is parabolic,

h� �h 
 h0 � h2x
2 if xcl � x� 1; (78)

where h0ðtÞ and h2ðtÞ are undetermined functions, and xclðtÞ is the
approximate coordinate of the (right-hand) contact line—so that

h0 � h2x
2
cl ¼ 0: (79)

Since, at large times, the meniscus is thick and the contact line is far
from the origin, one should assume h0 � 1 and xcl � 1, respectively.

According to feature (ii), the velocity of the contact line tends to
zero with time—hence, the “inner” solution is close to that describing

a static contact line. The latter is given by expression (52); setting in it
x0 ¼ xcl þ x00 (where x00 is an order-one constant), one obtains

h� �h 
 1
C
ln 1þ exp

C xcl þ x00 � xð Þtan h
e

� �
if xcl � x 
 1;

(80)

where the (order-one) constant x00 can only be found from higher-
order approximations.

Matching the outer solution (78) to the inner solution (80) effec-
tively amounts to matching their “slopes”; recalling then equality (79),
one obtains

xcl ¼
2eh0
tan h

; h2 ¼
tan2h
4e2h0

: (81)

It still remains to find h0ðtÞ—which can be done by either examining
the higher order approximations of the inner and outer solutions—or,
alternatively, through a simple shortcut involving the exact equation
(61). To do the latter, integrate (61) with respect to x from 0 to1 and,
recalling boundary conditions (67) and (68) and the fact that

dH
dx
! 1

e
tan

p� /
2

as x!1; (82)

obtain

dM
dt
¼ 1

e2A
r
e
tan

p� /
2
�
ð1
0
f ðh� �hÞdx

� �
; (83)

where

M ¼
ð1
0

h� �hð Þdx (84)

is the half-area of the meniscus cross section. Since the near-contact-
line region is small, M can be estimated using the outer solution (78).
Observe also that the function f ðh� �hÞ [defined by (50)] is exponen-
tially small in the outer region—hence, the integral on the right-hand
side of equality (83) can be estimated using the inner solution (80).
Carrying out both estimates and recalling equalities (81), one can
reduce (83) and (84) to

dM
dt
! r

Ae3
tan

p� /
2
� tan h

� �
as t !1; (85)

M 
 4eh20
3 tan h

as t !1: (86)

Thus, the thickness h0 of the meniscus grows as t1=2, as does its width
xcl [due to (81)]—whereas the meniscus cross-sectional area grows lin-
early. It is also evident from equality (85) that the meniscus grows
only subject to condition (1). It should be emphasized that asymptotic
expressions (85) and (86) hold for both sharp and smoothed corners
[if the latter satisfy condition (82)].

To test asymptotics (85), the exact equation (61) was solved
numerically for large times. Typical results are illustrated in
Fig. 10: one can see that the rate of growth of the cross-sectional
area of the meniscus does converge to the predicted constant,
albeit fairly slowly.

FIG. 9. An example of a growing meniscus in a smooth corner for parameters (59),
(60), (69), (72), 73), (76), and (77). The times corresponding to the curves are
shown in the figure (observe that they are not equally spaced).
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V. CHARACTERISTIC TIME OF THE KELVIN EFFECT

To estimate how quick the Kelvin effect is, one needs to rewrite
Eq. (61) in terms of the dimensional variables and in a form minimiz-
ing the dependence on the fluid’s thermodynamic properties (which
may not be known in applications). The DIM parameters—the
Korteweg constant K and the near-substrate density q0—can be
expressed through the surface tension and contact angle, respectively
(for more details, see Ref. 47). The low-temperature assumption
T � 1 will also be used as it is applicable to many common fluids
(including water) at room temperature,50 and it is also a precondition
that qv � ql , which is required for Eq. (61) to hold.

Thus, reversing nondimensionalization (26)–(29), (B1)–(B4), and
(B27) and retaining the same notation for the dimensional variables,
one can write the three-dimensional analogue of Eq. (61) in the form

@h
@t
þ rr � QðhÞr r2ðH þ hÞ � tan2h

l
f

h� �h
l

� �� �	 


¼ r

0:14219 lb:v þ
4
3
ls:v

� � qv

ql

� �5=2 Kql

RT

� �1=2

� r2ðH þ hÞ � tan2h
l

f
h� �h

l

� �� �
: (87)

The fluid parameters which appear in this equation and their typical
values are listed in Table I. The function,

f ðnÞ ¼ 1� e�nð Þe�n;

is universal (does not involve any parameters), whereas the thickness
of the precursor film �h and interfacial thickness l depend on the fluid’s
chemical potential Gðq;TÞ and pressure pðq;TÞ,

l ¼ K1=2 @Gðq;TÞ
@q

� �
q¼ql

( )�1=2
;

�h ¼ K1=2
ðq0

1
2 qlþqvð Þ

2�1=2dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q Gðq;TÞ � Gðqv;TÞ½ � � pðq;TÞ þ pðqv;TÞ

p :

The coefficientQ(h) can be expressed through the function �qðzÞ describ-
ing a flat liquid/vapor interface in an unbounded space; �qðzÞ, in turn, is
related toGðq;TÞ through the following boundary-value problem:

K
d2�q
dz2
� Gð�q;TÞ þ Gðqv;TÞ ¼ 0;

�qðzÞ ! ql as z ! �1;
�qðzÞ ! qv as z ! þ1;

�qð0Þ ¼ 1
2

ql þ qvð Þ:

Once �qðxÞ is computed, Q(h) is given by

QðhÞ ¼ 1
q2
l

ð1
0

q̂2ðz � hÞ
lsð�qðz � hÞ;TÞ dz;

where lsðq;TÞ is the fluid’s shear viscosity, and

q̂ðzÞ ¼
ð1
z

�qðz0Þ � qv

� �
dz0:

To calculate �h, l, and Q(h), one needs (typically, empiric) approxima-
tions of Gðq;TÞ and pðq;TÞ, which may not be available for the liquid
used in a specific experiment (say, a certain type of silicone oil). Even
for water—whose thermodynamic properties are well known—there is
a problem ensuing from the dependence of l on the derivative @G=@q:
even if Gðq;TÞ itself is approximated well, its derivative can be inaccu-
rate (according to the experience of the author of the present paper).

Instead, one can treat l and �h as adjustable parameters and fix
their values by fitting the theoretical results to experimental data
(which is how all other models of contact lines work without
exception).

As for Q(h), one can show that, to leading order, it reduces to

QðhÞ ¼ 1
ls:l

1
3
h3 þ Q0l

3

� �
;

FIG. 10. The long-time evolution of a meniscus with parameters (69)–(74) (the
same as in Fig. 7). M is the half-area of the cross-section [see expression (84)], t is
the time. The horizontal dotted line represents the asymptotic value of dM=dt pre-
dicted by expression (85).

TABLE I. The fluid parameters involved in Eq. (87) and their typical values (at T ¼
25	C and/or p ¼ 1 atm, if appropriate). The values of the parameters not related to
the DIM have been borrowed from Refs. 53–56, and the estimate of K, from Ref. 47.

Notation Parameter Value

ql Density (liquid) 997:00 kgm�3 (water)
qv Density (vapor) 0:023 1 kgm�3 (water)

1:183 9 kgm�3 (air)
R Specific gas

constant
461:52m2s�2K�1 (water)

ls:l Shear viscosity
(liquid)

0:890� 10�3Pa s (water)

ls:v Shear viscosity
(vapor)

0:986 7� 10�5 kgm�1s�1 (water)
1:837 4� 10�5 kgm�1s�1 (air)

lb:v Bulk viscosity
(vapor)

2:738 0� 10�5 kgm�1s�1 (water)
1:746 6� 10�5 kgm�1s�1 (air)

r Surface tension 72:06mNm�1 (water/air)
K The Korteweg

constant
2:45� 10�17m7kg�1s�2 (water)
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where Q0 depends on Gðq;TÞ and lsðq;TÞ. For the van der Waals
fluid under an extra assumption that ls is proportional to q, the con-
stant Q0 happens to be small: Q0 � 0:098 595. Furthermore, since Eq.
(87) was derived under the assumption that the ratio h/l is (logarithmi-
cally) large, the second term in the above expression is small. This
claim has been verified by computations: in particular, the solutions in
Figs. 7–9 have turned out to be indistinguishable from those computed
for Q0 ¼ 0 or Q0 ¼ 2� 0:098 595, with the rest of the parameters
being the same. This suggests that one can simulate Eq. (87) with
simply

QðhÞ ¼ 1
3ls:l

h3:

Note also that l, �h, and Q(h) do not appear in the first term on the
right-hand side of Eq. (87), which describes the Kelvin effect. This
allows one to objectively estimate the characteristic time of the Kelvin
effect, defined as

s ¼
0:142 19 lb:v þ

4
3
ls:v

� �
r

ql

qv

� �5=2 RT
Kql

� �1=2

L2; (88)

where L is the horizontal scale of the liquid film.
To place this estimate in the context of one’s everyday experience,

s will be estimated for the parameters of household mold: it is known
to appear in corners and wall irregularities, and is generally a good
example of Kelvin-effect-induced condensation. Thus, using the
parameters of water for the liquid phase and those of air for the vapor,
and letting L ¼ 0:1mm as the smallest visible mold size, one obtains
s � 11 h. This estimate characterizes how quickly a wet spot would
become visible if the air in one’s dwelling is 100% humid.

One should keep in mind, however, that Eq. (87) and estimate
(88) have been derived for a pure fluid—hence, using them for the
water/air combination is somewhat inconsistent. To obtain a more
reliable estimate, one needs an extension of the present results to mul-
ticomponent fluids, which is currently in progress. One should also
take into account the absorption of the condensate by the wallpaper or
plaster, as well as its consumption by bacteria (which turn the liquid
into the actual mold).

Another potential application of the present results is liquid films
in steam turbines, where the temperature can be as high as 400	C. The
corresponding value of ql=qv is much smaller than that at room tem-
perature, so that estimate (88) predicts that the condensation is
quicker by several orders of magnitude.

VI. CONCLUDING REMARKS

This paper examined the evolution of saturated vapor between
two intersecting walls, and its main physical result is condition (1).
If the angle / at which the walls intersects and the contact angle h
satisfy this condition, the vapor begins to condensate and a liquid
meniscus starts to grow in the corner. If condition (1) does not hold,
there is a steady (non-growing) solution describing a steady meniscus.
Both these results have been obtained using Eq. (61) derived in
Appendix B 1 under the assumptions that h� 1; / � p (hydrophilic
walls intersecting at an almost straight angle), and qv=ql � 1 (the
vapor-to-liquid density ratio is small). For the regime qv=ql 
 1, a
separate asymptotic equation was derived, Eq. (B23) of Appendix B 2;

its solutions have not been described in this paper as they are similar
to those of Eq. (61).

The main mathematical results of the present paper are asymp-
totic equation (61) and its dimensional version (87). They were used
to formally derive condition (1), but can also be employed for model-
ing thin drops with contact lines.

To understand in what way Eq. (87) differs from the existing
liquid-film models incorporating evaporation (e.g., Refs. 3–8, 10,
14–19, and 57), note that there are two distinct mechanisms of evapo-
ration of drops:

(a) through diffusion of vapor in the surrounding air, and
(b) through advection of vapor by the flow due to the variations

of the chemical potential (caused by the curvature of the
drop’s surface).

All of the existing models are based on mechanism (a), whereas
the present work, on mechanism (b). The latter is the only one acting
in pure fluids, where diffusion does not occur.

In multicomponent fluids, however, both mechanisms should be
accounted for—but, so far, only (a) has. This shortcoming can be rem-
edied using the multicomponent DIM—or perhaps one of the models
incorporating kinetic theory (see Ref. 58 and references therein).
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APPENDIX A: ASYMPTOTIC DESCRIPTION
OF STATIC MENISCI

For simplicity, the asymptotic analysis in both appendixes of
this paper will be carried out for two-dimensional (2D) flow. The
3D versions of the equations derived can be easily deduced after-
wards from the requirement of horizontal isotropy.

1. Preliminaries

In what follows, one needs, first, an expansion of the thickness �h
of the precursor film, and second, the large-distance asymptotics of the
function �qðzÞ describing a flat interface in an unbounded space.

(1) The Maxwell construction (20) and (21) and identity (5)
imply

q Gðq;TÞ � Gðqv;TÞ½ � � pðq;TÞ þ pðqv;TÞ

¼ C2

2
q� qlð Þ2 þO q� qlð Þ3

h i
as q! ql; (A1)

where C is given by (41). Expansion (A1) implies that the integrand
in expression (40) for �h has a first-order pole at q ¼ ql ; it is located
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outside the integration interval, but not too far from its upper limit.
Thus, (40) reduces to

�h ¼ �h0 þ �h1 þOðeÞ; (A2)

where

�h0 ¼
ln e�1

C
; (A3)

�h1 ¼
ðql

1
2 qlþqvð Þ

(
2�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q Gðq;TÞ � Gðqv;TÞ½ � � pðq;TÞ þ pðqv;TÞ
p

� 1
C ql � qð Þ

)
dqþ 1

C
ln

ql � qv

2
: (A4)

(2) It follows from the exact solution (38) that

�qðzÞ 
 ql � eC zþ�h1ð Þ as z ! �1;

where �h1 is given by (A4). Then, using equalities (A2) and (A3),
one can rewrite the above estimate in terms of the full thickness of
the precursor film,

�qðzÞ 
 ql � eeC zþ�hð Þ as z ! �1: (A5)

This expansion holds as long as its second term is smaller than the
first one—i.e., for moderately (logarithmically) large distances,
�z � �h.

2. Derivation of Eq. (48)

The solution of Eq. (30) will be sought in the form

qðx; zÞ ¼ �qðz � H � hÞ þ e2qð2Þ þ � � � ; (A6)

where �qðzÞ describes a flat interface in an unbounded space and sat-
isfies boundary-value problem (33)–(36). Physically, solution (A6)
describes a slightly curved interface located at z ¼ HðxÞ þ hðxÞ
[i.e., at a height h(x) above the substrate], and a small correction. In
what follows, the two-term expansion (A6) plays an important role,
for both static and evolving menisci.

Substituting (A6) into Eq. (30) and boundary condition (32)
(boundary condition (31) will be discussed later), one obtains

@2qð2Þ

@z2
� @G

@q

� �
q¼�q

qð2Þ ¼ R; (A7)

qð2Þ ! 0 as z !1; (A8)

where

R ¼ � @
2�q
@x2

; (A9)

and it is implied here (and in the rest of the paper, unless stated
otherwise) that �q depends on z �H � h, not just z.

(A7) is a linear nonhomogeneous second-order ordinary dif-
ferential equation, and it can be readily verified that its homoge-
neous version is satisfied by qð2Þ ¼ @�q=@z. Thus, its general
solution is easy to find: imposing boundary condition (A8), one
obtains, after straightforward algebra,

qð2Þ ¼ @�q
@z

ðHþh
z

@�q 0

@z

� ��2
Fðx; z0Þ dz0�hð2ÞðxÞ

" #
; (A10)

where �q0 ¼ �qðz0 �H � hÞ,

Fðx; zÞ ¼
ð1
z

@�q 0

@z0
Rðx; z0Þ dz0; (A11)

and the undetermined function hð2ÞðxÞ is, mathematically, a con-
stant of integration. Physically, hð2Þ corresponds to shifting the
interface along the z axis by a distance of e2hð2Þ. In principle, it can
be eliminated by replacing in expansion (A6) the leading-order
solution �qðz � H � hÞ with �qðz � H � h� e2hð2ÞÞ.

Expansion (A6) is valid if its second term e2qð2Þ is much
smaller than the first term �q. This requirement clearly holds near
the interface, where z � H � h ¼ Oð1Þ—hence, qð2Þ does not
involve any small or large parameters—hence, qð2Þ ¼ Oð1Þ.
Furthermore, as shown below, the condition e2qð2Þ � �q holds
near the substrate as well (even though z � H � h can be large
there, and so can qð2Þ).

Thus, since expansion (A6) is uniformly applicable, there is no
need to introduce a near-substrate boundary layer. Substituting
expression (A10) into (A6) and then substituting the latter into
boundary condition (31), one obtains

�qð Þz¼H þ e2
@�q
@z

� �
z¼H

ðHþh
H

@�q
@z

� ��2
Fðx; zÞ dz � hð2Þ

" #
¼ ql � e:

(A12)

This is, essentially, the desired equation for h(x). To reduce it to
Eq. (48), one should assume that h is logarithmically large.
Physically, such an assumption is not restrictive as liquid menisci
are indeed thicker than the precursor film (describing dry
substrate), and the thickness �h of the latter is logarithmically
large due to estimates (A2)–(A4). For large h, the main contribu-
tion to the integral in (A12) comes from the region adjacent to its
lower limit, where @�q=@z is small. Thus, one can use (A5) to
obtain

ðHþh
H

@�q
@z

� ��2
Fðx; zÞ dz ¼ e�2

2C3
e�2Cðh�

�hÞFðx;HÞ þ Oðln e�1Þ:

(A13)

Given this estimate and (A5), the second term on the left-hand side
of Eq. (A12) is OðeÞ—hence, it is much smaller than the first term.
This justifies the use of expansion (A6) near the substrate.
Substituting estimate (A13) into Eq. (A12) and using the large-
distance asymptotics (A5) of �q to simplify the rest of (A12), one
can reduce it to leading order to

Fðx;HÞ ¼ 2C2 1� e�Cðh�
�hÞ

� �
e�Cðh�

�hÞ: (A14)

Note that the undetermined function hð2ÞðxÞ does not appear in this
(leading-order) equation; it can only be determined in the next
order of the perturbation expansion. To close Eq. (A14), it remains
to express F in terms of h. Backtracking through equalities (A11)
and (A9) (thus, relating F toR to �q), one obtains
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ð1
H

@�q
@z

d2ðH þ hÞ
dz2

@�q
@z
� dðH þ hÞ

dz

� �2
@2�q
@z2

( )
dz

¼ 2C2 1� e�Cðh�
�hÞ

� �
e�Cðh�

�hÞ: (A15)

Observe that, since h is large, it follows from the large-distance
asymptotics (A5) that

@�qðz �H � hÞ
@z

¼ OðeÞ; @2�qðz �H � hÞ
@z2

¼ OðeÞ if z < H:

As a result, the lower limit of the integral in (A15) can be moved
from H to �1 without introducing a leading-order error. After
that, the second term on the left-hand side of Eq. (A15) vanishes,
and (A15) turns into Eq. (48) as required.

APPENDIX B: ASYMPTOTIC EQUATIONS
FOR EVOLVING MENISCI

As mentioned in the main body of the paper, there are two
asymptotic regimes in this problem, depending on the parameter
qv=ql . The common part of their analyses will be presented first,
with the regime-specific parts to follow.

To nondimensionalize the governing equations, assume that
the shear and bulk viscosities are of the same order, ls 
 lb, and
introduce a scale l representing them both. As shown by Ref. 46 for
a flat substrate, the scale for the horizontal velocity u is determined
by the balance of the viscous and Korteweg stresses, so that

U ¼ e3Pl
l
; (B1)

where ., P, and l have been defined in the beginning of Sec. III. The
scale for the vertical velocity w is regime-specific and will be chosen
later—as is, and will be, the timescale.

In addition to the nondimensional variables defined by
(26)–(29), introduce

und ¼
u
U
; (B2)

cnd ¼
c
R
; Bnd ¼

B
P
; snd ¼

s
R
; (B3)

lsð Þnd ¼
ls

l
; lbð Þnd ¼

lb

l
; jnd ¼

j
K
; (B4)

where K is a characteristic scale of the thermal conductivity, and the
specific gas constant R is that of the specific heat capacity c.

1. Regime 1: qv 
 ql

Let the nondimensional time and vertical velocity be

tnd ¼
t

l= e�1Uð Þ ; wnd ¼
w

e�1U
: (B5)

Substituting (26)–(29) and (B2)–(B5) into the 2D version of
boundary-value problem (9)–(19), and omitting the subscript nd,
one obtains

@q
@t
þ e2

@ quð Þ
@x
þ
@ qwð Þ
@z

¼ 0; (B6)

ae4
@u
@t
þ e2u

@u
@x
þ w

@u
@z

� �
þ s

@T
@x
þ @

@x
G� e2

@2q
@x2
� @

2q
@z2

� �

¼ e2

q

(
@

@x
2e2ls

@u
@x
þ lb �

2ls

3

� �
e2
@u
@x
þ @w
@z

� �" #

þ @

@z
ls

@u
@z
þ @w
@x

� �� �)
; (B7)

ae4
@w
@t
þ e2u

@w
@x
þ w

@w
@z

� �
þ s

@T
@z
þ @

@z
G� e2

@2q
@x2
� @

2q
@z2

� �

¼ e4

q
@

@x
ls

@u
@z
þ @w
@x

� �� �

þ e2

q
@

@z
2ls

@w
@z
þ lb �

2ls

3

� �
e2
@u
@x
þ @w
@z

� �" #
; (B8)

acqc
@T
@t
þ e2u

@T
@x
þ w

@T
@z

� �
þ bB e2

@u
@x
þ @w
@z

� �

¼ be2
(

ls 2e4
@u
@x

� �2

þ e2
@u
@z
þ @w
@x

� �2

þ 2
@w
@z

� �2
" #

þ lb �
2ls

3

� �
e2
@u
@x
þ @w
@z

� �2
)

þ @

@x
j
@T
@x

� �
þ 1

e2
@

@z
j
@T
@z

� �
; (B9)

u ¼ 0; w ¼ 0 at z ¼ H; (B10)

@u
@z
! 0;

@w
@z
! 0 as z !1; (B11)

q ¼ ql � e; T ¼ T0 at z ¼ H; (B12)

q! qv;
@T
@z
! 0 as z !1; (B13)

where

a ¼ K.3

l2
; b ¼ P.2K

lK T0ð Þd
;

c ¼ Rl
K
; T0 ¼

.R T0ð Þd
P

;

and ðT0Þd is the dimensional temperature of the substrate.
The positions where a appears in Eqs. (B7) and (B8) suggest

that it represents the Reynolds number, b is the “isothermality
parameter” introduced by Ref. 50, and c is the Prandtl number. For
generality, these parameters are assumed to be order one (as shown
by Ref. 50, they are typically either that or small).

Observe that Eq. (B9) involves a term proportional to 1=e2,
which cancels only if

T ¼ T0 þ e2~T ; (B14)

i.e., the temperature variations are small. This does not mean, how-
ever, that their effect on the film dynamics is negligible. To make it
such, one should also assume the isothermality parameter b to be
also small.46

Substituting (B14) into Eq. (B8) and simplifying the notation
by changing T0 ! T , one obtains
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@

@z
@2q
@z2
� G

� �
¼ e2

"
@

@z
� @

2q
@x2
þ @G
@T

~T

� �
þ sðT;qÞ @

~T
@z

� 1
q
@

@z
k
@w
@z

� �#
þOðe4Þ; (B15)

where the effective viscosity kðq;TÞ is given by

kðq;TÞ ¼ lbðq;TÞ þ
4
3
lsðq;TÞ: (B16)

For evolving menisci, the film thickness h depends on x and t (not
just on x as in the static case). Keeping this in mind while substitut-
ing (A6) into (B15), one obtains

@2qð2Þ

@z2
� @G

@q

� �
q¼�q

¼ e2R1; (B17)

where

R1 ¼ �
@2�q
@x2
þ @Gð�q;TÞ

@T
~T � @Gðqv;TÞ

@T
~Tð Þz!1

�
ð1
z

sð�q 0;TÞ @
~T
0

@z0
� 1

�q0
@

@z0
kð�q 0;TÞ @w

0

@z0

� �( )
dz0; (B18)

and ~T
0 ¼ ~T ðx; z0; tÞ; w0 ¼ wðx; z0; tÞ, etc. Evidently, the left-hand

side of Eq. (B17) coincides with that of its static counterpart (A7),
and the boundary conditions for the two equations also coincide.
Thus, the asymptotic equation for evolving menisci can be obtained
by simply replacing R with R1 in the static equations (A11) and
(A14), which yield

ð1
H

@�q
@z
R1ðx; zÞ dz ¼ 2C2 1� e�Cðh�

�hÞ
� �

e�Cðh�
�hÞ: (B19)

Next, substitute expression (B18) for R1 into the above equality,
and then eliminate the integration with respect to z0 by integrating
by parts the term involving curly brackets. Recall also that h is large
(as assumed in Appendix A), which implies

�qðz � H � hÞ½ �z¼H ¼ ql þOðeÞ: (B20)

Thus, to leading order, one can rearrange (B19) into

�
ð1
H

@�q
@z
@2�q
@x2

dz þ
ð1
H

@�q
@z
@Gð�q;TÞ
@T

~T � �qsð�q;TÞ @
~T
@z

� �
dz

þql

ð1
H
sð�q;TÞ @

~T
@z

dz � qv � qlð Þ
@Gðqv;TÞ

@T
~Tð Þz!1

� ql

ð1
H

kð�q;TÞ
�q2

@�q
@z
@w
@z

dz ¼ 2C2 1� e�Cðh�
�hÞ

� �
e�Cðh�

�hÞ:

(B21)

To obtain a closed equation for h, the unknowns ~T and w should be
expressed in terms of �qðz � H � hÞ—which is not difficult, as it
needs to be done to leading order only. Retaining, thus, the leading-
order terms in Eqs. (B6), (B9), and (B10)–(B13), and changing
T0 ! T , one obtains

@�q
@t
þ @ �qwð Þ

@z
¼ 0;

�bBð�q;TÞ @w
@z
þ @

@z
jð�q;TÞ @

~T
@z

� �
¼ 0;

w ¼ 0; ~T ¼ 0 at z ¼ H;

@w
@z
! 0;

@~T
@z
! 0 as z !1:

Keeping in mind estimate (B20) and recalling definition (8) of
Bðq;TÞ, one can deduce that, to leading order,

w ¼ @h
@t

�q � ql

�q
; ~T ¼ �bTql

@h
@t

ðz
H

sð�q0;TÞ � sðqv;TÞ
jð�q 0;TÞ dz0:

(B22)

Substituting these expressions into Eq. (B21), one obtains, after
straightforward algebra,

Aþ bDð Þ @h
@t
¼ r

@2ðH þ hÞ
@x2

� 2C2 1� e�Cðh�
�hÞ

� �
e�Cðh�

�hÞ; (B23)

where

r ¼
ð1
H

@�q
@z

� �2

dz; A ¼ q2
l

ð1
H

kð�q;TÞ
�q4

@�q
@z

� �2

dz; (B24)

D ¼ Tq2
l

ð1
H

sð�q;TÞ � sðqv;TÞ �
ql � qv

ql
q
@s
@q

� �
q¼qv

" #

� sð�q;TÞ � sðqv;TÞ
jð�q;TÞ dz: (B25)

(B23) is the desired asymptotic equation describing menisci with
order-one vapor-to-liquid density ratio, but its coefficients can be
simplified further, similar to how it was done in Appendix A.
Moving the lower limit of integration in (B24) from H to �1, one
can reduce r to its standard form, (49), and A, to

A ¼ q2
l

ð1
�1

kð�q;TÞ
�q4

@�q
@z

� �2

dz: (B26)

The integrand in (B25), in turn, tends to a constant as z ! �1, so
the lower limit cannot be moved to �1. One can still simplify
(B25) by integrating it by parts and then moving the limit to �1.
Eventually, (B25) becomes

D ¼ D1h� D2;

where

D1 ¼ Tq2
l sðql;TÞ � sðqv;TÞ � 1� qv

ql

� �
q
@s
@q

� �
q¼qv

" #

� sðql;TÞ � sðqv;TÞ
jðql;TÞ

;

D2 ¼ Tq2
l

ð1
�1

z
@

@z

(
sð�q;TÞ � sðqv;TÞ �

ql � qv

ql
q
@s
@q

� �
q¼qv

" #

� sð�q;TÞ � sðqv;TÞ
jð�q;TÞ

)
dz:
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2. Regime 2: qv � ql

Let qv be small. Then, according to (B22), the vertical velocity
w in the vapor phase is large. This makes sense physically: a large
density difference between vapor and liquid implies a faster evapo-
rative flow. Mathematically though, the growth of w makes the scal-
ing inconsistent, suggesting that a boundary layer exists between
the asymptotic regions describing liquid and vapor.

Thus, three asymptotic regions are expected to arise in the
problem: the liquid region where q 
 ql , the boundary layer where
q 
 qv, and the vapor region where q � qv. The last one is trivial
and has no impact on the global dynamics—hence, will not be
discussed.

a. The liquid region

The nondimensional time and vertical velocity in this region
are defined by

tnd ¼
t

l= eUð Þ ; wnd ¼
w
eU

; (B27)

where U is given by (B1). Substituting (26)–(29), (B2)–(B4), and
(B27) into the 2D version of the governing set (9)–(13), one obtains
(the subscript nd omitted),

@q
@t
þ
@ quð Þ
@x
þ
@ qwð Þ
@z

¼ 0; (B28)

ae6
@u
@t
þ u

@u
@x
þ w

@u
@z

� �
þ s

@T
@x
þ @

@x
G� e2

@2q
@x2
� @

2q
@z2

� �

¼ e4

q
@

@x
2ls

@u
@x
þ lb �

2ls

3

� �
@u
@x
þ @w
@z

� �" #

þ e2

q
@

@z
ls

@u
@z
þ e2

@w
@x

� �� �
; (B29)

ae8
@w
@t
þ u

@w
@x
þ w

@w
@z

� �
þ s

@T
@z
þ @

@z
G� e2

@2q
@x2
� @

2q
@z2

� �

¼ e4

q

(
@

@x
ls

@u
@z
þ e2

@w
@x

� �� �

þ @

@z
2ls

@w
@z
þ lb �

2ls

3

� �
@u
@x
þ @w
@z

� �" #)
; (B30)

acqc
@T
@t
þ u

@T
@x
þ w

@T
@z

� �
þ bB

@u
@x
þ @w
@z

� �

¼ be2
(

ls 2e2
@u
@x

� �2

þ @u
@z
þ e2

@w
@x

� �2

þ 2e2
@w
@z

� �2
" #

þ e2 lb �
2ls

3

� �
@u
@x
þ @w
@z

� �2
)

þ 1
e2
@

@x
j
@T
@x

� �
þ 1

e4
@

@z
j
@T
@z

� �
: (B31)

The boundary conditions for this set coincide with their regime-1
counterparts (B10)–(B13). The temperature equation (B31) suggests
that

T ¼ T0 þOðe4Þ; (B32)

with the implication that the temperature variations are too small
to affect the leading-order dynamics [compare (B32) to its regime-1
counterpart (B14)]. Thus, the temperature equation can be simply
omitted, and in the rest of the governing set, one can let T ¼ const.
Given the quasi-isothermality condition (B32), it follows from
equation (B30) that

Gðq;TÞ � Gðqv;TÞ � e2
@2q
@x2
� @

2q
@z2
¼ e2G0 þOðe4Þ; (B33)

where G0ðx; tÞ is an undetermined function. To relate it to h(x, t),
one should use the two-term expansion (A6), after which (B33)
yields

@2qð2Þ

@z2
� @G

@q

� �
q¼�q

¼ � @
2�q
@x2
� G0: (B34)

Following the same reasoning as that in regime 1, but keeping in
mind that, this time, qv � 1, one can deduce from the boundary
condition for q at the substrate that

G0 ¼ �
1
ql

r
@2ðH þ hÞ

@x2
� 2C2 1� e�Cðh�

�hÞ
� �

e�Cðh�
�hÞ

	 

: (B35)

Next, substitute (B32) and (B33) into Eq. (B29) for u. Keeping in
mind that u should satisfy the no-slip condition at the substrate and
the no-viscous-stress condition at infinity, one obtains

u ¼ � @G0

@x

ðz
H

q̂ 0

lsð�q 0;TÞ
dz0 þ Oðe2Þ; (B36)

where q̂ is related to �q by equality (64). Finally, substitute (B36)
into Eq. (B28) and solve the latter for w, subject to the no-through-
flow requirement at the substrate,

w ¼ @h
@t

1� ql

�q

� �
þ 1

�q
@

@x
@G0

@x

ðz
H

q̂0 � q̂
� �

q̂ 0

lsð�q 0;TÞ
dz0

" #
þOðe2Þ:

(B37)

If the �q is small, this expression is evidently large—suggesting, as
expected, the existence of a boundary layer.

b. The boundary layer

To obtain the solution in the boundary layer, the liquid-region
equations (B28)–(B31) need to be rescaled. The parameters of the
new variables have to be first guessed and then verified through
matching to the liquid region.

The boundary layer will be described by the following inner
variables:

zi ¼
z � Zðx; tÞ

q1=2
v

; qi ¼
q
qv
;

where Z(x, t) is the height of the boundary layer. The horizontal
coordinate x and time t do not need to be rescaled (their scales in
the boundary layer are forced by the liquid’s dynamics). Given that,
in the end, the two regions will be matched, the boundary-layer
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scaling for w can be deduced from the small-�q asymptotics of the
liquid-region solution (B37), which suggests

wi ¼ qvw:

As for the horizontal velocity u, the liquid-region solution (B36)
implies that u remains order-one when �q ! 0—hence, in the
boundary layer, u does not need to be rescaled.

One can also take advantage of two physical assumptions.
Since the fluid density in the boundary layer is small, one can safely
assume that the chemical potential there is that of ideal gas,

Gðq;TÞ ¼ T ln q if q 
 qv:

In addition, both kinetic theory (e.g., Ref. 59) and measurements
(e.g., Ref. 53) suggest that the vapor viscosity and thermal conduc-
tivity are independent of the density—thus, to leading order, one
can assume

lsðq;TÞ ¼ ls:vðTÞ; lbðq;TÞ ¼ lb:vðTÞ;
jðq;TÞ ¼ jvðTÞ if q 
 qv:

Note that the viscosity and thermal conductivity of vapor are typi-
cally much smaller than those of liquid—hence, ls:v; lb:v, and jv

are small parameters (in addition to e and qv).
The following asymptotic limit is assumed:

e2q�5=2v lv ¼ Oð1Þ as e; qv;lv; jv ! 0; (B38)

where lv is, say, ðls:v þ lb:vÞ=2. As seen later, (B38) is a characteris-
tic limit of regime 2 and, thus, covers adjacent situations, e2q�5=2v lv
� 1 and e2q�5=2v lv � 1, as well. Note also that, as suggested by
measurements,53

jv 
 lv � qv:

Summarizing the above estimates, assumptions, and scaling, one
can deduce from the temperature equation (B32) the following
quasi-isothermality condition:

T ¼ T0 þO e4
q3

v

l2
vjv

 !
;

which is even stronger than its liquid-region counterpart (B32).
Rewriting Eqs. (B28) and (B30) in terms of the new variables,

omitting Eq. (B29) for u (which will not be needed), and replacing
the temperature equation with T ¼ const, one obtains

@ qiwið Þ
@zi

¼ Oðq3=2
v Þ; (B39)

@

@zi
T ln qi � e2

@Z
@x

� �2
@2qi

@z2i
� @

2qi

@z2i

" #

¼ e2
e2q�5=2v lb:v þ

4
3
ls:v

� �
qi

@2wi

@z2i
þOðq3=2

v Þ

2
64

3
75
: (B40)

Observe that wi appears in Eq. (B40) only as a perturbation, which
is why Eq. (B39) includes the leading-order term only.

Equation (B39) yields qiwi ¼ const, where the constant can be
determined by matching wi to the small-�q limit of the liquid-region

solution (B37). Keeping in mind that q̂ðzÞ is also small [because
�qðzÞ is small—see (64)], one obtains

w ¼ � ql

�q
@h
@t
� ql

@

@x
@G0

@x
QðhÞ

� �	 

: (B41)

qi should be sought in the form of a two-term expansion,

qi ¼ �qiðziÞ þ e2qð2Þi þ � � � ; (B42)

where �qiðziÞ satisfies the following boundary-value problem:

d2qi

dz2i
� T ln �qi ¼ 0; (B43)

�q !1 as z0 ! �1; (B44)

�q ! 1 as z0 ! þ1: (B45)

Physically, �qi describes the small-density part of a flat interface in
an unbounded space—hence, it is the small-qv limit of the function
�q defined previously.

Substitution of (B42) into Eq. (B40) yields

@2qð2Þi
@z2i

� T
�q i

qð2Þi ¼�
@Z
@x

� �2
@2�qi

@z2i
þ
ð1
zi

e2q�5=2v lb:vþ
4
3
ls:v

� �
qi

@2wi

@z2i
dzi:

(B46)

The solution of this equation, qð2Þi , should be matched to its liquid-
region counterpart qð2Þ (the first terms in the two expansions match
automatically as they both describe a flat interface in an unbounded

space). Instead of qð2Þi and qð2Þ, however, it is much simpler to
match the right-hand sides of the equations determining them:

(B46) for qð2Þi and (B34) for qð2Þ [the left-hand sides of these equa-
tions match automatically under the assumption that Gðq;TÞ

 T ln q as q! 0]. Keeping in mind that that wi is given by expres-
sion (B41), one obtains

@Z
@x

� �2

¼ @ðH þ hÞ
@x

� �2
;

�G0 ¼ e2q�5=2v lb:v þ
4ls:v

3

� �
@h
@t
� ql

@

@x
@G0

@x
QðhÞ

� �	 


�
ð1
�1

1
�qi

@2

@z2i
� 1

�qi

� �
dzi:

(B47)

The former equality implies Z ¼ H þ hþ const, which means that
the boundary layer is pinned to a certain point of the interfacial
profile. This point is determined by const, which can be found only
from the next order of the perturbation expansion (and does not
affect the leading-order solution). Finally, using (B35) to eliminate
G0 from Eq. (B47), one obtains the desired equation for h(x, t)—
which can be written in form (61) with

A ¼ q2
l q
�5=2
v lb:v þ

4
3
ls:v

� �ð1
�1

1
�q4
i

d�qi

dzi

� �2

dzi; (B48)

where the notation “A” is used because this coefficient is the small-qv

limit of the regime-1 coefficient A [see formulas (B26) and (B16)].
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It remains to transform expression (B48) into its more convenient ver-
sion (62). This can be done by changing the variable of integration
zi ! �qiðziÞ, where the latter satisfies boundary-value problem
(B43)–(B45). Thus, one can deduce that

A ¼ lb:v þ
4
3
ls:v

� �
T1=2q�5=2v

ð1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �qi ln �q i þ 1� �q ið Þ

p
�q4
i

d�qi:

Evaluating the integral in the above expression numerically, one
obtains (62) as required.
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