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This paper examines the stability of two-layer geostrophic flows with large 
displacement of the interface and strong p-effect. Attention is focused on flows with 
non-monotonic interface profiles which are not covered by the Rayleigh-style stability 
theorems proved by Benilov (1992a, b) and Benilov & Cushman-Roisin (1994). For 
such flows the coefficient of the highest derivative in the corresponding boundary-value 
problem vanishes at the point where the depth profile has an extremum. Although this 
singularity is similar to a critical level, it cannot be regularized by the simplistic 
introduction of infinitesimal viscosity through the assumption that the phase speed of 
the disturbance is complex. In order to regularize the singularity properly, one should 
consider the problem within the framework of the original ageostrophic viscous 
equations and, having obtained the boundary-value problem for harmonic disturbance, 
take the limit Rossby number --f 0, viscosity --f 0. 

The results obtained analytically and (for special cases) numerically indicate that the 
stability of flows with non-monotonic profiles strongly depends on the depth of the 
upper layer. If the upper layer is ‘thick’ (i.e. if the average depth HI  of the upper layer 
is of the order of the total depth of the fluid H,), the stability boundary-value problem 
does not have any solutions at all, which means stability (however, this stability is 
structurally unstable, and the flow, generally speaking, can be made weakly unstable 
by any small effect such as external forcing, viscosity, or ageostrophic corrections). In 
the case of ‘thin’ upper layer ( H J H ,  5 Ro), the order of the singularity changes and 
all non-monotonic flows are unstable regardless of their profiles. It is also demonstrated 
that thin-upper-layer flows do not have to be non-monotonic to be unstable : if u - PR; 
(where u is the zonal velocity, /3 is the P-parameter, and R, is the deformation radius) 
changes sign somewhere in the flow, the stability boundary-value problem has another 
singular point which leads to instability. 

1. Introduction 
Consider a two-layer flow between two rigid planes (see figure 1). Assuming that the 

displacement of the interface is of the order of the depth of the upper layer, we shall 
introduce three governing parameters : 

(i) the Rossby number 
Ro = U/(fL), 

7 Present address : Department of Applied Computing and Mathematics, University of Tasmania, 
PO Box 1214, Launceston, Tasmania 7250, Australia. 
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FIGURE 1. Formulation of the problem. (a) Crossection of the flow. (b) Bird’s eye view. 

where Uis the effective velocity scale, L is the horizontal spatial scale of the motion and 
f is the Coriolis parameter ; 

(ii) the p-effect number 
a = R, cot 8/R,, 

where R, = (g’Ho)1’2/f, (1.1) 

g’ = g 6p/p,, is the reduced acceleration due to gravity, po and @, + Sp) are the densities 
of the layers, H,  is the total depth of the fluid, 8 is the latitude, Re is the earth’s radius; 

(iii) relative depth of the upper layer 

6 = HJH,,, 

where HI  is the depth scale of the upper layer. 
The question of which range of Ro, ct and 6 is relevant to the real ocean was 

addressed by Benilov & Reznik (1994). Using Roden’s (1975) and Nowlin & Klinck’s 
(1986) experimental data on frontal currents in the Pacific and Southern oceans, they 
demonstrated that the most ‘populated ’ regime is 

RO < 1, a N Ro. 

See table 1. It is worth noting that all but one of the flows in table 1 have thin upper 
layer: 6 - Ro. We shall also note that the other two jets of the Antarctic Circumpolar 
Current (not mentioned in table 1) correspond to the weak p-effect. 

Our attention is focused on the stability of zonal flows, where the depth of the upper 
layer H depends only on the meridional variable y (the non-dimensional variables H 
and y are scaled by H,, and R,, respectively). The stability properties of flows with 
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Ro a 8 

Kuroshio 0.040 0.021 0.109 
Oyashio 0.026 0.012 0.073 
Subarctic front 0.021 0.015 0.091 
Subtropical front 0.050 0.044 0.091 
Middle jet of ACC 0.011 0.004 0.400 

TABLE 1. Ranges of Rossby number, p-effect number and relative depth of 
the upper layer in real oceans 

‘thick’ upper layer (6 - 1) were studied by Benilov (1992a), who demonstrated that all 
flows with monotonic profile are stable? : 

H J y )  does not change sign * stability. (1.2) 

Benilov & Cushman-Roisin (1994) derived a similar stability condition: 

H, and H y  + a do not change sign * stability 

for flows with ‘thin’ upper layer (6 - Ro). Finally, condition (1.2) was found to also 
guarantee the stability of flows with ‘very thin’ upper layer (Benilov 1992b). 

It should be emphasized, however, that the above-mentioned stability conditions are 
only suficient criteria; therefore flows, which do not satisfy them, are not necessarily 
unstable, and their stability properties are unclear. At the same time, oceanographic 
data (e.g. Roden 1975) suggest that there are a number of flows with non-monotonic 
profiles in the real ocean, where the velocity in the upper layer changes direction and 
Hu = 0 (e.g. the Oyashio current or subtropical front). The other conditions of 
stability, H y  + -a, can be violated by any sufficiently strong eastward current (e.g. the 
subarctic frontal flow). 

This paper examines the stability of zonal flows with H y  = 0 or H, = --a. The 
regimes of ‘very thin’ (6 - Ro’), ‘thin’ (6 - Ro), and ‘thick’ (6 - 1) upper layer will 
be considered in &2, 3 and 4, respectively. 

2. Stability of flows with ‘very thin’ upper layer: S - Ro2 
2.1, Governing equations 

Consider a two-layer flow between two rigid planes (see figure 1). We shall introduce 
the following non-dimensional spatial variables and time : 

x=2:/R0,  y=y”/R,, t = E  

where the dimensional variables are marked with tildes, f is the Coriolis parameter and 
R, is given by (1.1). Within the framework of the rigid-lid approximation the depths 
of the layers can be expressed in terms of a single non-dimensional variable h:  

where H, is the total depth of the fluid. We shall also introduce the non-dimensional 
velocity of the fluid in the upper layer: 

t Benilov (1992a) claimed to have proved the stability of all flows for this case; however, he did 
not notice the divergence of the integrals in his stability theorem at the points where H, = 0 (if any). 
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If the depth of the upper layer is much thinner than H,,, the flow induced in the lower 
layer is weak and can be neglected. As a result, we can use the so-called one-layer 
reduced-gravity model : 

(2.1) I U, + UU, + VU,+ h, = (1 + ay) v - V U + F ( ~ ’ ,  

v,+uv,+Vv,+h, = -(1 + a y ) u - v ~ + F ‘ ~ ’ ,  

h, + (uh), + (vh), = 0 ;  

where v = v”/f 

is the coefficient of bottom friction and ( F ( x ) 7 F ( u ) )  is the external forcing. We shall 
assume that the layer is thin: 

where the new variable h’ is of the order of unity and E is a small parameter. The motion 
is assumed weak 

u = E V ,  v = E2V’, (2.2b) 

h = 2h’, (2.24 

and slow t = E P t ‘ .  (2.24 

In order to identify E with the Rossby number, we should ‘compress’ the horizontal 
variables : 

x = cx’, y = cy’. (2.2d) 

We shall also assume that the p-effect is weak: 

a = E2a’. (2.2e) 

We shall not dwell on equalities (2.2~-e), but refer to Cushman-Roisin (1986) where 
the parameter space of system (2.1) is discussed in detail. We shall consider the regime 
where the viscosity and forcing are of the order of, or smaller than, the ageostrophic 
terms : 

(2.2j-I = cv’7 F(Z) = &‘”’, F ‘ Y ’  = ,F‘Y’‘. 

Substitution of (2.2) into (2.1) yields (primes omitted) : 

‘1 (2.3 a) 

(2.3 b) 

E’U~ + ~ ( u u ,  + VU,) + h, = (1 + cay) v + E( - vu + F‘,)), 

e2vt + E(UV, + VU,) + h, = - (1 +cay) u + E( - vv + F”’), J 
sh, + (uh), + (vh), = 0. 

Equations ( 2 . 3 ~ )  can be expanded into the following series: 

v = h, - e[J(h, h,) + ayh, + vh, + F‘”’] + O(S’), 

u = - h, - e[J(h, h,) - ayh, + vh, -F‘”] + O(c2). 
1 (2.4) 

Substituting (2.4) into (2.3b) and omitting small terms, we get 

h, - V .  [hJ(h, Vh)]  - ahh, = VV * (h  V h )  + (F‘”h), - (F‘5’h),, (2.5) 

where J(h, V h )  = h, Vh ,  - h, Vh ,  is the Jacobian operator. This equation was derived 
by Williams & Yamagata (1986). 

Consider a steady flow: 
h = m y ) ,  ( 2 . 6 ~ )  

where H,=O f o r y < y -  o r y > y + ,  (2.6b) 
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and the boundaries y +  of the flow may be, in principle, equal to & co. Evidently, flow 
(2.6) must be supported by the external forcing : 

F ( y )  = 0, F(5) = vHy. (2.7) 

h(X,Y, 0 = H(Y)+h’(X,Y, t> (lh’l < H )  (2.8) 

(2.9) 

In order to examine the stability of (2.6), we assume that 

and then substitute (2.7b(2.8) into (2.5). Omitting nonlinear terms, we obtain: 

h; - (HHyy hj), + V - (HH, Vhj) -~lHhj = u V(HVh‘). 

We seek a solution in the form of a harmonic disturbance: 

h’(x, y, t) = Re{$(y)exp[ik(x-ct)]}. 

Substitution of (2.10) into (2.9) yields: 

(2.10) 

U 
c$ + [H(H,, $ - Hg $,)Iy + k2HHy $ + aH$ = - i [(H$,), - k2H$]. (2.1 1 a) 

We assume that the disturbance is localized near the flow: 

$(Y+> = 0. (2.1 1 b) 

If the eigenvalue of the boundary-value problem (2.1 1) has a negative imaginary part, 
flow (2.6) is unstable. 

2.2. Stability theorem for  inviscid flows with monotonic proJile 
Introducing 

we substitute v = 0 into (2.11): 
4 = $ IF0, 

~ $ + [ H ( H , , ~ - H , ~ , ) ] , + k ‘ H H , ~ + a H ~  = 0. (2 .12~)  

$(Y,) = 0. (2.12b) 

In order to prove the stability of flows with monotonic profile, we shall rewrite (2.12) 
in terms of a new variable 

$=-$ 1 

HY 
(2.13) 

(which represents the displacement of the interface). Substitution of (2.13) into (2.12) 
yields 

(2.14~) 
$.<a asY+Y,. (2.14b) 

Next we multiply (2.14~)  by $*, where the asterisk denotes complex conjugate, and 
integrate it with respect to y over (- co, co). Integrating by parts and using the 
boundary conditions (2.14b), we obtain 

H,(C + $ - [H(Hy)2 $,)I y + k2H(Hy)2 $ = 0, 

CII+I2 = 0; (2.15) 

Both Il and I ,  are real quantities and, if 

I1 * 0, (2.16) 
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then c = - 12/11 is also real, which corresponds to neutral stability. The validity of (2.16) 
can be guaranteed by one of the following conditions: 

Hy(y) does not change sign, (2.17) 

or a = 0. (2.18) 

(2.17) makes the integrand of I ,  sign-definite, while (2.18) implies 

I ,  * 0, 

which, together with (2.15), seems also to guarantee (2.16). 
However, the stability condition (2.18) contradicts the result by Pavia (1992), who 

found (numerically) an example of an unstable flow with a = 0 and a non-monotonic 
profile. The contradiction can be resolved if we observe that the change of variables 
(2.13) in the non-monotonic case may be singular: 

where y* is the point where H( y) has an extremum : Hy( y*) = 0. As a result, both Il and 
I ,  may diverge. 

Thus, the stability can be guaranteed only by condition (2.17), while the stability 
properties of flows with non-monotonic profile are, at this stage, unknown. 

2.3. The singularity at H y  = 0 
It should be emphasized, that the above singularity cannot be eliminated by the inverse 
change of variables II. + 6, as the original boundary-value problem (2.12) is also 
singular for non-monotonic flows. Indeed, the coefficient of the highest derivative in 
(2.12~) is proportional to Hy and therefore vanishes at y = y*. As a result, 6 is not a 
well-behaved function : 

6 - const,(y-y*)+const,[1 +K(Y-Y*)ln(Y-y*)l as Y+Y*, (2.19) 

where K is a constant which depends on the Taylor expansion of H(y) at y = y, 
(expansion (2.19) can be obtained using the Frobenius method). Furthermore, as the 
logarithm of a sign-indefinite argument is a multiple-valued function, it is unclear 
which branch should be chosen when y-yy,changes sign. In other words, we need an 
additional condition matching 6( y* + 0) to q5( y, - 0). (It is worth noting that, although 
Hy also vanishes at y = y+,  the boundary conditions (2.12b) eliminate the logarithm 
from (2.19), and 6 is a single-valued function there.) 

Similar logarithmic singularities also occur in the classical problem of critical levels 
(e.g. Dikiy 1976). However, in contrast to ( 2 . 1 2 ~ ) ~  the critical-level equation is singular 
only for real c, and the singularity can be regularized by the assumption that c has a 
small imaginary part, modelling a weak viscosity). The solution with Im c < 0 is unique 
and in the limit Im c + 0 establishes the branch of the logarithm that should be chosen 
in (2.19) when y-y, changes sign. It turns out that this approach does not work for 
our boundary-value problem (2.12), as the coefficient of the highest derivative in 
(2.12~) does not depend on c and therefore remains zero for Imc + 0. 

In order to regularize the singularity at Hy = 0, we should return to the viscous 
equations (2.11). In contrast to (2.12a), the coefficient of the highest derivative of 
(2.1 1 a)  

H(H, - i v / k )  
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does not vanish anywhere in [y-,y+], which means that the solution is regular. Having 
calculated q5 in the vicinity of the pointy = y* (where Hy = 0), we shall take the limit 
v+O and obtain 6. 

Next we expand equation (2.1 1 a) about y ,  and, assuming that 1 9 v 2 O(ly-y,l), 
omit small terms: 

(c+aH,+H,H:)@-H* H’;(y-y*)-lk q5yy = 0, [ . ” I  
where H* = H(Y*), Ha = H y y ( Y * h  ff: = Hyyy(Y*). 

The general solution to this equation is 

where 

q5 = cl[z + O(z2)] + c2[ 1 + KZ In z + O(z2)], 

z=y-y*-1-- 
H i  k’ 

. v  

c’,~ are constants, and 
K = c+ aH, + H ,  H: (2.20) 

(here and hereinafter we assume that H i  + 0). Bearing in mind that v > 0, we take the 
limit v + 0 and use the formula In z = In IzI + i arg z. In terms of d = lim,,,, q5 we obtain 

(2.21) 

\ +in(I+~ignH’;k)]}+O[(y-y,)~] fory >y* .  

Using asymptotics (2.21), we can match the numerical solution of the inviscid 
boundary-value problem (2.12) across the singularity at y = y*. We can also derive 
from (2.21) the formal matching conditions 

(2.22) 

which supplement (2.12). 

In this subsection we shall answer the following two questions: 
(i) Is it possible that the solution of the inviscid regularized boundary-value problem 

(2.12, 2.22) has a real dispersion relation c(k) corresponding to neutral stability? 
(ii) Is the singularity crucial for the existence of instability? 

It turns out that the answers to both questions are ‘no’. 
(i) If Imc = 0, d and d* both satisfy (2.12a). It is easy to verify that their Wronskian 

must be proportional to H-l( y) everywhere except, possibly, for the singular point 
Y =y*:  

2.4. Analytical results 

const, H-’ for y > y,, 

const- H-l for y > y*. 
W(4, r j * )  = fjy fj* - 46; = { 

Substituting the boundary conditions (2.12b) into W($,d*), we see that const, = 
const- = 0 and ~(6, $*I = o for y E [y-,  y,]. (2.23) 
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On the other hand, the matching conditions (2.22) entail 

which is compatible with (2.23) only if 

K = O  (2.24) 

or &Y*) = 0. (2.25 a) 

Substituting (2.20) into (2.24), we obtain 

(2.253) 

Either condition (2.25) represents an additional constraint imposed on the solution 
(eigenfunction or eigenvalue) of the boundary-value problem (2.12, 2.22) and, 
obviously, cannot hold for all values of k .  In other words, c(k) may be real only for 
isolated values of the wavenumber. 

This conclusion is confirmed by the results of numerical integration of (2.12, 2.21) 
(see figure 2) for the flow described by 

(2.26) 

(2.27) 

It should be noted that the profile of this flow is not smooth at y +  - (see figure 1) and 
therefore the boundary conditions (2.12 b) should be generalized : 

d 
H Y  

-<a asy-ty,  (2.28) 

(see Appendix A). 
(ii) Consider the boundary-value problem (2.12,2.22) in the limit a, k2 -t 0, in which 

case we can expand the solution in powers of these small parameters (a similar 
perturbation method was used by Griffiths, Killworth & Stern (1982)). We shall also 
assume that the global upper-layer depth difference is small : 

AH= H(y+)-H(y- )  < 1. (2.29) 

The asymptotic solution of the stability boundary-value problem in this case is 
considered in Appendix B and yields the following dispersion relation : 

J Y- J Y- J Y- 

+caI:H,(G+HF)dy = O, (2.30) 

R = ;[H(Y+) + H(Y-11. 

Hy 2 0 for Y 5 Y*. Hyy(Y*) < 0, 

We shall assume for simplicity that H ( y )  has only one extremum-maximum at 
Y = Y * :  
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FIGURE 2. Dispersion relation of the boundary-value problem (2.12, 2.22) ('very thin' upper layer). 
a = 7, H(y)  = 1 - y 2 ,  y E [ - 1,1]. (a, b) Phase velocity c us. wavenumber k.  (c) Absolute value of the 
eigenfunction at  the singular point us. k.  Observe that Im c vanishes only where I$(y*)I = 0, or where 
R e c  = uH,. 

in which case it is easy to prove that the constant of integration in F( y )  can be chosen 
such that 

Hence, the coefficient of c2 in the quadratic equation (2.30) is positive and, since the 
coefficient of k2 is also positive, the roots of (2.30) are complex for sufficiently large k2 
(instability). 

Remarkably, there was no need to use the regularizing conditions (2.22) in the 
derivation of (2.30), as all integrals in (2.30) converge at y = y* (see the last paragraph 
of Appendix B). Physically, this means that the contribution of the singular point is 
negligible. This, of course, applies only to the case where AH, a, k2 4 1. However, the 
conclusion that the singularity is not crucial for the instability seems interesting and 
deserves attention (it also coincides with a similar conclusion by Griffiths et al. (1982) 
derived for ageostrophic flows with AH = a = 0). 

F 2  0 for y 5 y*. 
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FIGURE 3. Dispersion relation of the boundary-value problem (2.12, 2.22) (‘very thin’ upper layer). 
a = 1, H(y)  = 1 -y2, YE[- 1,1]. Curves (1) and (2) represent the numerical solution and the 
asymptotic solution (2.30), respectively. 

The asymptotic dispersion relation (2.30) has been compared with numerical results 
for flow (2.262.27). Surprisingly, it satisfactorily described the exact solution up to 
and including 01 M 1 (see figure 3). 

Finally, if H ( y )  has more than one extremum, the sign of the coefficient of c2 in (3.30) 
is unclear and the instability cannot be proven. However, bearing in mind that each 
extremum, considered separately, would destabilize the flow, it is difficult to believe 
that their combination can make it stable. 

2.5. Numerical results 
In the beginning of the previous subsection, the solution to the stability boundary- 
value problem (2.12, 2.22) was proven to have no real eigenvalues. However, this does 
not prove instability, as the imaginary part of c may be positive and correspond to the 
decay of the disturbance and asymptotic stability. Although flows with AH, a < 1 were 
shown to have eigenvalues with Im c of either sign, the assumption of the instability for 
the general case needs to be verified numerically. 

The boundary-value problem (2.12, 2.22) was integrated numerically for the flow 
profile (2.26) bounded by 

It was demonstrated that the maximum growth rate 
y- = - 1, y+E(O, 11. 

max {Im [kc(k)]) 

grows with AH (see figure 4 a )  and even approaches infinity at AH = 1. For negative 
values of y+, the singular point disappears (see figure 1) and the unstable mode ceases 
to exist. (It should also be noted that, apart from the unstable mode, the boundary- 
value problem (2.5), (2.22) has an infinite number of stable modes which exist regardless 
of the singularity.) 

k t [ O ,  a)) 

The behaviour of spectral characteristics of the instability : 

k,,,, the wavenumber of maximum growth, 
k,,,, the marginal wavenumber, such that Imc(k,,,) = 0 
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AH AH 

FIGURE 4. Dispersion relation of the boundary-value problem (2.12, 2.22) (‘very thin’ upper layer). 
a = 1, H(y) = 1 - y 2 ,  [-  l,y+] ( y  varies from 0 to 1). (a) Maximum growth rate us. global upper- 
layer depth difference AH. (b) Spectral characteristics of the instability : 0, the marginal wavenumber 
k,,, and 0 ,  the wavenumber of maximum growth k,,,, us. AH. 

FIGURE 5. Dispersion relation of the boundary-value problem (2.12, 2.22) (‘very thin’ upper layer). 
H(y) = 1 - y 2 ,  y ~ [ - l ,  11. (a)  Maximum growth rate us. a. (b) Spectral characteristics of the 
instability: 0, the marginal wavenumber k,,, and 0,  the wavenumber of maximum growth 
k,,,, us. a. 

is shown in figure 4(b) .  Evidently, the instability of flows with AH E 1 occurs for short 
wavelengths. We conclude that, if the singular point approaches one of the boundaries 
of the flow, the instability strengthens and shifts towards the short-wave region. 

Figure 5 shows what happens if we fix AH and increase a : the maximum growth rate 
decreases, but k,,, and k,,, grow. Hence, the /?-effect weakens the instability, but is 
still unable to stabilize the flow. 

We also examined the stability of the following family of flows with non-monotonic 
profiles : 

H ( Y )  = 1 - y 2 - ~ y 4  ( A  2 -+I; 
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which generalize (2.26). The whole family proved to be unstable, the instability being 
stronger for h < 0 (wider flows) and weaker for h > 0 (narrow flows). Together with 
all other evidence, this suggests that the singularity at H ,  = 0 destabilizes all flows 
regardless of their profiles. 

2.6. Ageostrophic corrections 
In this subsection, we shall demonstrate that the introduction of infinitesimal viscosity 
is not the only way to regularize singularity at y = y*:  it can also be regularized by 
infinitesimal ageostrophic corrections. Our main motivation is the comparison of the 
results obtained via the two regularizations ; surprisingly, they coincide only for the 
unstable wavenumbers k < k,,,. It also turns out that the new regularization links the 
problem at hand to the classical problem of critical levels. 

Consider equations (2 .3~)  with v = 0, F(x,y) = 0 and expand them up to the terms 
O ( 2 )  : 

u = h, - e[J(h, hy)  + ayh,] - 2[h , ,  + . . .] + O(e3) 1 
u = - h, - e[J(h, h,) - ayh,] - e2[h,, + . . . ]  + O(c3) J 

(compare (2.31) with (2.4)). Then we substitute (2.31) into (2.3b): 

(2.31) 

h, -V*[hJ(h ,Vh) ] -ahh ,  = e [V . (hVh, )+  . . . I .  (2.32) 

Linearizing (2.32) against the background of the steady flow and substituting the 
harmonic-wave solution into the linearized equation, we obtain 

(compare (2.33) to (2.11 a)). It should be noted that none of the terms concealed by the 
ellipsis ‘ . . . ’ contains the second or higher derivatives; hence, the coefficient of the 
highest derivative in (2.33) is 

H,  + EC, 

which indicates that the singularity occurs when the velocity of the flow u = - H y  
matches the (scaled) phase speed of the disturbance, i.e. at the critical level. Now, if we 
take the limit e+O, the singularity shifts to the point where Hy = 0. In other words, 
our singularity is the limiting case of the critical-level singularity when Ro + 0. 

Another important observation is that, if Imc + 0, the above coefficient of the 
highest derivative does not vanish, and therefore the ageostrophic correction 
regularizes equation (2.12 a). In order to compare the ageostrophic regularization 
(2.33) with the viscous regularization (2.22), we observe that -i(v/k) can be replaced 
by ec only if Imc < 0. This means that the two regularizations yield the same result 
only for unstable disturbances. If a disturbance is stable within the framework of 
viscous regularization (Im c > 0), the corresponding ageostrophically regularized 
eigenvalue problem does not have any solution at all. In numerical calculations this 
manifests itself as follows: if we assume that the regularizing factor (EC) has a positive 
imaginary part, the solution to the regularized boundary-value problem yields 
Imc < 0, and vice versa. 

3. The case of ‘thin’ upper layer: 6 - Ro 

Roisin 1994) : 
This regime is described by the following set of equations (e.g. Benilov & Cushman- 

(3.1) 
h, + J(p, h)  - V * [hJ(h, Vh) ]  - ahh, = 0, 
~lp, + V -  [hJ(h, Vh) ]  + ahh, = 0; 
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FIGURE 6. Comparison of the growth rates of instability for (1) the case of 'thin' upper layer; 
(2) the case of 'very thin' upper layer. 

where p is the pressure in the bottom layer. Linearizing (3.1) against the background 
of the steady flow 

and substituting the harmonic-wave solution into the linearized equations, we get 

h = m y ) ,  P = P(Y) 

In contrast to the 'very-thin-upper-layer ' equation (2.12a), (3.2) has two singular 
points: at H ,  = 0 and at H ,  = -a. It can be demonstrated (Benilov & Cushman- 
Roisin 1994) that all flows that satisfy one of the following conditions 

H,(Y) 2 0, -a < H,(y) < 0, H,(Y) < -a, 
have no singular points and are stable. 

In what follows, we shall examine the stability of flows with singular points. 

3.1, The singularity at H ,  = 0 
This singular point is very similar to its analogue in the case of 'very thin' upper layer, 
and can be regularized by either viscous or ageostrophic corrections. Accordingly, the 
flow (2.26) is unstable in the whole range of the parameters AH and a. The only 
difference between the two cases is that the instability of thin-upper-layer flows takes 
place in the long-wave region (see figure 6). This is important, as long-wave 
disturbances are responsible for meandering of the mean flow. 
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3.2. The singularity at H y  = -a 
It can be easily verified that this singularity cannot be regularized by inclusion of 
viscosity in the upper layer (which does not change the denominator of the first term 
in equation (3.2)). The viscosity in the bottom layer could do the job, but this would 
be meaningless from the physical point of view, as the coefficient of turbulent friction 
below thermocline in the real ocean is virtually zero. The most realistic way to 
regularize the singularity at Hy = -a is to take into account the terms that describe 
barotropic Rossby waves, i.e. consider the following system : 

‘I (3.3) 
h, + J(p ,  h) - V * [hJ(h, Vh) ]  - ahh, = 0, 

~ [ A p , + J ( p , A p ) ] + a p ~ + V . [ h J ( h , V h ) ] + a h h ,  = 0; J 
where the small parameter 6 can be treated as either the Rossby number or the non- 
dimensional depth of the upper layer (see Cushman-Roisin, Sutyrin & Tang 1992). The 
standard procedure of linearization and substitution of the harmonic-wave solution 
yields 

(c + py> $ - Hy c+ [H(Hyy 4 - q/ 4,NY + k2HHy $ + aH$ = 0, (3 .4~)  

(c + py> 4 - (a + H,) c+ e[(c + Py> Kyy - k2Q - pyyy 4 = 0; (3.4b) 

where c( y) corresponds to the variable p(x ,  y ,  t) (similar to $ corresponding to h). 
Unlike the previous case, the regularizing terms (terms N e) do not change the 
coefficient of the second derivative, but increase instead the order of the system of 
equations. We shall use the theorem (e.g. Wasow 1953) which reduces the fourth-order 
system with small coefficient of the fourth derivative, zero coefficient of the third 
derivative and sign-indefinite coefficient of the second derivative, to the second-order 
system with a regularized coefficient of the second derivative. 

According to this theorem (see Appendix C), we can omit from (3.4b) all terms 
N e and, at the same time, modify the coefficient of 6 as follows: 

(C + P,) 8- (a + Hy + OC) l=  0, (3.5) 

where the cap^ indicates the limit e+ 0, and + Oc means that we should replace this term 
by +pc ( j~  > 0), solve equation (3.5) and then take the limit p+O. Then, substituting 
(3.5) into (3.4a), we obtain the following regularized version of (3.2): 

This equation should be supplemented by the usual boundary conditions : 

d 
H Y  

-<cc asy-ty,. (3.6b) 

Using the Wronskian method, it is easy to prove that this boundary-value problem 
may not have real dispersion relation. As this analytical result does not guarantee the 
existence of the unstable complex eigenvalues, the boundary-value problem (3.6) was 
integrated numerically for the flow profile (2.26) with 

y-=-1, y ,  = o ,  
(this flow has a singular point at Hz/ = -a). The results obtained (figure 7) indicate that 
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FIGURE 7. Maximum growth rate us. a (‘thin’ upper layer). H ( y )  = 1 - y 2 ,  YE[- 1,1]. 

the solution exists for all values of a, that allow the existence of the singular point. It 
is worth noting that the asymmetry of the graph of the maximum growth rate versus 
a indicates that the growth rate depends on the velocity of the flow at the singular 
point. Indeed, if a+O, the singular point moves closer to the right boundary of the 
flow, where the velocity (- H,) is zero; as a result, the growth rate is smaller than that 
in the case a --f 2 (where the singular point occurs at the velocity maximum). 

4. The case of ‘thick’ upper layer: 8 - 1 
As it turns out, the solution of the stability boundary-layer problem in this case has 

a solution only for finite values of regularizing factors (regardless of their physical 
meaning). The limiting problem has no solutions at all, which means neutral stability. 

Taking into account the ageostrophic effects and viscosity in the upper layer, we can 
write the governing equations in the form 

h, + J(p ,  h) -ah( 1 - h)  h, = V - [h(t.h, + v Vh) ]  + (F‘”’h), - (F‘”’h),,\ 
1 (4.1) 

, I  

ap,+V-[h(l  -h)J(h,Vh)]+ahh, = 0 I 
(system (4.1) with t. = u = Fy) = F(“) = 0 was derived by Benilov (1992a)). The 
corresponding ordinary differential equation is 

a[c + P, + aH( 1 - H ) ]  $ 

+H,[H(1-H)(H,,$-Hy$,)],+k2H(1-H)(H,)2$ = a H ~ c - 1 -  $g . (4.2) [ ( 2 I, 
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4.1. Singularity at H y  = 0 
Taking the limit E ,  v + 0, we expand (4.2) about y* : 

a[c- U+aH(I - H ) ] d - ( H 1 ) 2 ( y - y * ) 2 $ y y  = 0. (4.3) 

In contrast to the previous cases, the coefficient of the second derivative in (4.3) is 
proportional to ( y -yJ  (not to (y -y*) ) ,  and the solution does not contain 
logarithms : 

where y1,2 are the roots of the quadratic equation 

d = Cl(y-Y*)Yl+cz(y-y*)rz, (4.4) 

a[c- U+aH(I - H ) ]  
(H;I2 

Y(Y - 1) = 

(compare (4.4) to (2.19)). This type of singularity does not allow derivation of any 
analytical estimate for the eigenvalue, and the problem was examined numerically. 

4.2. Numerical results 
First, equation (4.2) was integrated with small, but finite, values of E and v for the flow 
with profile (2.26-2.27). Surprisingly, the results obtained demonstrated that, in 
contrast to the previous cases, the solution strongly depends on the magnitudes of E 

and v and does not tend to a finite limit as 6 ,  v+O. 
In what follows, we shall consider the short-wave approximation (k2 + 00) of (4.2) 

(which makes the results independent of the particular profile of the flow). In this case 
the eigenfunction is localized in the vicinity of the singular point (which was confirmed 
by the numerical results obtained for flow (2.2&2.27), and we can expand (4.2) as 
follows : 

( 4 . 5 ~ )  

where c" should be treated as the 'new' eigenvalue and p is the regularizing factor. 
Equation ( 4 . 5 ~ )  is valid for any flow profile and short disturbance and, in this sense, 
is standard. As the solution is expected to be localized near the singular point, the 
boundaries of the flow can be shifted to infinity: 

$( +_ a) = 0. (4.5b) 

The boundary-value problem (4.5) was integrated numerically. Figure 8 shows the 
eigenvalue c" us. the phase of the regularizing factor p (as v > 0, it follows that argpg 
( -7c, 0)). Evidently, both real and imaginary parts of c" strongly depend on argp. It is 
worth noting, that sharp changes in Re c" and Im c" in the vicinity of argp + - 7c suggest 
the possibility of an asymptotic approach (the width of this boundary layer can be 
estimated as O('/k2)). A similar pattern can be observed for the eigenfunction, whose 
structure in the vicinity of the singularity strongly depends on argp. Finally, it should 
be emphasized that Imc" is positive for all values of argp, which agrees with the 
corresponding results for the thin-upper-layer regimes : short waves are stable. 



Stability of large-amplitude geostrophic flows 153 

FIGURE 8. Real (a)  and imaginary (b) parts of the eigenvalue of the boundary-value problem (4.5) 
(‘thick’ upper layer) us. phase of the regularizing factor p. k2 = 50, Ipl = 0.002. 
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Re i: 
FIGURE 9. Eigenvalue of the boundary-value problem (4.5) (‘thick’ upper layer) us. magnitude of 
the regularizing factor p. (1) k2 = 100, argp = QR; (2) k2 = 75, argp = $T; (3) k2 = 50, argp = $T. 

Figure 9 demonstrates that c“ tends to zero as lpl + O  regardless of argp and the 
wavenumber k2.  This conclusion was confirmed for some higher-mode eigenvalues 
(boundary-value problem (4.5) describes an infinite number of modes). 

Thus, all eigenvalues for all wavenumbers tend to zero, while the corresponding 
eigenfunctions do not have finite limits. Exactly the same pattern was observed in the 
classical problem of stability of the Poiseuille flow with the viscosity coefficient tending 
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to zero (e.g. Dikiy 1976), where it was interpreted as the non-existence of a solution, 
i.e. stability. However, the Poiseuille flow can be (weakly) destabilized by finite 
viscosity. In other words, the stability of the inviscid Poiseuille flow is structurally 
unstable. 

Following this example, we conclude that large-amplitude geostrophic flows with 
thick upper layer are stable, but, generally speaking, can be weakly destabilized by 
small viscosity ageostrophic effects or external forcing. 

5. Conclusions 
We have considered the stability of zonal geostrophic flows with large displacement 

of the interface. Attention was focused on zonal currents with non-monotonic profile 
H(y) (where His  the depth of the upper layer). For such currents, the coefficient of the 
highest derivative in the corresponding stability boundary-value problem vanishes at 
H y  = 0. As a result, the eigenfunction is a multiple-valued function and needs 
regularization. Although this singularity is similar to the critical level, the simplistic 
introduction of infinitesimal viscosity through the assumption that the phase speed of 
the disturbance has a small imaginary correction, does not regularize the problem. 

In order to regularize the boundary-value problem, one should derive the asymptotic 
equation which properly takes into account viscosity and then take the limit u+O 
(where Y is the coefficient of viscosity). 

(i) For flows with ‘very thin’ upper layer: 

depth of the upper layer 
total depth of the fluid 

- Ro’, 
we have proved the instability of all flows with small a and AH (where AH is the global 
upper-layer depth difference - see figure 1). It was also proved that the regularized 
boundary-value problem may not have a real dispersion relation (corresponding to 
neutral stability). Using these results together with the numerical results obtained for 
a special family of flow profiles: 

H(Y)= 1-y2----hy4, -1 dydy+, ~ ~ ( 0 ~ 1 1 ,  (5.1) 

(where h 2 -;), we argue that the singular point destabilizes all flows with non- 
monotonic profiles. 

It was also demonstrated that the singularity can be regularized by taking into 
account small ageostrophic corrections, in which case the coefficient of the highest 
derivative is 

where c is the (scaled) phase speed of the perturbation. As Hv represents the velocity 
in the upper layer, this result links our singularity to the critical-level singularity. The 
regularized boundary-value problem can be obtained by taking the limit Ro + 0 and 
the assumption Im c f 0. Surprisingly, the results obtained via the two regularizations 
agree only for unstable disturbances : for the wavenumbers, where the viscosity- 
regularized equations have a stable solution, the ageostrophically regularized equations 
have no solution at all. 

Hy - c Ro, 

(ii) For flows with ‘thin’ upper layer: 

depth of the upper layer 
total depth of the fluid 

- Ro, 
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H ,  a 

Kuroshio -0.027 0.021 
Subarctic front -0.024 0.015 
Subtropical front -0.025 0.044 

TABLE 2. Ranges of slope of the interface and p-effect number in real oceans 

we demonstrated that, apart from the singularity that occurs at Hy = 0, the stability 
boundary-value problem has a singularity at 

Hy = -a. ( 5 4  

Accordingly, eastward flows can be unstable even in the case of a monotonic profile. 
The singularity at (5.2) can be regularized by taking into account barotropic Rossby 
waves (viscosity in the upper layer does not change the coefficient of the highest 
derivative in this case). 

It is worth noting that the regime of thin upper layer is the most interesting from a 
physical point of view. It was demonstrated (Benilov & Reznik 1994) to include most 
of the oceanic frontal flows except the Gulf Stream (which is not geostrophic) and the 
Antarctic Circumpolar Current (which has a thick upper layer). Using estimates based 
on Roden’s (1975) experimental (table 2), we conclude that the Kuroshio and subarctic 
front are unstable, while the subtropical front seems to be stable. However, Roden’s 
(1975) data on the subtropical frontal flow indicate the existence of a weaker westward 
jet in between the two strong eastward jets, which correspond to at least two points 
where Hy = 0. Although each of the three jets is stable, these points should destabilize 
the subtropical frontal system as a whole. 

(iii) For flows with thick upper layer: 

depth of the upper layer 
total depth of the fluid ” 

the singularity occurs only at Hy = 0. In contrast to the previous cases, where the 
coefficient of the highest derivative was proportional to (y - y*), the coefficient of the 
highest derivative here is proportional to (y-yJ’,  which changes the type of the 
singularity. Although the singularity can still be regularized by taking into account 
either viscosity in the upper layer or ageostrophic effects, the boundary-value problem 
has non-zero eigenvalues only for finite values of the regularizing factors (the 
coefficient of viscosity v and Rossby number Ro). It was verified for short disturbances 
(and arbitrary flow profile) that in the limit v, Ro+O all eigenvalues for all 
wavenumbers tend to zero, while the eigenfunction do not have finite limits at all, 
which corresponds to neutral stability. It can be conjectured, however, that flows with 
thick upper layer may be weakly destabilized by weak friction, ageostrophic effects of 
forcing. 

Appendix A. Boundary conditions for flows with non-smooth profiles 
If H(y) is not smooth at y = y+ - : 

Hy = H’+ - =t= 0 a s y + y +  - T 0, 

the boundary condition (2.12b) should be modified. First, we ‘imagine’ that in the 
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vicinity of y+ and y- there are narrow transitional intervals of width A ,  where H y  
smoothly changes from H‘, - to zero. Now we can ‘shift’ (2.12b) to the outer boundaries 
of these intervals: 

As d is small, 6 is a fast-varying function, and we can omit non-derivative terms from 
(2.12 a) : 

(A 2) 

Integrating (A 2) and taking into account (A 1 )  and the condition H y  = 0 valid outside 
(y - -d ,y++d) ,  we obtain 

6 = H,(Y) fory~[y---d,.~-), [ u + , Y + + ~ .  

6 = 0  a t y = y , f d .  (A 1 )  

[H(H,y i - H, 6&Iy = 0. 

Now we take the limit d --f 0 and obtain condition (2.28). 

Appendix B. Perturbation theory for k2, a, AH+O (very thin upper layer) 
It is convenient to introduce 

x = H W Y Y  6 - H y  6y), (B 1 )  

and rewrite (2.12a) in the form 

xy = (k2HHy + c + a H )  6. 1 

Substitution of (2.12 b)  or (2.28) into (B 1 )  yields the boundary condition which holds 
for both smooth and non-smooth (at y = y + )  - flows: 

x=O,  a t y = y , .  

It is convenient to split H ( y )  as follows 

H(Y) = 7 ( Y )  + KJ4, 
d Y + )  = T(Y-1 = A, 

t(v+) = t(y-)+AH. 

where 

Condition (2.29) entails 

Now, assuming that 

we expand the solution to (B 2-B 3 )  as follows: 

7 - 1 ,  [ - A H < 1 .  

A H - k - a < I ,  

and obtain 
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Equations (B 4-B 6 )  can be solved easily: 

J(O) = r y ,  

$1) = C ( l ) ( T  - E j )  +f($ - A’), 
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Then, integrating (B 7 a )  and taking into account (B 7b) ,  we eliminate x ( ~ ) :  

(do) + q) J ( l )  + (c(’) +a@ J(O) dv = 0 R 
and substitute $(O) and $l) .  Omitting the superscripts and replacing 7 by H(7 NN H ) ,  we 
obtain (2.30). 

It is worth noting that we did not need to use the regularizing conditions (2.22) in 
the derivation of (2.30), because the zeroth-order eigenfunction vanishes at the critical 
point, that is J(O)(y*) = 0, and the singularity cancels out. 

Appendix C. Reduction of (3.4b) to (3.5) 
Obviously, small terms - 6 can be neglected for all y except y +y* (where y* is the 

singular point as before). In order to clarify the structure of the solution in the vicinity 
of y*, we shall expand H ( y )  about y*:  

We assume that in the vicinity of $ and ( are fast-varying functions, such that 

H = H* - a( y - y*) + ;HI( y - y*)’ + . . . . 

l$,yl 9 l$yl 9 I$L lcyyl 9 Icy1 9 161. 
Now we shall expand (3.4) about y*:  

1 (C 1) 
5 = H* $yy> 
(c- U )  $ -H* H;(y-Y*) 5+ 4 C -  U )  cyy = 0; 

where U = -Py(y*) is the velocity in the bottom layer. System (C 1) can be reduced to 
a single equation of the fourth order: 

( ~ - ~ ) $ - ~ * ~ ~ ( ~ - ~ * ) $ y y + ~ ( ~ - ~ ) ~ * $ , y y y  = 0. (C 2) 
The coefficient of the second derivative in the limiting equation 

(C-U)d-H*H;(y-y,)d,, = 0, 
vanishes at y = y* and its solution is a multiple-valued function. In the previous case, 
we regularized similar equations by inserting an infinitesimal imaginary correction into 
the coefficient of $y,: 

However, the solution to (C 3) depends on the sign of this infinitesimal correction, 
which is a priori unclear. 

In order to determine the sign of the regularizing factor, we shall use the theorem 
proven by Wasow (1953). In application to (C 2), it states that in the limit e+O, two 
of the four linear independent solutions of (C 2) tend to the corresponding solutions 
of (C 3) provided the sign of i0 is such that 

(c  - U )  6 - H,[H:(~ -y*> k i01 Jy = 0. (C 3) 
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is a monotonic function. 
In order to find the sign i0 that provides the ‘monotonicity’ of K(y),  we shall replace 

0 by a finite constant ,LA (we shall take the limit p+O afterwards) and evaluate the 
integral : 

Using the so-called Stokes lines, it is easy to understand that K(y)  is a monotonic 
function only if ,LA has the same sign as Imc, and (C 3) should be rewritten as 

(c- U )  &H*[H;(y-Y*)+Oc] p,, = 0. 

In terms of { = lime+m g, this equation can be rewritten as 

I t = H* dyy, 
(c- U )  d-H*[H;(y-y*) +Oc] t = 0. 

Finally, the ‘non-expanded analogue’ of (C 4) is system (3.5). 

R E F E R E N C E S  

BENILOV, E. S. 1992a Large-amplitude geostrophic dynamics : the two-layer model. Geophys. 

BENILOV, E. S. 19926 A note on the stability of one-layer geostrophic fronts. Geophys. Astrophys. 

BENILOV, E. S .  1994 Dynamics of large-amplitude geostrophic flows: the case of ‘strong’ beta-effect. 

BENILOV, E. S. & CUSHMAN-ROISIN, B. 1994 On the stability of two-layered large-amplitude 

BENILOV, E. S. & REZNIK, G. M. 1994 The complete classification of large-amplitude geostrophic 

CUSHMAN-ROISIN, B. 1986 Frontal geostrophic dynamics. J.  Phys. Oceanogr. 16, 132-143. 
CUSHMAN-ROISIN, B., SUTYRIN, G. G. & TANG, B. 1992 Two-layer geostrophic dynamics. Part 1 : 

Governing equations. J .  Phys. Oceanogr. 22, 117-127. 
DIKIY, L. A. 1976 Hydrodynamic Stability and Dynamics of the Atmosphere. Gidrometeoizdat, 

Leningrad. (In Russian). 
GRIFFITHS, R. W., KILLWORTH, P. D. & STERN, M. E. 1982 Ageostrophic instability of ocean 

currents. J .  Fluid Mech. 117, 343-377. 
NOWLIN, W. D. & KLINCK, J. M. 1986 The physics of the Antarctic Circumpolar Current. Rev. 

Geophys. 24,469491. 
PAVIA, E. 1992 The breakup of frontal filaments. J .  Phys. Oceanogr. 22, 399403. 
RODEN, G. I. 1975 On North Pacific temperature, salinity, sound velocity and density fronts and 

their relation to the wind and energy flux fields. J.  Phys. Oceanogr. 5, 557-571. 
SWATERS, G. E. 1993 On the baroclinic dynamics, Hamiltonian formulation and general stability 

characteristics of density-driven surface currents and fronts over a sloping continental shelf. Phil. 
Trans. R .  SOC. Lond. A 345, 295-325. 

WASOW, W. 1953 Asymptotic solution of the differential equation of hydrodynamic stability in a 
domain containing a transitional point. Ann. Maths 58, 222-252. 

WILLIAMS, G. P. & YAMAGATA, T. 1984 Geostrophic regimes, intermediate solitary vortices and 
Jovian eddies. J.  Atmos. Sci. 41. 453478. 

Astrophys. Fluid Dyn. 66, 67-79. 

Fluid Dyn. 66, 81-86. 

J .  Fluid Mech. 262, 157-169. 

geostrophic flows with thin upper layer. Geophys. Astrophys. Fluid Dyn. To appear. 

flows. Geophys. Astrophys. Fluid Dyn. (submitted). 


