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Two problems of the stability of ideal fluid flows over an uneven bottom are 
considered. The first is the study of stratified flow with a ‘rigid lid’. We use the 
method of multiple scales to derive an equation describing the evolution of internal 
waves corresponding to different modes and wave vectors. For the case of sinusoidal 
bottom irregularities we have constructed a solution describing the increase in time 
of the internal wave field-this proves the instability of the basic flow. The 
phenomenon is interpreted a~ a result of interaction (mutual generation) of internal 
waves with energies of opposite signs. Our consideration is based on the Hamiltonian 
approach which enables us to prove in the most simple way the existence of waves 
carrying negative energy. The case of random (not sinusoidal) bottom irregularities 
is also studied. Using the kinetic equation for the amplitudes of internal waves 
derived in the paper, we have established that the basic flow remains unstable as 
well. In the second part of the paper we consider the homogeneous flows with a free 
upper boundary. It is shown that this problem can be reduced to the previous one, 
with the only difference being that the role of unstable perturbations is now played 
by the surface (not internal) gravity waves. The Hamiltonian approach is con- 
sistently applied and allows us to take into account the nonlinearity of waves. 

1. Introduction 
The study of non-viscous fluid flows over an uneven bottom is a classic problem of 

hydrodynamics. The simplest case is calculation of two-dimensional potential motion 
in a region with uneven boundaries. The solution of this problem is given by an 
appropriate conformal mapping and can be found in any hydrodynamics textbook. 
However, the first natural complication of the problem, i.e. consideration of flows 
with a free upper boundary, meets certain difficulties and naive attempts to 
generalize the results obtained fail. In fact, in this case the system acquires a new 
degree of freedom, namely, surface gravity waves, and the mathematical statement 
of the problem becomes essentially nonlinear. We note also, that since the problem 
of flows over bottom topography is of great importance to physical oceanography, we 
are forced to give up consideration of two-dimensional problems. Besides, owing 
to the density stratification and rotation of the Earth, water motion becomes 
predominantly vertical. All these factors cause two other types of wave motion - 
internal gravity and Rossby waves. 

The study of the influence of an uneven boundary upon the dynamics of an ideal 
fluid flow can be split into two problems -the calculation of the ‘topographic ’ 
(steady) flow and the investigation of stability as a whole. The first problem has been 
widely discussed in various papers (cf. Krauss 1966 and Scorer 1978 and references 
therein), while a relatively small number of papers have considered the second 
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problem, the most important being those by Yih (1976) and Charney & Flierl (1981). 
Yih studied the stability of topographict surface and internal waves in the 
homogeneous two-layer fluid over sinusoidal topography. The instability discovered 
was interpreted as a type of Benjamin-Feir (1967) instability. Charney & Flierl 
studied the mathematically simpler case of homogeneous zonal flow on the 8-plane 
also over sinusoidal topography. It appeared that in a certain range of parameters 
such flow is unstable to the increase of small-amplitude wave perturbations 
(barotropic Rossby waves). Note that both papers considered flows without any 
velocity shear. 

In our previous papers, we have made an attempt to explain from a single point 
of view the results obtained earlier and to generalize them (Benilov & Chernyak 
1985; Benilov 1985). The first paper considered stratified shear flow over sinusoidal 
topography. Within the bounds of linear two-dimensional equations we managed to 
construct the asymptotic solution describing an exponentially growing internal- 
wave perturbation, so that the instability of the flow was proved. We have also 
proposed an interpretation of the instability based on an analogy with the explosive 
instability of waves in nonlinear media (on the explosive instability see, e.g. Craik 
1985 and Zakharov 1974). In fact, the spatial inhomogeneity of a parameter (the 
depth of fluid) results in wave interaction, and in this sense the influence of the 
inhomogeneity is quite similar to that of the wave medium nonlinearity. Further, we 
interpreted the discovered instability as the interaction (mutual generation) of waves 
with energies of opposite signs.$ Note that nonlinear effects can result in the 
interaction of internal waves with energies of opposite signs, i.e. the explosive in- 
stability proper (Voronovich & Rybak 1978). However, this type of instability takes 
place only in a rather narrow range of parameters, while the instability caused by 
bottom topography develops, as it turns out, in nearly any stratified flow. Simple 
physical interpretation enables us to predict the development of the instability in 
all moving isotropic media with spatial stationary inhomogeneity of parameters, 
since, as we shall see later, the Doppler shift of wave frequency is sufficient for waves 
with energies of different signs to occur. Somewhat more complicated is the case of 
anisotropic systems. Thus, for example, the problem of stability of zonal flow on the 
/?-plane over sinusoidal topography has unstable solutions only for eastward flow 
(Charney & Flierl 1981). 

We should note that sinusoidal topography is an idealization that has nothing to 
do with real ocean conditions. That is why it is of great importance to study the 
influence of random (not sinusoidal) topography upon the dynamics of fluid flows. 
This problem was studied for the example of zonal flow on the /?-plane by Benilov 
(1985). It was found that instability of the eastward flow develops in this case as well, 
but its growth rate is considerably smaller. 

As was noted above, the influence of spatial inhomogeneity of the media 
parameters on the wave propagation is in a sense similar to the influence of nonlinear 
effects. That is why we use the Hamiltonian approach to generalize and extend the 
results obtained earlier. This approach was worked out in general by Zakharov (1968, 
1974) for problems of nonlinear wave dynamics. 

We shall discuss two problems concerning the stability of flows over topography : 

t Forced waves beyond the obstacle are also called lee waves. 
2 Let UB from the very beginning elucidate the mechanism causing the appearance of waves with 

negative energies. If the intemal-wave vector is directed against the flow and its phase velocity 
with the flow, then, &B we shall see below, the wave slows the flow down, the energy of the whole 
system decreases and we can say that the wave carries negative energy. 
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FIGURE 1. An example of a stratified flow (the model (33)). 

the stratified flow with a 'rigid lid ' approximation, and the flow of homogeneous fluid 
with a free boundary. The latter problem is used to study the influence of near- 
bottom flow (topographic surface waves) and nonlinear effects, which are especially 
easy to take into account when using the Hamiltonian formulation of the problem. 
Another advantage of the Hamiltonian approach is that the concept of waves with 
negative energies, essential to the paper, obtains a natural mathematical expression. 

2. Statement of the problems and the governing equations 
Consider the parallel shear flow of an ideal stratified fluid (cf. figure 1) with two 

functional parameters: the mean velocity field U = U(z) and the Brunt-Vaisiilii 
frequency field 

where p = p(z)  is the density of the fluid, g is the gravitational acceleration, and z is 
the vertical coordinate (the z-axis has an upward direction). We study the flow in the 
region H 2 z 2 h(r), where H is the mean depth of the basin and h(r) describes the 
bottom topography (I = (z, y) is the horizontal coordinate). We discuss first the 
simple case when there is no near-bottom flow, i.e. we assume that 

U(z) = 0 for z < max{h(r)} (1) 

and the velocity of the mean flow has no vertical component. To describe small 
oscillations of the fluid, we use the linearized hydrodynamic equations in the 
Boussinesq approximation (Miropol'sky 1981) : 

Here w(z, r,  t )  and u(z, r,  t )  are respectively the vertical and horizontal components of 
the velocity field caused by the internal-wave perturbations ; c = gp'/po ( ~ ' ( z ,  I, t )  is 
the local density deviation from p(z)) ,  po is the value of the fluid density averaged 
over the depth of the layer, and P(z , r , t )  is the pressure deviation from the 
hydrostatic value. Differential operators D,, V and V2 are given by: 
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The set of equations (2) can be reduced to the single equaton for w(z, r ,  t )  : 

At the surface we use the 'rigid lid' approximation: 

w = O  f o r z = H ,  (4) 
and at  the lower boundary we use the generalized no-flow boundary condition, which 
together with (1) can be written in the form 

w = (u-Vh)  when z = h(r). (5) 
To close (3)-(5), we have to express u in terms of w and substitute it in boundary 

condition (5). Starting from (2a) ,  one can easily obtain the following equation: 

D,V% = V - D t - +  -*VW -- dU v2w. [ (z )] dz 

We note that in view of geophysical applications we can assume that the value of the 
parameter maxIh(r)(/H is considerably less than unity and it is possible to study 
(3)-(6) by asymptotic methods. The &st step is to continue the boundary condition 
(3) to the level z = 0 and expand it in a series in powers of h, truncating to the first 
(linear with respect to h) corrections to the zeroth approximation 

(7) 

, 

aw 
a Z  

w = -h -+(u .Vh)  = (V-hu) when = 0.  

With sufficient accuracy (6) yields 

(8) 
aw 

V2u = -V - when z = 0 
az 

and we should rewrite (1) in the form 

U(0) = 0. (9) 

Now we employ Fourier transforma of the fields w,  u and h (transforms are in the 
horizontal plane only and are marked with index k, for example: 

wk(z, t )  = ( 2 ~ ) - ~  w(z, I, t )  e6(&.') dr  ) *  s 
Let us introduce an auxiliary variable 

(10) where 

(i.e. v(z, r , t )  = iD,w(z,r , t ) ) .  Using the new variables, (3), (4), (7) and (8) can be 
reduced after some calculations to the following boundary-value problem : 

(1la) 

awk . vk=i-+(k'U)w, 
at 

iMk " - a z - i k w k ;  - 

I 
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where 6(k) is the Dirac delta-function and matrix differential operators M k  and ik 
are given by 

In spite of the linearity, the boundary-value problem (11) is too complicated to be 
solved analytically. We shall explore it by using an asymptotic technique similar to 
the multiple-scale method (e.g. Nayfeh 1973), based on the fact that parameter h/H is 
small. We shall look for the solution of (11) in the form of a series in powers of 
hk : 

As the zeroth approximation we take the solution describing the superposition of free 
internal waves of different modes with amplitudes A; slowly varying in time (v is the 
mode number) : 

wk = wio)+wil)+... . 

m 

Wio) = Z A;@) exp (iw;t) @L(z),  + Iw; Ail. (12) 
Y--m 

Here w; is the frequency, 

describes the vertical structure of the waves of mode number v, and for v =k 07 
satisfies the standard boundary-value problem for internal waves (although written 
in a somewhat unusual form): 

and normalization condition 

The boundary-value problem (13) is invariant with respect to the replacement 
k -+ - k ,  w; +. - w;, 9; --t &, @k +. - &. This enables us to choose the enumeration of 
modes guaranteeing the validity of the following equalities : 

$1; = &, $1; = -@L, 0:; = -w; ( 1 4 4  

A:; = A; (14b) 

and to require that the amplitudes of the waves should satisfy analogous relations 
* 

where the asterisk over A; means complex conjugation. It should be emphasized that 
relations (14) are chosen so that w(z,r , t )  will be real (or so that the equivalent 
condition w-k = &k holds). In  order to fix finally the mode enumeration we shall use 
the well-known possibility of choosing the signs of w; for v > 0 so that they will 
coincide with the signs of the energies of the appropriate waves (Voronovich 1979). 
Omitting technical details we note that this procedure leads to w; > 0 for ( k -  v) > 0 
and w; < 0 in a certain range of waves, for which the flow is reversed (cf. figure 2 ) .  

We assume the value u = 0 to be omitted in (12) amd in all subsequent summations. 
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Such waves diminish the energy of the mean flow, slowing it down, and in our 
terminology they have negative energy. t 

Later we shall need the solution of the boundary-value problem adjoint to the 
problem (13a, b)  

m -  , ." .  
0; Mi  @; L i  p k  A 0, e k I z - 0  = & I ~ - H  = O (15) 

where Mi = M k  (since Mk is a self-adjoint operator) and 

One can ascertain a connection between the solutions of (13) and (15) : 

$; = [~ ; - - (k .U) l~&.  (16) 
(This relation is of great importance for the subsequent calculations.) 

We require that the Miles (1961) stability criterion holds: Ri = N2/(aU/az)2  2 i, so 
that the boundary-value problems (13) and (15) describe the countable number of 
different modes with real dispersion laws w = w;. We can also write the obvious 
orthogonality relation between the eigenfunctions of different modes : 

Here S,,, is the Kronecker delta, and I;  after some calculations attains the form 

k.d2U 

[w; - (k. v)12 
l;=p( 2k2N2 + (F) ] (&J2dz. 

[w; - (k. v)13 
Now we derive equations for the first approximation to Wil) : 

X hk, S(k-k, -k2) dk, dk,. (194 

Note that the solution of (19) is not unique. In fact, if WP) = f k ( z ,  t )  gives a solution 
to (19), then m 

Wf) =fk(z, t )  + 2 C; exp (iw,t) @;(z), 
v--m 

where C, are arbitrary functions of k, also solves the equation. To make the solution 
unique, we need an additional condition. We require that WP) is orthogonal to all the 
eigenfunctions 6; of the adjoint boundary-value problem (15) in the sense of the 
scalar product : 

( w L 1 ) l M k l  6;) = 0. (20) 
t In the simplest case of smooth dispersion curves (lao;/ak( < 00)  we can only ascertain that the 

choice of frequency sign guarantees the validity of the unequality w; > 0 for ell k as U+O (in the 
absence of the flow the energy of internal waves is known to be positive). 
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(The reasons for choosing this condition will be explained later.) We now multiply 
(19a) by &, and integrate it with respect to z from 0 to H. Integrating by parts and 
making use of (15), (17) and (19b,c), we have 

Now, taking into account (9), (10) and (20), we obtain a closed set of equations for 
the amplitudes A; : 

* 
xexp [i(w$,-w;)t] A>lhk,S(k-kl+k2)dk,dk2. (22) 

We note that in the wave spectrum described by the set of the functions A; there 
are pairs of harmonics (k, w;) and (k,, w>,) interacting resonantly with the 'help' of 
one of the harmonics h, . The frequencies and wave vectors of these waves satisfy the 
resonant relations k- k, + k, = 0, 0; -02 = 0. Clearly, in this case it is condition 
(20) (and, consequently, (22)) that must hold in order to eliminate the increasing 
secular terms - t exp (io; t )  in the solution of (19). This fact determines the choice of 
the condition (20). Let us now change the limits of summation with respect to v in 
(22) from ( - co, co) to (1, co) (with the help of (14)) and introduce a new field variable 

Substituting (23) into (22) and making use of (16), we obtain after some 
straightforward calculations 

+ c h 1  @, ik, S(k + k, + k,)} dk, dk,, (24a) 

Equation (24) keeps the main properties of the original dynamics and is the basis of 
all the results presented below. The quantity a; is the so-called normalized wave 
amplitude.? In therms of a; the structure functions U;i1 and P;', (matrix elements) 
have the symmetric form necessary for subsequent calculations. 

3. The Hamiltonian statement of the problem 
We first note that depending on the specific form of the coefficients w;, Q, and 
P;i,, (24a) can describe any dynamic system with spatial inhomogeneity of 
parameters. For instance, the problem of the evolution of a barotropic Rossby-wave 
spectrum over the bottom topography can also be reduced to an equation of the type 
(24a) (Benilov 1985). But in the case of conservative systems there are a number of 
restrictions on the coefficients in (24a), namely 

* u&,$ = UPi,, pk:$ = "gi,. (25) 

t Henceforth we use the terminology of nonlinear wave dynamics. 
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(In our case (25) holds due to the key inequality 

& > O  (26) 

proved in Appendix A.)t In fact, for conservative systems the energy integral (the 
Hamiltonian) must be conserved. It has a form 

* 
&' = Z v /u;la;l'dk+C Z ///W?i,B;n$hk2 W-k,+k,) 

" v1 

+ :( Cil & &; x, + fril a; h k , ) }  S(k + k, + k,) dk dkl dk,, (27) 

while (25) guarantees that .%? is real and symmetric.$) Now we can write (24a) in 
Hamiltonian form : 

here SH/S& denotes the variational derivative of the functional .%? with respect to 

Representation (28) is canonical (with valency equal to i) for any dynamic 
equation written in terms of the normalized wave variable (Zakharov 1968, 1974). 
The relationship between a; and natural variables in specific physical systems often 
appears to be non-trivial, and in our case we only managed to ascertain it 
asymptotically (i.e. in (23) we truncate only to the first term in the expansion of 
a;[A;, h,] in powers of h,, and the Hamiltonian H is a sum of the f i s t  two terms in 
the expansion of the energy of the original dynamic system). In  principle, from the 
very beginning we could have used the Hamiltonian and canonical variables 
introduced by Voronovich (1979), but this results in much more complicated 
calculations. 

Let us define the Poisson brackets between the functionals Fl[u;, &I, F,[u;, &] 
as 

&. 

{F,,F,} = i I ;  ((----- SF1 SF, SF, SF, 
v W S &  WSk 

and consider the following transforms of the field variable : 

a; = &+X r r{~i ldqXk,8(k-k,+k,)  
v1 J J  * *  + fiil d21 h,* S(k + k, + k,)} dk, dk,. (29) 

We require that the dynamic equation (24a) written in terms of the new variables 
d; should have a form (28) with the same Hamiltonian 8'. One can easily see that 
in this case the following equalities must hold: 

{a;,a?J = 0, {a;,&;} = iSvvlS(k-kl). (30) 

t In the case of internal waves Urdl and Vzl appear to be real (cf. (24b) and (26)) and the 

$. As we have expected the main part of the Hamiltonian ( -  o;la;l*) has the sign of the wave 
equalities (25) are consistent with (24b) (Vr& = -PA,). 

frequency and can be negative. 
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Relations (30) guarantee that the transform a; + d; is canonical. Applying (39 to 
the transform (29);we obtain restrictions on the structure functions: @G:~ = - UTil, 
fi~,”~ = One can see that by choosing 

we can eliminate the term proportional to U;& from the Hamiltonian (27) and 
equation (24a), while the transform (29) with 

terminates the term - “Til (in both cases terms - (hk)’ appear which we have to 
drop within the bounds of the chosen accuracy). However, we note that since the 
denominators in (31) can vanish, non-integrable singularities can occur in the 
transforms (29), (31). In  fact, if the sets of equations (resonant conditions) 

k - k l + k 2 = 0 ,  w ; - - w $ ~ = O ;  

k+k,+k,  = 0, W ; + W $ ~  = 0 

can be solved with respect to the vectors k and k,, then functions pi’, and @i 
respectively become singular. It is easy to see that (32a) can be solved for any k, and 
the term - u” cannot be excluded from the Hamiltonian and dynamic equation 
(i.e. transferred mto the term proportional to the next power of the small parameter). 
We note also that in the absence of flow, w; 0, conditions (32 b)  are not solvable and 
the term - can be excluded. This should be expected because as we shall see 
below this term m (24a) corresponds to instability, which is impossible in the absence 
of the flow. 

To ascertain conditions of solvability of (32 b) in the presence of the mean flow, we 
use the simplest two-layer model of stratification shown in figure 1 : 

k i l  

In this case 

Z 
p(z)=p0+Ap,  U(z)= V,-  w h e n O d z d H , ;  

HO 

P ( 4  =Po, V(z) = U, when H ,  < z < H . )  
(33) 

and the basic boundary-value problem describes only one mode of the internal waves 
with the dispersion law shown in figure 2. This simplest model describes satisfactorily 
the dynamics of the internal waves of the first mode in a shallow ocean with a quasi- 
homogeneous upper layer (the quantity H - H ,  means here the depth of pycnocline). 
One can see directly from figure 2 (a) that the resonant conditions (32 b) are solvable. 
We note one important fact, namely, that the existence of the waves with negative 
frequency is sufficient for (32b) to be solvable. This fact enables us to extend our 
study to the n-layer model with a piecewise-constant density approximation and 
broken-line velocity-profile approximation. Such a model describes n - 1 internal- 
wave modes, each of them having a negative frequency in a certain range of the wave 
vector k. We shall not discuss models with continuous fields daU(z)/dzz and Na(z ) ,  
since in these cases, generally speaking, the so-called critical layers can occur (of. 
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FIQURE 2. Dispersion relation of internal waves for the two-layer model of stratification (33). Two 
types of the wave resonance are shown: (a) interaction of the waves with energies (frequencies) of 
opposite signs; (b) interaction of the waves with positive energies (frequencies). -, dispersion 
curve w = wb ; - - - - , inverse curve w = - w - ~ ;  shaded portions of curves shows the region of the 
waves with negative energies. 

Booker & Bretherton 1967), resulting in more cumbersome considerations. Note that 
the n-layer model is free from this shortcoming and at the same time describes the 
real ocean quite adequately when the number of layers is sufficiently large. 

4. Instability of stratified flows over bottom topography 
We first note that for the two-layer model of stratification (33) (when there is only 

one mode present), index v and summation with respect to it must be dropped from 
all the previous calculations. Then (24a) can be rewritten in the following form: 

and relations (28) and (27) are given by 
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In  what follows, to make the calculations easier and to clarify the physical sense of 
the problem, we shall consider only the simplest model (the results obtained can be 
trivially generalized to the multiple mode case without any changes in the techniques 
used). We also note that the Hamiltonian (35b, c )  determining the dynamic system 
(35a) is of the most general form for the conservative systems with one mode. That 
is why all the results below will be formulated so that one can easily extend them to 
any Hamiltonian system with spatial inhomogeneity of parameters. First we 
formulate the results obtained earlier for the problems of the stability of flows over 
sinusoidal topography (cf. Yih 1976; Charney & Flier1 1981; Benilov & Chernyak 
1985) in the terminology of (35). 

(i) Let h(r) = h, cos(rc.r). Then hk = ih, [d(k-rc)+S(k+~)]  and (34) yields 

iwk ak = i i h O  iUk,  k+K ak+x+ uk. k--rc ak-rr 
-- 
at 

We shall look for a solution describing the superposition of two waves with wave 
vectors and frequencies connected by resonant relations (32b) (cf. figure 2u) : 

ak(t) =A+($)  exp(iwk+t) d(k-k+)+A-(t)  exp(iw,-t) d(k-k-)+O(h,);  (37a) 

k++k-+K = 0, wk++wk- = 0. (37b)  

Substituting (37) in (36) and keeping the terms - h,, we have 

The system (38) can be trivially integrated and has a particular solution 

A,(t) = A,@)  eAt; (A+(O)( = lA-(O)l, argA+(O)+argA-(0) = +x+arg V ,  

where A = ih,lVl > 0 (39) 
and V = Vk+k- = Vk-k+. When k+ is parallel to k-, expression (39) coincides with a 
similar formula for the growth rate of the instability obtained in another way by 
Benilov & Chernyak (1985). Thus, we have shown that (36) has a solution 
exponentially growing from zero, and this proves the instability of the ‘vacuum’ 
state (i.e. the instability of the basic unperturbed flow described by the solution 
uk = 0). The cause for the instability is the birth of a pair of wave-field ‘quanta’i with 
frequencies of different signs, and this is essential for understanding the physical 
sense of the discovered instability. Indeed, as we have already seen the signs of the 
wave frequencies coincide with the signs of the wave energies, and the amplitudes of 
two waves with energies of opposites signs can grow, while the energy of the whole 
system is equul to zero. In  this sense the discovered instability is a linear analogue of 
the explosive instability in nonlinear media with negative dispersion (e.g. Craik 1985; 
Zakharov 1974). The explosive instability is based on the nonlinear interaction of 
triplets of waves with wave vectors and frequencies satisfying the resonant relations 
k +  k ,  + k,  = 0,  uk + wk, + wk, = 0 coinciding with the relations (37 b) when k = k+, 
k ,  = k-, k, = K and ok, = 0 (the bottom topography corresponds to the wave with 
zero frequency). The only distinction between the two types of instabilities is the 

The terminology is borrowed from the paper by Zakharov (1974), who in turn had borrowed 
it from the formalism of secondary quantization in quantum mechanics. 
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character of the wave growth : in our (linear) case it is exponential ; in the case of the 
nonlinear explosive instability it is a power law (proportional to l / ( t , - t ) ,  where to is 
the moment of the 'explosion'). 

Considering the instability of the flow over bottom topography as one of the 
possible mechanisms of generation of internal waves in the ocean, we give a 
numerical estimate of the characteristic time 7 = l / h  of instability development for 
typical parameters of the ocean shelf. For H x 200 m, H ,  x 150 m, Ap/po x 0.5 x 

h, x 20 m, K x 0.02 m-' (the horizontal scale of the topography ~ X / K  k: 300 m) 
and U ,  x 0.4 m/s we have 7 x 65 h. We note that within the bounds of the model 
(33) the explosive instability proper cannot occur for any values of parameters H, 
H,, U,, Ap/po. We shall not dwell here on the case of sinusoidal topography, but note 
only that if the type of the resonance is changed (cf. figure 2b), i.e. condition (32b) 
is replaced by condition (32a) in formula (37b), then we have stable periodic 
modulations of the basic wave amplitudes. In  this case interaction of waves with 
frequencies (energies) of the Same sign takes place and the energy conservation law 
forbids the growth of their amplitude. 

(ii) Let h(r) now be a random function with Gaussian statistics. We require also 
that the two-point correlation function should depend only on the distance between 
the points:t 

h( t )h(r+R)  = B(R),  

where the overbar denotes the average over the ensemble of realizations. Condition 
(40) implies - * 

h,hkl = H,W-k,), (41 a)  

where H, = (27c)+ I B(R) ei(k.R) dR. 

As before, we consider small spatial inhomogeneities and describe the wave field as 
a wide spectrum of free weakly interacting waves with random phases. According to 
this a, satisfies the condition, analogous to (41 a )  : 

(the equality (41 b) can be taken as a formal definition of the second-order oumulant 
spectral density 12,). Such a description is called weakly turbulent and was 
introduced in the papers by Hasselman (1962, 1963), Zakharov (1965) and Zakharov 
& Filonenko (1966, 1967) to describe nonlinear surface waves. The most effective fool 
in studying weak turbulence is the kinetic equation governing the evolution of n,, 
and in this paper we shall use its analogue for our problem: 

+ l~klkkl12H,l(n,l+n,) W + k , + k , )  ~ ( @ , + % l ) ) ~ l ~ ,  (42) 

(which is derived in Appendix B). 
To prove the instability of the vacuum state (n, = 0), we shall look for the solution 

in the form n,(t) = Nk e", where N ,  > 0 and h are the eigenfunction and eigenvalue 

t In other words, we require that the bottom irregultlrities should be spatially homogeneous (in 
the statistical sense). 
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of the Fredholm integral equation of the second type which can be obtained from (42) 
via the replacement n, + N L ,  a/at -+ A. To prove the instability, we need only to show 
that h > 0. Integrating the Fredholm equation with respect to all k we find the 
required estimate : 

J’SSIV,b l2H~~NL~+~, )S (k+k l+k2)  S(%+%l) **,dk, 

p w k  

A =  > o  (43) 

(the term - IUkkl12 vanished owing to the antisymmetry of the integral function 
when replacing k-k,). More precisely, to prove the instability, we have to prove 
that a solution of the Fredholm equation exists. We shall not dwell on this question, 
but note only that apparently a solution exists if the function H, decreases fast 
enough as k -+ 00. Summarizing the discussion of the random bottom irregularities 
we note that in this case the growth rate of instability A is proportional to the second 
power of the small parameter h / H .  Thus this instability is weaker than that in the 
case of sinusoidal topography (compare (39) to (43)). On the other hand the 
spectrum of unstable waves due to the random inhomogeneities is much wider and 
spreads over the whole k-plane. 

5. Influence of the near-bottom flow 
In  this section we study the influence of non-zero near-bottom flow (U(0) =+ 0) using 

the example of homogeneous fluid with a free boundary over the bottom topography. 
In  this case, in contrast to that considered above, the ‘vacuum state’ does not exist, 
since the interaction of the near-bottom flow and bottom topography results in the 
appearance of topographic surface waves (lee waves). Note that we do not consider 
stratified flows, only in order to simplify the calculations, since the case of 
inhomogeneous fluid is quite similar in concept to that studied below but is impeded 
by the extremely cumbersome calculations. The case of homogeneous fluid is also 
very attractive because it enables us to remain from the very beginning in the 
framework of the Hamiltonian formalism and to use canonical variables without 
applying ‘canonizing’ transforms of the type (23). 

Consider the potential oscillations of an ideal fluid in a basin with an uneven 
bottom. In this case the hydrodynamic potential @(z, r ,  t )  satisfies Laplace’s 
equation 

in the region H + q ( r ,  t )  > z > h(r) (q  is the vertical displacement of the free surface). 
We must solve (44a) with the no-flow boundary condition on the bottom: 

_-  a@ - (Vh.V@) when z = h(r) 
32 

and kinematic and dynamic conditions on the surface of the fluid (when z =  
H + q ( r , t ) ) :  

+(Vq.V@) = 0, -+- a@ at 2 “ (V@)2+ (31 - + g q = o .  (444 
a7 a@ 
at a2 
--- 



564 E. S. Benilov 

We introduce the potential x(z , r , t )  describing the surface waves against the 
background of the mean flow U,, which is constant within the depth of the fluid 

@ = (u, .r)-;U;t+X. 

Equations (44) have an integral of the motion and its physical interpretation is the 
energy of fluid oscillations : 

It is easy now to identify the canonical variables representing the dynamical system 
(44) as Hamiltonian. Introducing the quantity 

w, t )  = x(z ,  r ,  t)lz-H+T 

3 - a ~  a p  6~ 
at a ~ '  at- ar]' 

determining the boundary value of potential x, we represent (44c) in the form 

-- - -- 

(one can check the relations (45) by calculating directly the variational derivatives 
8&'/8Y and S X / S r ] ) .  We can see from (45) that r] and Y are canonically adjoint 
variables and we have to understand (44a, b) as conditions defining the function 
~ [ r ] ,  yl included in the Hamiltonian. (The canonical formalism for this problem is 
similar to the case of potential waves in a motionless fluid of infinite depth (Zakharov 
1968).) Henceforth we can perform all calculations directly with the Hamiltonian 
and not with the dynamic equations (it is only necessary to make sure that all the 
transformations of variables are canonical). However, an attempt to express the 
Hamiltonian only in terms of the dynamic variables r] and Y (i.e. to exclude x from 
2) turns out to be rather complicated. We shall not dwell upon this question, but 
refer to the similar procedure for the case of waves in a motionless fluid of infinite or 
finite (uniform) depth (Zakharov 1968; Yuen & Lake 1982; Lavrova 1983). Here we 
shall only remark that we can expand the Hamiltonian in a series of powers of small 
parameters el - kh and e2 - kr]: 

A? = 2 ( 0 )  + Xlf) + Zp' + . . . , 
where Xp) - el, Zc) - c2 (c2 has the physical meaning of a characteristic wave slope 
and gives a measure of the wave nonlinearity). The normalized wave amplitude a, is 
introduced proceeding from the natural condition of diagonalization of X(O) : 

k tanh kH 
In new variables 

* 
W0) = wclakI2 dk + (Fk h, zc + F, h, a,) dk, 

where s s *  
[ k  ta:h kH7 o, = (gk tanh kH)i+ (k. U,), F, = - (k- U,,) sech ( k H )  

Xi1) attains the form 
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and Xi’) has the standard form (35c) with 

((k+k,). Vo) sech (Ik-k,lH) 

1 k tanhkH f k, tanhk,H f 
v k k 1 = 8 (  ) ( ) ( k ~ k , ) ( s e c h k ~ + s e c h k , H ) + U k k l .  

The three-indexed matrix elements u k k  and vkklk, corresponding to the nonlinear 
wave interactions coincide with the mafthx elements calculated by Lavrova (1983) 
for the case of waves in a motionless fluid of uniform depth. The dynamic equation 
(35a) yields 

(46) 
* s -- ”’ - iwk a k  + #k hk + i - (a%?$” + Xi1’ +. . .). 

at “k 

. Equation (46) has a stationary solution a:t describing topographic waves on the flow, 
and below we shall study the stability of this flow. Keeping the first non-trivial terms 
in (46), we have : 

sit = -- ‘k ’k 

wk 
(47 1 

Let us now linearize (46) against the background of the stationary solution 
obtained : 

a k  = @+be ,  lbkl 4 IUit[. 

It is easy to see that the linearized equation (46) coincides with (34), describing the 
internal waves over bottom topography in the absence of near-bottom flow, up to the 
specific form of the coefficients and the replacement a, -+ bk. Thus, our caae is reduced 
to that already studied. 

However, it  is necessary to remark on one fact distinguishing the case of non-zero 
near-bottom flow. In  fact, we see from (47) that the spectrum of topographic waves 
has a singularity (uit + 00) for the wave vectors satisfying the equality o k  = 0 and 
corresponding to surface waves with zero phase velocity. The singularity occurs 
because we have neglected the small nonlinear terms when transferring from (46) to 
(47), while the exact stationary solution of (46) is regular on the whole k-plane, 
although it has a spectral peak.t Nevertheless, in a number of cams we can use (47) 
directly, adding the infinitely small imaginary correction corresponding to the wave 
damping (this procedure is called regularization) : 

where the distribution 8(l/o) is defined by the equality 

9 (L) f ( w )  = lim (r + lem) f@ dw . 
w E+O -m w 

To study the stability of the flow over random topography, we shall need the relation 
between the second-orddcumulant of the topographic wave field a$ and the 

correlation function hk hkl. Unfortunately, we cannot regularize the quantity 
uit el, where uit is given by (47), for want of a satisfactory definition of the product 

t This fact is similar to the limitation of the amplitude of nonlinear pendulum oscillations under 
resonant external forcing (while the amplitude of linear pendulum oscillations increases infinitely 
in time). 

* 
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of distributions. Under no circumstances does this invalidate the proof of the 
instability, since, as we have seen above, the exact stationary solution of (46) is 
regular and all the intermediate calculations do not depend on its particular form. 

6. Conclusions 
Here, we have considered two problems of the stability of flows over bottom 

topography : the case of shear stratified flow (vanishing at the bottom) with a ‘rigid- 
lid ’ at the surface, and homogeneous potential flow with a free boundary. Both flows 
turned out to be unstable for: 

(a) sinusoidal (and any periodic) topography ; 
(b) random spatially homogeneous bottom topography. 

The proof of the instability is based on the Hamiltonian approach and if the 
canonical variables are not known a priori (or if they are inconvenient), special 
symmetries of the matrix elements of the basic equations are required. Universality 
of the technique used in studying both these particular cases enables us to make a 
rather general statement : Any spatially inhomogeneous medium with sign-changing 
dispersion is unstable. The mechanism of the instability is based on the interaction 
(mutual generation) of waves with energies (frequencies) of opposite signs and in this 
sense is similar to the explosive instability. 

Note that even the trivial Doppler shift of the wave frequencies wk +wk+ (k-  U,,) 
in the isotropic medium moving as a solid results in the medium’s instability (only 
if the inhomogeneities are not moving together with the medium). We note also that 
the explosive instability proper does not occur in this case. 

The author is grateful to Dr A. Voronovich for valuable remarks and to Professor 
V. E. Zakharov for his attention to the study. 

Appendix A. Proof of the inequality (26) 
Let us rewrite (13 a) in a more traditional form : 

- 3;: + [ k(dz V / d z 2 )  + k2N2 - kP] 9; = 0. 
W; - kV (w; - kV)2 

Here k = Ikl, V ( z )  = IU(z)l cosp, where /3 is the angle between vectors k and U. We 
now differentiate (A 1) with respect to k, multiply it by 9; and integrate with respect 
to z within the limits 0 and H .  After some simple calculations a&/ak will be excluded 
from the obtained equality, which now attains the form 

(A 2) 
2k 

cp-cg = F 
where 1; is determined by (18) and the quantities cp = w;/k and cg = aw;/ak coincide 
for k parallel to U with the phase and group velocities respectively. One can see from 
equality (A 2) that in the case of smooth dispersion curves w = w; (cp + a, cg + a) 
the quantity Zg does not vanish on the k-plane, except perhaps for k = 0. Now, to 
prove the inequality 1; 2 0, we need only to make sure that 1; is positive at least at 
one point, for instance, when k is orthogonal to U. In  this case internal waves do not 
‘feel’ the flow at all (cf. (A 1) with B = in), and & is known to be positive (this follows 
from the fact that the internal-wave frequency w; is positive in the absence of the 
flow). Thus, we have proved the desired inequality. 
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Appendix B. Derivation of the kinetic equation (42) 

be close to Gaussian, while the condition of random phases gives us equalities 
We first note that since the wave interaction is weak, we can assume the field to 

m = o ,  & = o .  (B 1) 

Following the usual scheme we can obtain from (34) an infinite series of equations for 
cumulants of increasing orders. The first three equations of the series have the 
following form : 

-akak l  a 7  = 2 1 m ~ ~ ~ ~ k k l B k l h k ~ a k ~ 6 ( k - k , + k 2 )  

at 

+ Fkkl hk,ak, a(k +k1 +k,)) dk2 ; (B 2 U )  

(B 2 b )  I (i-al) 8 k l  a, a k a  ’ 
( i - i 5 2 2 )  

= wk,-wkl ; 

= =2, 522 = wk, + wk, 

where Zl and Z, are the corresponding sums of the fourth-order cumulants. To close 
(B 2), we must split the cumulants of the fourth order through the cumulants of the 
second order (this procedure is allowable because the distributions of ak and hk are 
close to Gaussian distributions). It is easy to see that owing to (41) and (B 1 )  only the 
following terms come through : 

akkk18ksXka = nkHk16(k -k2)  S ( k 1 - k 3 ) ,  

akhk,8k,h,a = n k H k 1 S ( k - k 2 )  S ( k l + k 8 ) ,  

Finally, we have 

(B 3) 1 cl = Uk,klHk,(nk8-nkl)  8(k1-k2-k3)9 

Z 2  = vk8klHk,(nkl+nkl) S ( k l + k 2 + k 3 ) *  

Notice that we have two timescales in the problem : characteristic wave period TI - 
l / w k  and characteristic time of the wave interaction T, 9 Tl. Thus, (B 2b) are the 
equations of ‘fast ’ pendulums with frequencies 52,. under the ‘slow ’ external forces 
Z1,,. We are interested in the established regime of movement when fast 
eigenoscillations of the third-order cumulants die out owing to the viscosity (so far 
not taken into account), i.e. the pendulums perform slow (forced) movements in the 
neighbourhood of the equilibrium state. Accordingly we introduce an infinitely small 
damping in (B 2 b )  and neglect the derivatives with respect to time: 

Substituting (41b) ,  (B 3 )  and (B 4 )  into (B 2a) and making use of the equality 
1 

Q+10 
Im- = -x6(52), 

we get the desired kinetic equation (42). 
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We should like to  emphasize that if we had used the dynamic equation with non- 
symmetrized (by the transform (23)) matrix elements, the kinetic equation would 
have had a considerably more cumbersome form. 
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