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In this paper the dynamics of geostrophic flows localized in a thin layer of continuously 
stratified fluid, which overrides a thick homogeneous layer are studied. The 
displacement of isopycnal surfaces is assumed large; the p-effect is strong, i.e. 

(R,IR,) cot 8 z € 9  

where is the Rossby number, 8 is the latitude; Re is the Earth’s radius, and R, is the 
deformation radius based on the total depth of the ocean. An asymptotic system of 
equations is derived and used to study the stability of zonal currents. Three sufficient 
conditions of stability are obtained, which restrict the slope of the interface between the 
stratified and non-stratified layers. The results obtained are applied to the subtropical 
and subarctic frontal currents in the Northern Pacific: the former was found to be 
stable, the latter was found to be unstable. However, the growth rate of the instability 
is very small (the effective time of growth is about 2 years). 

1. Introduction 
The equations which govern stratified flows with large displacement of isopycnal 

surfaces on the P-plane are very complex and, generally speaking, do not allow 
analytical study. Even the smallness of the Rossby number (the assumption of 
geostrophy) does not make them much simpler, as the large number of other 
parameters does not allow an asymptotic system applicable in all cases to be derived. 
Thus, one has to consider various regimes in the parameter space of the governing 
equations and derive separate sets of asymptotic equations for all regimes. For the 
(simplest) case of two-layer stratification, Cushman-Roisin, Sutyrin & Tang (1992); 
Benilov (1992) and Benilov & Cushman-Roisin (1994) demonstrated that all of the 
parameter space can be ‘covered’ by four relatively simple asymptotic systems. Using 
these systems, the stability of two-layered shear flows was examined by Benilov (1992, 
1995a), Swaters (1993) and Benilov & Cushman-Roisin (1994). Two out of the four 
systems (and the corresponding stability analyses) were generalized for continuous 
stratification (Benilov 1993, 1994), while one of the remaining two was shown to have 
no physical applications (see Benilov & Cushman-Roisin 1994). The last (fourth) 
regime is dealt with in the present paper. 

The dynamics of flows with large displacement of isopycnal surfaces (large- 
amplitude flows) on the P-plane are governed by three non-dimensional parameters : 

(i) the Rossby number 
= U A f L ) ,  (1.1) 

where U is the effective velocity scale, L is the horizontal spatial scale of the motion and 
f is the Coriolis parameter; 
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(a) 8 -  1 
8 - B  
s - € 2  

(b)  s - 1 
8 - E  

s - E2 

(c) 6 - 1 
8 - E  
s - 

Weak /3-effect: a - e3I2 

Benilov 1992 
As above 
Cushman-Roisin et al. 1992 

Benilov 1992, instability 
As above 

Swaters 1993, stability/instability 

Benilov 1993, instability 
As above 
? 

Strong ,&effect: a - E 

Benilov 1992 
Cushman-Roisin et al. 1992 
As above 

Benilov 1992, 1995a, stability 
Benilov & Cushman-Roisin 1994; 

As above 

Benilov 1994, stability 
? 
As above 

Benilov 1995 a, stability/instability 

TABLE 1. Classification of large-amplitude geostrophic flows : (a) two-layer asymptotic equations : 
(b) stability of two-layer flows; (c) a combination of (a) and (b) for continuously stratified flows 

(ii) the ,&effect number 
a = (R,/R,)cotB, 

where R, = (g’Ho)1’2/f, (1.3) 

g’ = gSp/po is the reduced acceleration due to gravity, po and (po+ Sp) are the 
minimum and maximum values of the density, H,, is the total depth of the fluid, 19 is 
the latitude, Re is the Earth’s radius (a can be interpreted as the non-dimensional 
version of the usual /I-parameter: 01 = Ro/I/’; 

(iii) the relative depth of the ‘active’ layer 

where Ha is the depth of the upper layer where the flow and stratification are localized. 
The classification of two-layer large-amplitude geostrophic ( E  4 1) flows can be 

presented on the plane of the parameters (a/€,&) (see table la), where each cell 
corresponds to a system of asymptotic equations. The stability properties of large- 
amplitude flows were found to be closely linked to the above classification (see 
table lb). 

The corresponding results for continuously stratified flows can be presented in the 
form of the single table 1 (c). It can be easily demonstrated that the regime with 6 N E’ 

has no oceanographic applications: given E 5 0.1, it corresponds to 6 5 0.01, while in 
the real ocean 6 - ;-A. 

The present paper examines the stability of large-amplitude geostrophic flows with a 
strong /?-effect and thin upper layer: a - 6 - E .  It is convenient to consider this case 
within the framework of the ‘ semi-Lagrangian ’ variables, where the vertical variable 
becomes Lagrangian, while the horizontal variables remain Eulerian ($ 2). The 
asymptotic governing equations are derived ($ 3) and demonstrated ($4) to be 
separable, which corresponds physically to the ‘equivalent barotropic mode’ observed 
by Killworth (1992) in his analysis of the FRAM data. The equations derived are used 
in the stability analysis of zonal flows in 5 5 .  The results obtained are applied to the 
subarctic and subtropical frontal currents in the Northern Pacific ($6).  It turns out, 
however, that the equations derived do not describe the stability of short disturbances, 
which have to be studied using a different approach ($7). 
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2. Basic equations 
Consider a flow localized in a thin layer of continuously stratified fluid, which 

overrides a thick homogeneous layer. The form of the interface is unknown, which 
drastically complicates the problem. Accordingly, we shall use the semi-Lagrangian 
variables (Odulo 1979), which map the upper layer into a domain with a fixed plane 
boundary. Moreover, these variables map all isopycnal surfaces into horizontal planes. 

In 9 2.1 we shall introduce the semi-Lagrangian variables for unspecified stratifi- 
cation, and in $2.2 we shall adapt the results obtained for the case of homogeneous 
lower layer. 

2.1. Semi-Lagrangian variables 
The (non-dimensional) equations which govern stratified flows on the /3-plane are 

u,+uu,+vu,+wu,+p, = ( l + a y ) v ,  1 
~,+uv,+vv,+wvz+p, = - ( l + a y ) u , j  

P z  = - P, 
ux+uy+w,=o,  

pt+up,+vp,+wp, = 0. 

(2.1 a)  

(2.1 b) 

(2.1 d )  

(2.1 c) 

Here 

where the dimensional variables (the spatial coordinates (2, y”, 3, the time 2, the velocity 
(u”,v”, Fij), the pressure p and the density P )  are marked with tildas. 

Equations (2.1) are supplemented by the rigid-lid boundary condition 

w = O  at z = - I , O .  (2.2) 
We shall assume, for simplicity, that the flow is not bounded horizontally. 

Next we introduce the following change of variables ( t ,  x, y ,  z )  + (t’, x’, y’, 5): 

t = t’, x = x’, y = y’, z = Z ( t ’ , X ’ ,  y’, [), (2.3) 
where [E (- 1,O) and Z is governed by 

zt* + UZ,? + UZ,, - w = 0, 

I Z=-1 at [=-1,  
Z=O at [ = O  

((2.4k(2.5) should be treated as a formal definition of the Lagrangian variable 6). The 
boundaries of the fluid correspond to 6 = - 1,O; it should also be observed that 
(2.4k(2.5) automatically satisfy boundary conditions (2.2). 

Substituting (2.3) into (2.1) and taking into account (2.4), we obtain 

(2.6a) 

(2.6b) 

(2 .6~)  
pt.+up2.+upy. = 0. (2.6d) 

I U,’ + UU,. + UUg’ + (p,. - (Z,,/Z,)p,) = (1 + ay’) u, 
V,’ + MU,, + UU,. + (p,. - ( zy . / z , )p6)  = - (1 + ay’) u, 

( l /Z,)P,  = -P,  
u,, + vyr - (1 /Z,) (Z,! u, + ZV! zi, - w,) = 0, 
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Equation (2.6d) can be satisfied by 
P = P ( 5 h  

which means that the density is ‘frozen’ into fluid particles and can be identified with 
the vertical Lagrangian variable 5. It should also be noted that (2.7) together with (2.5) 
do not permit outcropping (in the strictest sense of the word). However, large 
displacements are allowed everywhere in the interior including particles located at an 
infinitesimal distance from the surface, which is just as good as outcropping. 

Next we differentiate (2.4) with respect to 6, then multiply (2.6~) by 2, and add them. 
We obtain (primes omitted) : 

n,+(un),+(un), = 0, (2.8) 

where n = Z, (2.9) 
characterizes vertical stretching of Taylor’s columns. Intending to eliminate Z, we 
integrate (2.9) with respect to f and take into account (2.5): 

(2.10) 

(2.11) 

Solving (2.6 b), we have 

p(t ,  x ,  Y ,  5) = r ( t ,  x ,  Y )  + p(5? n(t, x ,  Y ,  5’) dt’, (2.12) 

where 11 is the pressure on the rigid lid. Now we substitute (2.10) and (2.12) into (2 .6~)  
and obtain (primes omitted): 

\; 

I u,+uu,+vu,+q, = (1 +ay)u, 
u,+uu,+vv,+q, = -(1 +ay)u, 

(2.13) 

where q(t ,x, .Y,t)  = r ( t , x , Y ) + ~ [ ~ ( 5 ’ ) - P ( 5 ) l n ( r , x , Y , 5 ’ ) d 5 ’ .  (2.14) 

Equations (2.Q (2.11) and (2.13E(2.14) form a closed system for the unknowns u, u, 
q, 7 and n. We shall need the relationship of q to the physical pressure p .  Comparison 
of (2.12) to (2.14) yields 

q = p - p z .  (2.15) 

Equality (2.15) demonstrates that q is a Bernoulli function, i.e. it represents the non- 
hydrostatic component of the pressure. 

5 

2.2. Flows with a homogeneous lower layer 
We assume that the fluid can be divided into two layers : the upper layer is continuously 
stratified, the lower layer is homogeneous : 

(2.16a) 

where d is the unperturbed depth of the upper layer. It should also be assumed that the 
flow in the lower layer is vertically homogeneous: 
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where the lower-case/capital letters correspond to the upper/lower layer, respectively. 
Substitution of (2.16) into (2.11) yields 

(2.17) 

Then we substitute (2.16) into (2.8), (2.13)-(2.14) and, putting 6 d -d,  obtain 

Nt + ( U N ) ,  + ( v N ) y  = 0, 

U ~ + U U ~ + v U y + Q , = ( l + a y ) v ,  1 
(2.18a) 

(2.18b) K+ UV,+ VV,+Q, = - ( I  +ay) U, J 

Q<t, X ,  Y )  = ~ ( t ,  X ,  Y )  + [ p ( O  - 11 n(t, X, Y ,  6) d6. 
l d  

Finally, we shall eliminate 7 by differentiating (2.14) with respect to 6: 

4&X,Y,t) = -ps n(t,x,y,<’)d<’. (2.19) se 
Then we divide (2.19) by ps and differentiate it again: 

($I)I = n* (2.20) 

This equation should be supplemented by the boundary condition 

qs = 0 at 6 = 0, (2.21) 

which follows from (2.19), and another one, 

q = O  at 6 = - d ,  (2.22) 

which follows from the continuity of the pressure across the interface. In order to 
rewrite the governing equations in a purely differential form, we substitute (2.20) into 
(2.17) and take into account (2.21): 

(2.23) --qs+(l -d )N( t , x , y )  = 1 at 6 = -d. 

The complete system of governing equations consists of upper-layer equations (2.8), 
(2.13), (2.20k(2.21); coupling equations (2.22)-(2.23); lower-layer equations (2.18). 

1 

ps 

3. Asymptotic analysis of the governing equations 
It is convenient to introduce the depth of the upper layer 

(3.1a) 

(see (2.9) and (2.5)) and eliminate the constant d by expanding the range of 6 from 

(= c /d ,  ri = nd. (3.lb) 
[ -d ,O] to [-1,0]: 
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Substituting (3.1) into the governing equations (2.8), (2.13), (2.20)-(2.23), (2.18) and 
omitting hats; we obtain 

for c ~ ( - l , O ) ;  ( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

I ut+uux+vuy+q, = ( l + a y ) v  

v,+uv,+vvy+qy = - ( l + a y ) u  

($1)1 = 

n, + (un), + (vn), = 0 

q r = O  at 6 = 0 ;  

q = Q  at 6 = - 1 ;  

(3.2d) 

(3.2e) I Ut+ UU,+ VU,+Q, = ( 1  +ay)  V,  

K+UV,+VV,+Q,=-(l+ay)U,  

-ht + [ U( 1 - h)],  + [ V( 1 - h)], = 0. 

It should be recalled here that (u, v, q) and (U,  V,  Q)  are the horizontal velocity and 
Bernoulli function in the upper and lower layers, respectively, 6 is the vertical 
Lagrangian variable (6 = - 1,0 correspond to the boundaries of the upper layer), n is 
the derivative of the vertical displacement of fluid particles with respect to ( and 
characterizes the stretching of Taylor's columns, and h is the depth of the (continuously 
stratified) upper layer. It is also worth noting that, in terms of the semi-Lagrangian 
variables, the density p depends only on 6 (fluid particles cannot change their densities). 

Scaling of equations (3.2) is very similar to the two-layer case (see Benilov & 
Cushman-Roisin 1994). The horizontal spatial scale is comparable to R,, therefore x 
and y should not be scaled at all: 

x = i ,  y = p .  ( 3 . 3 4  

The displacement of isopycnal surfaces is large : 

c = [ ,  n=i i .  (3.3b) 

We shall consider geostrophic flows, where the Rossby number s is small: 

u = szi, v = €6, q = €4. (3 .34  

The upper layer is assumed thin: 

and the flow in the lower layer is weak: 

h = sh (3.3d) 

U = s'e, V = s ' f ,  Q = s'Q. (3.3e) 

The /3-effect is assumed strong: 
a = €6. (3 .30  

Finally, we should estimate the effective time scale of the flow: using the dispersion 
relations of the linear Rossby waves and taking into account (3.3a, d , f ) ,  we have 

ak(X) ak(X, Wbt  = ~ k2 W b c = m N s 2 ;  
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where wbt and wbe are the (non-dimensional) barotropic and baroclinic frequencies, 
respectively. We are interested in the baroclinic motion and, accordingly, put 

t = e-". (3.3g) 

Substitution of (3.3) into (3.2) yields (hats omitted) 

EQU, + €(UU, +nu,) + q, = (1 + say) Y 

e2ut + ~ ( u u ,  + YY,) + qy = - (1 + cay) u J 
'1 for CE(- 1,O); (3.4a) 

en,+(un),+(vn), = 0 for [ ~ ( - 1 , 0 ) ;  (3.4b) 

for ( ~ ( - 1 , 0 ) ,  
5 

q 5 = 0  at [ = O ;  
q = e Q  at [= -1 ;  

(3 .44  

(3.4d) 
(3.4e) 

(3.4f) 

(3.4g) 

1 
- q r=-h  at t = - l ;  
ps 

e2( U, + UU, + VU,) + Q, = ( 1  + cay) V,  1 
-Eht + [ U( 1 -ah)], + [ V( 1 - ~ h ) ] ,  = 0. 

c 2 ( ~ +  UV,+ VV,)+Q, = -(I u, J 
(3.4h) 

(3.5a) 

(3.5b) 

where J(p ,  q) = p ,  qy-py q, is the Jacobian operator. Then we substitute (3.5a) and 
( 3 . 4 ~ )  into (3.4b): 

(3.6) 

(3.7) 

Substitution of (3.5b) into (3.4h) yields 

eh, + d ( Q ,  h)  + E ~ Q ,  = O(E'). 

Equations (3.6b(3.7) and (3.4d-f) form aclosed system for q, h and Q. In order to derive 
the zero-order equations, we integrate (3.6) with respect to [ over (- 1,O). Integrating 
by parts and taking into account (3.4d-f), we get 

Omitting small terms in (3.7), we obtain 

h, + J(Q,  h)  + aQ, = 0. ( 3 . 9 ~ )  

Omitting small terms in (3.8), dividing it by e and subtracting from it (3.9a), we have 



164 E. S .  Benilov 

Finally, we omit small terms in (3.6): 

(3.94 

Equation (3.9 c) should be supplemented by the (zero-order version of) boundary 
conditions (3.4d-f): 

q5 = 0 at 6 = 0, (3.9d) 
q = O  at <=-1 ,  (3.9e) 

1 
-qg = -h at 6 = - 1. 
P5 

Equations (3.9) form a closed system for q(t, x,y, g), h(t, x, y )  and Q(t,  x, y) .  It is worth 
noting that the only evolutionary variable is h, whereas Q and q ' adjust' themselves to 
h through the non-evolutionary equations (3.9b) and (3.9~-f). This implies that the 
density field evolves quasi-statistically. 

To conclude this subsection, we shall rewrite equations (3.9) in terms of the original 
(Eulerian) variables. First we shall recall that the velocities and pressure in the active 
(upper) layer are given by 

u=-qgy,  v = qx. (3.10) 
P = 4-PZ (3.1 1) 

(see (3.5a) and (2.15)). We shall also need the relationship between q and Z: 
1 

p5 
z=-q 5 (3.12) 

(see (2.20) and (2.9)). The relationships between the Eulerian and semi-Lagrangian 
derivatives are 

(3.13) 
where the subscript ( E )  marks Eulerian derivatives. Substituting (3.1 1) and (3.13) into 
(3.10) and taking into account that 

(P&) = -P 

6 = C(P) (see (2.1 b)) and 

(see (2.7)), we have 24 = -(Py)(Ep u = ( P Z ) ( E ) .  

Using (3.10) and (3.12), we rewrite equation (3.9~)  as 

Substitution of (3.13) and (3.16) into (3.17) yields 

UZ5, + UZgy = 0. 

Substituting (3.15) into (3.18), we replace < by p and integrate (3.18): 

1 
- J ( p , p )  = const. 
ps 

p = O  at 6 = 0 ,  

Determining the constant from the condition 

(3.14) 

(3.15) 
(3.16) 

(3.17) 

(3.18) 
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and making use of (3.14), we obtain (subscript ( E )  dropped) : 

J(P,P,) = 0. (3.19a) 

In terms of the Eulerian variables the boundary conditions (3.9 d-f> become 

pr = 0 at z = 0, 

pz = 1 at z = - h ,  

p = - h  at z = - h  

(observe that (3.19b, c)  follow from (3.14) and the conditions 
We shall rewrite equation (3.9a) in terms of the pressure P in 

h, + J(P, h) + a(P- h), = 0, 

(3.19b) 

(3.194 

(3.19d) 

p = 0, l  at z = 0, - 1). 
the lower layer: 

(3.19 e)  

where P = Q+h. Finally, integrating the first integral in (3.9b) by parts and making 
use of (3.11k(3.15) and (3.19a), we obtain 

(3.19-f) 

Compared to the semi-Lagrangian equations (3.9), the main disadvantage of the 
Eulerian system (3.19) is the variable lower limit in the integrals in (3.19f). 

4. Equivalent barotropic mode 
Analysing the mean-flow field computed by the Fine Resolution Antarctic Model 

(FRAM), Killworth (1992) observed that, ‘to a good degree of approximation, much 
of the horizontal velocity field behaves as if there were an equivalent barotropic flow. 
In other words, the flow at one depth is both parallel and proportional to the flow at 
another depth, despite the complications of realistic topography, eddies, and so on.’ 
The direct measurements available (Sciremammano 1979; Bryden & Heath 1985) also 
give evidence for the existence of a well-correlated vertical structure in large-scale 
oceanic currents. 

A mathematical explanation of the existence of the equivalent-barotropic mode 
(EBM) was put forward by Benilov (1994) for the regime of strong /3-effect and thick 
upper layer. In the present paper, we shall address this question for the regime of strong 
p-effect and thin upper layer. 

From a mathematical viewpoint, EBM corresponds to a separable solution of 
equations (3.9) : 

(4.1 a) 

where &f; )  satisfies the following boundary conditions : 

d t ,  4 6) = h(t, x, Y) $(f;),  

& =  0 at f ; =  0, 

$ = O  at f ;= - l ,  

1 -#  5 -  - -1  at t = - l .  
Pt 

Substitution of (4.1) into (3.9) yields 

(4.1 b) 

(4.1 c) 

(4.1 d) 
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where 

Although (4.2) is a two-dimensional system, it describes three-dimensional motion of 
the fluid. 

Remarkably, the Eulerian form of the governing equations (3.19) does not admit 
separable solutions ! Mathematically, this occurs because the Eulerian analogue of 
(4.14, 

is not consistent with the boundary condition (3.194, unless $ = 1 for all z inside the 
range of h(t, x, y )  : 

At the same time, the regime of strong /I-effect and thick upper layer (Benilov 1994) 
supports only the Eulerian version of EBM. Thus, it might be interesting to estimate 
the correlation of the FRAM velocity field at different densities rather than at different 
depths (as has been done by Killworth 1992). In some cases, the former can be 
correlated better than the latter. It should also be interesting to estimate vertical 
correlation of an instant field (Killworth 1992 worked with the mean flow averaged 
over long period of time). 

It is also worth noting that the conclusion of Sciremammano (1979), Dryden & 
Heath (1985) and Killworth (1992) contradicts that of Vasilenko & Mirabel(l977) and 
Inoue (1985), who observed two modes (one barotropic and one baroclinic) in large- 
scale oceanic currents. However, the latter conclusion can also be accounted for by the 
two-mode solution found by Benilov (1993) for the regime of weak /I-effect and thick 
upper layer. Generally speaking, one- or two-mode solutions could correspond to 
different areas of the ocean (different regimes). It should be emphasized, however, that 
no solution has been found which would describe self-contained nonlinear interaction 
of three, four or any further finite number of modes. 

To conclude this section we adapt equations (3.2) for the two-layer stratification, 
which corresponds to 

4 4  x, Y ,  6 )  = h(t, x, u) $(Zh 

$(z)  = 1 for z E [ - h,,,, - hmi,3. 

0 for [~ ( -1 ,0 ) ,  
1 for [=-1 .  (4.3) 

5 
Assuming that $(t) = 1 + t P ( o - J  P(t’Idt’7 

-1 

which satisfies (4.1 &d) and, at the same time, corresponds, in the limit p + 0, to a 
vertically homogeneous current in the upper layer: 

lim$ = 1 for all [ =I= -1;  
P+O 

we have limv = -:, limy = 1. 
P+O P+O 

(4.4) 

System (4.2), (4.4) coincides with the two-layer equations in Benilov & Cushman- 
Roisin (1994). It should be emphasized that, apart from (insignificant) difference in the 
values of u and y, the two-layer case is very similar to the general case. Given that the 
equivalent barotropic equations for other large-amplitude geostrophic regimes can also 
be reduced to the corresponding two-layer equations (Benilov 1993, 1994), we conclude 
that the two-layer model provides a qualitatively correct approximation for all large- 
amplitude flows. 
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5. Stability of zonal flows 
System (3.9) admits the following solution : 

= &Y, Q = &J>, h = 6v); 
q5 = 0 at [ = 0, 
q=O at [ = - 1 ,  

(5.1 a) 
(5.1 b) 
(5.1 c) 

- 
(5.1 d )  

which describes a steady zonal flow with both vertical and horizontal shear. We shall 
assume that the flow is localized in the y-direction: 

qy,hy,Qy+O as y + f c o .  

In 05.1, a set of sufficient stability conditions for solution (5.1) will be derived, and in 
$5.2 we shall discuss what happens if these conditions are violated. 

5.1. SufJicient conditions for stability of zonal flows 
Linearizing (3.9) against the background of (5. I ) ,  we seek a harmonic-wave solution: 

dt,x,Y,C) = 4(Y,5)+4(Y7[)exP[ik(ct-x)17 
Q<t, x7 Y) = Q(Y> + Q<Y> ~ X P  [Wet- ~11,  
h(t, x7 Y )  = h(Y) + h(Y) exp [Wet - 4 1 ,  

where k and c are respectively the wavenumber and the phase speed of disturbances. 
Substituting these equalities into (3.9) and omitting nonlinear terms, we obtain 

(C+Qy)h-(a+hy)Q = 0, ( 5 . 2 ~ )  

1 

Pt 
- q - - h  5 -  at [ = -  1, 

q 5 =  0 at  [ =  0, 
q = O  at 6 = - 1 7  

1 
- q - - h  5 -  at [ = - 1 .  
P5 

Equations (5.2a, c) can be readily solved: 

(5 .2~)  

where A( y) is an undetermined function which describes the horizontal structure of the 
perturbation. Substitution of (5.3) into (5.2b) yields an equation for A(y): 

(5.4) 

We assume that the disturbance is localized zonally: 
A+O as y-t-tco.  
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Now we integrate (5.4) with respect to y over (- 00, co) and, integrating by parts, take 
into account (5.6): 

1, + I, c = 0, 

where I ,  = ~ , [ . ~ A , ~ z + ( k l F + G +  a+h, 

Since Im I, = Im l2 = 0, the condition 

I ,  * 0, 00 (5.7) 

guarantees that c = --l1/l2 is real. Finally, the validity of (5.7) can be ensured by 

h,(Y) 2 0 (5.8 a) 

or -a < h,(y) < 0 
or h,( y )  < -a. 

Conditions (5.8) are sufficient stability criteria. 

(5.8 b) 

(5 .8~)  

5.2. Instability of zonaljows 

a + h,( y )  does not change sign ( 5 . 9 ~ )  

and h,(y) does not change sign. (5.9b) 

As always, it is very difficult to rigorously prove stability or instability of flows that do 
not satisfy any of the sufficient criteria. However, there is some (analytical and 
numerical) evidence that violation of condition (5.9 a) destabilizes the flow, while 
violation of condition (5.9b) does not. 

First we consider what happens if condition ( 5 . 9 ~ )  is violated and a + hy changes at, 
say, Y = y1: 

As the denominator of the last term on the left-hand side of (5.4) vanishes, y ,  is a 
singular point of this equation. In the two-layer case, this singularity can be eliminated 
(regularized) by taking into account higher-order ageostrophic corrections in the lower 
layer (Benilov 1995~) .  Using the same approach, one can obtain the regularized 
version of equation (5.4) for the case of continuous stratification: 

It is convenient to rewrite (5.8) as follows: 

h,(yl) = -a. 

- (FA;), + (k2F+ G )  A’ + ah, 2 Qv A’ = 0, 
a+ h, +,uc 

(5.10~) 

where ,u is a small, but finite, positive number (it depends on the parameters of the 
lower layer and is proportional to the Rossby number; as we take the limit p u 0 ,  the 
specific expression for ,u is not important). Clearly, if Imc 0, the singularity 
disappears, and the regularized solution to the original equation (5.4) is given by 

A = lim A’. (5.10 b) 

Using the standard Wronskian method (e.g. Dikiy 1976; Benilov 1995a), one can 
prove that the regularized eigenvalue problem (5.10), (5.6) may have real (stable) 

P O  
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eigenvalues only for isolated values of k. In other words, if (5.10), (5.6) have a solution 
for any continuous interval [k,, k,], the flow is unstable. Although we have no rigorous 
proof of the existence of a solution to (5.10), (5.6), numerical results (see $6) indicate 
that there exists at least one unstable mode in all cases. 

Consider now a point, say y,, where hy changes sign: 

h,(Y,) = 0 
and condition (5.9b) is violated. Generally speaking, y ,  is a regular point of equation 
(5.4) and therefore does not need regularization. Using a perturbation method similar 
to that of Griffiths, Killworth & Stern (1982) and Benilov (1995a), one can prove the 
existence of unstable flows in the limit a: + 0. As we consider the case of strong /&effect, 
this result is of no interest; whereas the numerical simulation (Benilov 1995a and $6 
of the present paper) suggests that flows with finite a: are stable for all flows except two- 
layered ones. In order to explain this result, we adapt equation (5.4) for the two-layer 
stratification (4.3). Assuming that 

(5.11) 
L J -1 

which corresponds to a two-layer current, we substitute (4.3) and (5.1 1) into (5.5) and 
obtain 

(5.12) 

G(y)  = ahhY. (5.13) 

The reason for instability is clear now : in the two-layer case, the coefficient F(y)  of the 
highest derivative in equation (5.4) is proportional to hy and vanishes at y,. As a result, 
y z  is a singular point, similar to y,, and therefore destabilizes the flow. Benilov (1995~) 
demonstrated that the singularity at y ,  can be regularized by taking into account the 
higher ageostrophic corrections or viscosity in the upper layer. We shall not dwell on 
this in detail, as any deviation from the two-layer stratification makes F(y)  strictly 
positive and eliminates the instability. In order to illustrate this, F(y )  will be rewritten 
in the Eulerian variables : 

F(Y) = @(Y,Z)dZ, 
-h 

where f l(z ,y) is the mean velocity profile in the upper layer. Thus, F(y)  is the horizontal 
density of the kinetic energy in the upper layer and does not vanish unless fl(z,y,) = 0 
for all z values. In order to include the two-layer model in the general case, we assume 
that it has an infinitesimal continuous correction such that 

F(y)  = h[(hy)2+const], 0 < const 6 1 (5.14) 

(compare (5.14) to (5.12)). This form of F(y)  eliminates the (physically meaningless) 
singularity at y = y,, and the two-layer flows with sign-indefinite hy are likely to be 
stable just as continuously stratified flows are. 

6. The subarctic and subtropical frontal currents in the Northern Pacific 
In this section, the above stability analysis will be applied to the subarctic and 

subtropical frontal currents in the Northern Pacific. According to Roden's (1976) 
experimental data, the latter flow consists of two eastward jets (axes located at 
27" 30' N and 3 1" 30' N) and a weaker westward jet in between (see figure 9 of Roden's 
paper). In what follows, we shall use the following notation: SA = subarctic frontal 



170 E. S .  Benilov 

SA ST, ST, ST, 
€ 0.021 0.016 0.021 0.050 
a 0.015 0.031 0.034 0.044 
S 0.091 0.064 0.064 0.091 
h, -0.024 -0.014 0.019 -0.025 

TABLE 2. Parameters of the jets in the Northern Pacific (from Benilov 1995b) 6, a and S are defined 
by (1. l), (1.2) and (1.4) ; and 6, is the characteristic slope of the interface 

current; ST, = subtropical frontal current, northern (eastward) jet; ST, = subtropical 
frontal current, middle (westward) jet ; ST, = subtropical frontal current, southern 
(eastward) jet. 

The parameters of the jets estimated by Benilov (19956) are shown in table 2, which 
demonstrates that: 

(i) all three jets can be treated as flows with a thin upper layer and strong p-effect 
(€ - a - 6); 

(ii) SA is likely to be unstable (a+h, changes sign); 
(iii) if considered separately, ST,, ST, and ST, are all stable (a  + h, > 0, hu > 0 and 

a + h, > 0, respectively) ; 
(iv) if considered as a single jet, (ST, + ST,) and (ST, + ST,) violate criterion (5.9b), 

but are likely to be stable as they do not violate the crucial condition (5.9a). 
The growth rate of the instability of the subarctic frontal current was calculated 

using the regularized eigenvalue problem (5. lo), (5.6) and the two-layer model of 
stratification (5.12)-(5.13). The horizontal profile of the flow was modelled by 

= a 1  - ( ~ 1 ~ > " 1 ,  Y1 < Y < Yz. (6.1 a) 

where 6 = 0.091, 1 = 2.97, y1 = 0, and y ,  = 0.77 ((6.1 a)  corresponds dimensionally to 

i= (500 m)[l-(&)'], 0 < y" < 200 km 

see table 1 in (Benilov 1995b)). We assume that there is no flow in the lower layer: 

Q = 0. (6.1 b) 

The eigenvalue problem (5.10), (5.6), (5.12)-(5.13), (6.1) was integrated numerically. 
The results demonstrate that the solution exists for a continuous interval of 
wavenumbers k,  where the eigenvalue c is complex and corresponds to instability. The 
growth rate [k Im c(k)] of the instability is plotted in figure 1 (a), which demonstrates 
that the instability is very weak ~ the time of strongest growth is approximately 20.8 
months. Figure 1 (a) also demonstrates that the instability takes place in the long-wave 
region, i.e. the wavelength of unstable perturbations is larger than the width of the 
flow. Figure 1 (b), in turn, shows that the unstable perturbations propagate very slowly 
(slower than 0.6 cm s-'). 

It should be noted that the small growth rate and phase speed of the instability came 
as no surprise, as the dynamics of flows with thin upper layer must have the same time 
scale as the evolution of oceanic lenses, which have approximately the same parameters 
and are known to preserve their form for years. 

Finally, we examined the stability of ST, + ST, as a single jet within the framework 
of the stability boundary-value problem (5.4), (5.6), (5.13)-(5.14). Although this 
current does not satisfy criterion (5.9b), it was found to be stable. This should have 
been expected, as (ST, + ST,) does not violate the crucial condition (5 .9~) .  
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FIGURE 1. Instability of the subarctic frontal current: (a) growth rate us. wavenumber (vertical dashed 
line corresponds to k = n/L, where 2L = 200 km is the width of the mean flow); (6) phase speed us. 
wavenumber. 

7. Short disturbances 
It should be noted that use of scaled equations like (3.9) in a stability analysis is 

always subject to the criticism that possible instabilities have been scaled out of the 
problem. Moreover, in our case such doubts are fortified by the fact that asymptotic 
equations (3.9) describe only long disturbances. 

A restriction for the horizontal spatial scale L of the motion follows from the 
condition of geostrophy : 

(7.11 

where U is the effective velocity scale and f is the Coriolis parameter. Indeed, taking 
into account the geostrophic relation 

U = g’ 6Ha/L ,  (7.2a) 

where we assume that SH,, the depth variation of the upper layer, is comparable to Ha 
(large-amplitude flow) : 

&Ha N Ha. (7.2b) 

Substitution of (7.2) into (7.1) yields 

€ = U/CfL) < 1 ,  

g’Ha/( f2L2)  < 1. 

Given that the wavelength of disturbances and the width of the flow are of the same 
order, this inequality restricts them both : 

where 

(7.3) 

(7.4) 

is the deformation radius based on the depth of the upper layer (compare (7.4) to (1.3)). 
We conclude that disturbances whose wavelengths do not satisfy (7.3) need separate 
consideration. 

First of all, we observe that, if the wavelength of a disturbance is much smaller than 
the effective spatial scale of the mean flow, the stability analysis can be carried out 
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locally in the approximation of small-amplitude flows. Indeed, variations of the mean- 
flow parameters over the wavelength of a short perturbation are much smaller than 
their local values. Accordingly, we can make use of the quasi-geostrophic equations 
and assume that the mean flow is horizontally homogeneous. 

This approximation was considered by Benilov (1995 b), who demonstrated that 
(7.3) is valid only if the width L of the mean flow is comparable to the wavelength h 
of the disturbance: L - A. If, however, h 4 L (which is what we want to look at), then 
the condition, restricting long-wave approximation, is, in fact, stronger than (7.3) : 

where R, is the deformation radius based on the total depth of the fluid (see (1.3)). 
Apart from this, two ranges of shorter disturbances were introduced: 

medium disturbances: R: % h2 % Ri ,  (7.5b) 

For medium disturbances, the necessary and sufficient stability criterion has been 
derived, which turned out to coincide with the necessary condition (5.8 b) (see condition 
(4.14) of Benilov (1995b), with s = &). For short disturbances, an additional necessary 
condition of stability has been derived (see condition (5.15) of Benilov (19954, with 

long disturbances: h2 2 R:, (7.54 

short disturbances: h2 6 Ri .  (7.5c) 

u = -qJ: 

(7.6) 1 does not change sign, 
(&f) f 

qyf(0) has the same sign as (kquf )  . 

The long/medium-wave (sufficient and necessary) criterion (5.8 b) and the short-wave 
(necessary) condition (7.6) seem to provide a reasonably complete picture of stability 
for all three ranges of disturbances (7.5~-c). It is also worth noting that the medium- 
wave instability of the subarctic flow is much stronger than the long-wave instability 
(compare the results of Benilov 19953 to the results of this paper). 

It should be emphasized, however, that Benilov’s (19956) results were obtained for 
an idealized case of a horizontally homogeneous ocean and are applicable to the 
present case only if the frontal flow can be assumed much wider than the wavelengths 
of medium/short disturbances. Unfortunately, this assumption is of limited relevance 
to the real ocean. First, the ratio of the ‘medium wavelength’ to the width of the flow 
is proportional to the fourth root of the small parameter: 

As a result, wavelengths of medium disturbances are only marginally smaller than the 
typical width of oceanic currents (or, given a factor of 27c, even comparable to it!). 
Secondly, a sufficiently strong horizontal shear can dramatically change the stability 
properties of a flow (e.g. Barcilon & Blumen 1995). Thus, the results of the present 
paper on medium/short disturbances should be perceived only as a quantitative 
estimate. 

5 

hmedium/L - (Ha/H0)1’4. 

8. Conclusions 
In this paper, we have considered the stability of large-amplitude geostrophic flows 

localized in a thin continuously stratified layer which overrides a thick homogeneous 
layer. The p-effect was assumed strong, i.e. 

01 k € 7  
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a - E 3 ~ 2  a-E  

6 -  1 Benilov 1993, two-mode Eulerian Benilov 1994, one-mode Eulerian 
solution, or two-mode solution 
semi-Lagrangian solution 

8 - E  As above Present paper, one-mode 

6 - 2  ? As above 
semi-Lagrangian solution 

TABLE 3. The equivalent-barotropic mode in large-amplitude geostrophic flows 

where the Rossby number e and the p-effect number a are defined by (1.1) and (1.2), 
respectively. 

Using the ‘ semi-Lagrangian ’ variables (9 2) which map isopycnal surfaces into 
(fixed) horizontal planes, we derived (93) the asymptotic system (3.9) which governs the 
dynamics of flows with horizontal spatial scale being of the order of, or larger than R, 
(defined by (1.3)). It was demonstrated (94) that the equations derived are separable, 
i.e. admit a solution of the form 

d t ,  4 Y ,  0 = h(t, x, Y )  NJ, 
where h is governed by a two-dimensional equation and 4 is an (almost) arbitrary 
function which describes the vertical structure of the flow. This substitution describes 
the equivalent-barotropic mode observed by Killworth (1987) in his analysis of the 
FRAM data. This and other results on the equivalent-barotropic mode in large- 
amplitude geostrophic flows are summarized in table 3, which suggests that, in some 
cases, the equivalent-barotropic mode might manifest itself more clearly, if the velocity 
field is represented in terms of (x, y ,p )  ( p  is the density of the fluid), instead of (x,y, z) .  

Within the framework of the asymptotic system derived, three sufficient conditions 
(5.8) of stability were derived ( 9 3 ,  which restrict the slope of the interface between the 
stratified and non-stratified layers. The results obtained were applied to the subarctic 
and subtropical frontal currents in the Northern Pacific in 96. The latter is found to be 
stable, the former is found to be unstable; but the growth rate of the instability is very 
small (the time of strongest growth is 20.8 months). Such a slow instability can 
manifest itself only if a resonance occurs between unstable oscillations of the frontal 
flow and the annual or biennial variability of the ocean. 

It should be noted, however, that the asymptotic system (3.9) describes only long 
disturbances, i.e. those that satisfy condition ( 7 . 5 ~ ) .  The medium and short 
disturbances (7.5b, c)  are discussed in 97, but we managed to obtain only a quantitative 
estimate for their stability, which does not take into account horizontal shear of the 
mean flow. 
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