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Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability
limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very
small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge
free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond
number decreases and the maximum liquid bridge length increases. In this paper, we show experimen-
tally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity
conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that
produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liq-
uid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We cal-
culate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and
determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is
simulated too. We find qualitative agreement between the numerical predictions for both the stability
limits and the breakup process and their experimental counterparts. Finally, we show the applicability
of our technique to control the amount of liquid transferred between two solid surfaces.
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Fig. 1. Geometry and coordinate system for the liquid bridge.
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1. Introduction

Liquid bridges occur and play a relevant role both in nature [1,2]
and in many industrial applications, such as materials engineering
[3], powder granulation [4] and flow in porous media [5]. When
the solid supports are surfaces parallel to each other, the liquid
bridge becomes a relatively simple configuration, commonly used
as a testbed to study surface tension-driven phenomena. The com-
plex dynamics of the liquid meniscus formed next to the slipping
triple contact lines may significantly affect the liquid bridge behav-
ior. The problem is simplified when the solid surfaces are disks of
the appropriate size, so that the contact lines anchor to their sharp
edges. This specific configuration has turned nowadays into a
model system to study complex phenomena on free surfaces.

There are numerous interfacial phenomena that can be studied
using liquid bridges. A good example is the instability of a con-
strained capillary surface under different types of perturbations
[6]. It is well known that the maximum length of a weightless
cylindrical bridge supported by two disks of the same diameter
equals the disk circumference (the Plateau-Rayleigh stability limit)
[7]. The gravitational force deforms the liquid column overcoming
the resistance offered by the surface tension, which reduces the
maximum slenderness (length in terms of the disk diameter). In
addition, the magnitude of the gravitational force relative to that
of the surface tension force scales with the disk diameter squared,
which limits the disk size too. As a consequence, the volume of liq-
uid bridges with slendernesses greater than unity cannot exceed
on earth some tens of cubic millimeters. This limitation is of
importance in a number of practical problems, including the clas-
sical floating zone technique used for crystal growth and purifica-
tion of high melting-point materials [8], printing processes [9], and
capillary feeders [10].

Liquid bridges can be stabilized if the effect of gravity is some-
how compensated for. A number of methods have been proposed
to this end. A simple possibility is to immerse the liquid bridge
in a density-matched liquid bath (the Plateau-tank technique) so
that the stability problem becomes fully equivalent to that of a liq-
uid bridge under microgravity conditions. Using this configuration,
the Plateau-Rayleigh stability limit has been overcome by enclos-
ing the liquid bridge between elliptical disks [11], or by applying
axial electric fields [12,13]. This stability limit has also been sup-
pressed by controlling the bridge shape with the radiation pressure
of an ultrasonic wave [14] or the optical-radiation pressure of a
continuous laser wave [15]. Non-Newtonian effects can also enable
the formation of stable liquid columns with lengths well in excess
of the supporting disk circumference [16]. Small pressure gradients
along the interface due to the slight imbalance between the densi-
ties of the liquids can be cancelled if the outer bath moves upwards
at the appropriate speed [17,18]. A similar effect is produced by a
closed-flow in both the encapsulating liquid and the bridge [19].

Both the linear and non-linear dynamics of the Plateau-tank
configuration is considerably different from that of a liquid bridge
in air due to the non-negligible contribution of the surrounding liq-
uid bath. Different methods have been considered to reduce the
effect of the gravitational force on a liquid bridge suspended in
air. A simple alternative is to make the liquid drop rest on a lower
supporting disk of diameter smaller than that of the upper one
[20]. In this way, the triple contact line anchorage produces a
deformation opposite of that caused by gravity, which increases
the maximum slenderness. Paramagnetic liquid bridges with slen-
dernesses very close to the Plateau-Rayleigh stability limit were
formed using magnetic levitation [21,22]. Pure and leaky dielectric
liquid bridges surrounded by air can be stabilized beyond that limit
in the presence of an electric dc field [23]. The growth of the
axisymmetric capillary mode responsible for the breakup of liquid
bridges in low gravity was suppressed with both acoustic radiation
pressure [24] and active electrostatic stabilization [25]. Interest-
ingly, the stabilization caused by an axial outer liquid stream
[17,18] cannot be produced by a gas current. In this case, a recircu-
lation cell appears in the bulging part of the liquid bridge, which
has a destabilizing effect independently of the gas stream direction
[26,27]. A similar effect is caused by the thermal (Marangoni-
buoyant) convection in liquid bridges with high Prandtl numbers
[28].

Very recently [29], a method has been proposed to stabilize liq-
uid bridges in air and close to the Plateau-Rayleigh stability limit.
In this method, the upper disk is vibrated at a frequency f much
higher than the inverse of the capillary time t0, and with an ampli-
tude a much smaller than the supporting disk radius R. In the limit

ðft0Þ�1
; a=R � 1, the effect of the disk vibration reduces to a pres-

sure field that straightens the free surface shape. If the vibration
frequency or amplitude is appropriately adjusted, the Plateau-
Rayleigh stability limit can be reached for non-zero Bond numbers.

The primary goal of the present paper is to show experimentally
that the method described above can indeed stabilize liquid
bridges under normal gravity conditions. In Ref. [29], an analytical
study was conducted for liquid bridges asymptotically close to the
Plateau-Rayleigh stability limit [29]. Here, we extent that analysis
to arbitrary axisymmetric shapes from numerical simulations of
the Navier-Stokes equations. In addition, we describe both numer-
ically and experimentally the breakup of vibrated liquid bridges.
2. Theoretical model

The configuration considered in this work (Fig. 1) consists of an
isothermal mass of liquid of volume V, held by the surface tension
force between two parallel and coaxial disks of radius R which are
placed a distance L apart. The liquid bridge density, viscosity and
surface tension are q;l, and r, respectively. The surrounding gas
density and viscosity are much smaller than those of the liquid,
so that they do not significantly affect the liquid bridge dynamics.
The liquid is subjected to the action of the axial gravitational force
of magnitude g per unit mass. The upper disk is vibrating harmon-
ically with an amplitude a and frequency f.

We use the disk radius R and the capillary time t0 � ðqR3=rÞ1=2
as the characteristic length and time, respectively. The problem
can be characterized in terms of the following dimensionless
parameters: the slenderness K � L=ð2RÞ, the reduced volume
V � V=ðpR2LÞ (defined as the ratio of the physical volume V to
the volume of a cylinder of length L and radius R), the Bond number

B � qgR2=r, the Ohnesorge number Oh � lðqrRÞ�1=2, the upper
disk vibration amplitude A � a=R, and frequency X � 2pft0. These
last two quantities can be grouped into the dimensionless number
W � XA, which measures the relative importance of the pressure
due to the upper disk vibration versus the capillary pressure.
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Fig. 2. Maximum slenderness calculated from Eq. (13) for V ¼ 1 as a function of W
for B ¼ 0:001 (red solid line), 0.005 (green dashed line) and 0.01 (blue dotted line).
The horizontal line is K ¼ p. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Experimental setup: upper rod (A), bottom rod (B), piezocomposite actuator
(C), orientation system (D), motorized stage (E), camera (F), optical lenses (G),
triaxial translation stage (H), optical fiber (I), frosted diffusor (J), and anti-vibration
isolation system (K).
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For a sufficiently large frequency X and small amplitude A, the
liquid bridge dynamics can be seen as the superposition of a fast
and slow motion (the method of multiple scales) [29]. In the
asymptotic limit A � 1 and X � 1, the former vanishes and the lat-
ter satisfies the equations

ðruÞr þ rwz ¼ 0; ð1Þ
uT þ uur þwuz ¼ �pr þ C½urr þ ðu=rÞr þ uzz�; ð2Þ
wT þ uwr þwwz ¼ �pz þ C½wrr þwr=r þwzz�; ð3Þ
where r and z are the radial and axial cylindrical coordinates,
respectively, T is the slow time, the subscripts r; z, and T denote par-
tial derivatives with respect to those variables, u and w are the
radial and axial velocity components, respectively, and p is the

(hydrostatic) reduced pressure plus the contribution 1
4 j$qj2 due to

the vibration-induced pressure field [29]. Here,
qðr; z; TÞ � �W�1ps, where psðr; z; TÞ is the amplitude of the zeroth
order solution for the pressure field [29].

The above equations are integrated considering the regularity
conditions u ¼ wr ¼ pr ¼ 0 at the symmetry axis r ¼ 0, the non-
slip boundary condition u ¼ w ¼ 0 at the solid surfaces z ¼ 0 and
2K, as well as the kinematic compatibility

FT þ Fzw� u ¼ 0; ð4Þ
and the equilibrium of normal and tangential stresses

pþ 1
4
j$qj2 � B z� Ĉ � 2C½ur � Fzðwr þ uzÞ þ F2

zwz�
1þ F2

z

¼ 0; ð5Þ

½1� F2
z �ðwr þ uzÞ þ 2Fzður �wzÞ ¼ 0 ð6Þ

at the free surface r ¼ Fðz; TÞ. In the above equation,

Ĉ ¼ 1þ F2
z � FFzz

Fð1þ F2
z Þ

3=2 ð7Þ

is twice the local mean curvature of the free surface. These bound-
ary conditions must be complemented with the anchoring condi-
tions at the disk edges,

F ¼ 1 at z ¼ 0;2K: ð8Þ
Also, the nondimensional volume is prescribed and conserved;
namely,Z 2K

0
F2 dz ¼ 2KV : ð9Þ

The vibration-induced pressure field qðr; z; TÞ satisfies the following
boundary-value problem:

r2q ¼ 0; ð10Þ
qr ¼ 0 at r ¼ 0; q ¼ 0 at r ¼ Fðz; TÞ; ð11Þ
qz ¼ 0 at z ¼ 0; qz ¼ �W at z ¼ 2K: ð12Þ

For liquid bridges close to the Plateau-Rayleigh stability limit
(K ’ p;V ’ 1 and B ’ 0), neutral stability occurs if [29]

p2V

K2 � 1 ¼ 9ffiffiffi
2

p K2

p2 B� kW2

8K

 !" #2=3
þ 3
2

p
K
� 1

� �2
; k

’ 0:024794: ð13Þ
This expression reduces to that derived in Ref. [20] for W ¼ 0. Fig. 2
shows the maximum slenderness calculated from (13) as a function
of W for different Bond numbers. The vibration stabilizes the liquid
bridge until the Plateau-Rayleigh stability limit (K ¼ p) is reached.
From this point on, the vibration has a destabilizing effect because
the pressure field overcompensates for the effect of gravity. Eq. (13)
shows that the upper disk vibration reduces the ‘‘effective” Bond
number as B ! B� kW2
=ð8KÞ. Therefore, the comparison between

B and kW2
=ð8KÞ establishes the importance of the vibration stabi-

lizing effect versus the gravitational destabilizing one. This consis-

tent with the fact q � W , and therefore the term 1=4 j$qj2 in Eq.
(6), accounting for the effect of the vibration-induced pressure field,
scales as W2. One concludes that the physical interpretation offW ¼ kW2

=8 (K � 1) is clearer than that of W. For this reason, we
will use the former as independent governing parameter in the rest
of our analysis. Therefore, the problem will be formulated in terms

of the set of parameters fK;V ;B;Oh;fWg.
Eq. (13) is only valid for Bond numbers much smaller than

unity. To verify this condition, experiments on Earth must be con-
ducted with submillimeter liquid bridges, which entails important
technical difficulties. In this paper, we extend the asymptotic sta-
bility analysis in Ref. [29] by numerically solving the above theo-
retical model for axisymmetric liquid bridges far away from the
Plateau-Rayleigh stability limit. Eqs. (1)–(10) are solved with the
numerical method proposed in Ref. [30].

3. Experimental method

3.1. Experimental setup

Fig. 3 shows the experimental setup used in the present work. A
liquid bridge was formed between two parallel and coaxial disks (A
and B) of the same radius R ¼ 1 mm. The lower disk had an orifice
200 lm in diameter, which was used to feed and remove liquid by
using a syringe pump connected to a stepping motor. The upper
disk was fixed to a piezocomposite actuator (PSt 1000/10/7 VS18,
PIEZOSYSTEMJENA) (C) connected to a power amplifier (LE 150/1000
EBW, PIEZOSYSTEMJENA). Harmonic vibrations of the upper disk were
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Fig. 4. Displacement of the upper disk zdðtÞ (symbols) and the fit
zd ¼ a cosð2pft þuÞ to the measured values.
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produced with a 10-MHz function and arbitrary waveform genera-
tor (AGILENT, LXI) connected to the power amplifier. The frequency
of the vibration could be precisely controlled by the experimenter.
However, the amplitude is the result of electro-mechanical transfer
function which depends not only on the gain of the power ampli-
fier but also on both the mass connected to the actuator and rigid-
ity of that connection. The lower disk was fixed to a high-precision
orientation system (D) to ensure the correct alignment with the
upper one. This system was joined to a vertical motorized stage
(Z825B connected to TDC001, scThorlabs) (E) to set the distance
between the disks. The lower disk speed could be selected within
the range 0.003–2.6 mm/s.

We recorded digital images of the liquid bridge at 30 frames per
second using a CCD camera (AVT STRINGAY F-125B) (F). The images
consisted of 1280� 960 pixels, and were acquired with an expo-
sure time of 25 ls. The camera was equipped with a telecentric
objective (G) providing a magnification of approximately 7.16
lm/pixel. The liquid bridge was focused displacing the camera
both horizontally and vertically by using a triaxial translation stage
(H). We illuminated the fluid configuration from the back with cool
white light provided by an optical fiber (I). A uniformly lit back-
ground was obtained by locating a frosted diffuser (J) between
the optical fiber and the fluid configuration. We checked that the
configuration was axisymmetric by acquiring images with an aux-
iliary CCD camera (not shown in Fig. 3) whose optical axis was per-
pendicular to that of the main camera. All the experimental devices
were mounted on an optical table, which rested on a pneumatic
anti-vibration isolation system (K). To analyze both the vibration
of the upper disk and the liquid bridge breakup, images were
acquired with a high-speed video camera (PHOTRON, FASTCAM
SA5). We used a sub-pixel resolution technique [31] to detect the
contours in the images.

Experiments were conducted using two silicone oils (see
Table 1) because their surface tensions are fairly insensitive to con-
tamination. In fact, interfaces with higher surface tensions become
contaminated very easily (especially when working with liquid
bridges [32]), and the effects of that contamination may be compa-
rable with the (small) pressure field effect. Those surface tensions
were measured with the Theoretical Image Fitting Analysis (TIFA)
method [33], while the rest of the liquid properties were taken
from the manufacture’s specifications. We selected liquids with
low and moderate viscosities to examine the influence of this

parameter. The ratio q=r (and therefore B and fW ) takes very sim-
ilar values in the two liquids.

Before conducting the experiments, the actuator was calibrated.
For this purpose, images of the upper disk vibrating without the
liquid bridge were acquired with a high-speed video camera. The
actuator calibration was conducted without the liquid bridge to
accurately detect the position of the disk edge in the images. A har-
monic function was fitted to the detected positions to measure
both the amplitude and frequency of the oscillation. Fig. 4 shows
the displacement zdðtÞ of the upper disk and the fit to the measured
values in that case. The fitted frequency differed in less than 0.01%
with respect to the value prescribed in the experiment. The analy-
sis shown in the figure was repeated several times in the course of
the experiments to make sure that the amplitude did not change
due to possible mechanical mismatches. Submicrometer oscillation
amplitudes were obtained in all the cases analyzed except for fre-
Table 1
Properties of the working liquids at 20 �C.

Liquid q (kg	m�3) r

1 cSt silicone oil 818
35 cSt silicone oil 957
quencies close to the resonance ones. As mentioned above, these
frequencies are not intrinsic properties of the shaker, because they
also depend on both the mass of the elements connected to it and
the type of connection used. Therefore, a small shift of the shaker
resonance frequency may take place when the liquid bridge hangs
on the upper disk, which might result in a significant variation of
the vibration amplitude. For this reason, the value of this quantity
measured from the actuator calibration could not be used for com-
parison with theoretical results. Alternatively, we estimated the

dimensionless amplitude value fW in the experiments by fitting
the liquid bridge numerical contour to the experimental one. The
deviations obtained in the experiments shown in Section. 4.1 with
respect to the vibration amplitude measured in the actuator cali-
bration (without the liquid bridge) were around 30%.

We could not reproduce oscillation amplitudes larger than
about 2 lm at frequencies larger than around 11 kHz because the
vibration unhooked the disk after some time. Consequently, we
conducted the experimental runs described below with that ampli-
tude and frequency. The corresponding results are presented in
Section. 4.1. Also, we conducted a single experiment with an
amplitude a ¼ 5:0 lm and at a frequency f ¼ 13:2 kHz to clearly
appreciate the vibration effects on the liquid bridge breakage pro-
cess. Images of that process are shown in Section. 4.2.
3.2. Experimental procedure

In order to determine the liquid bridge stability limit, the fol-
lowing steps were taken. The disks were located at a short distance
to fill with liquid the gap between them. The disks were moved
apart by displacing the lower disk until a slender liquid bridge
was formed. Liquid was injected until the bridge dimensionless
volume took a value around unity. In the experiments with vibra-
tion, the actuator was switched on. Then, the disks were moved
apart by displacing the lower disk at 3.5 lm/s, while liquid was
injected at 0.04 ml/h to keep the initial dimensionless volume
approximately constant. Images of the liquid bridge were acquired
during this quasi-static stretching process. The process was
stopped when the liquid bridge broke up. An image of the liquid
bridge was processed with the TIFA method [34] to determine
the surface tension. The last liquid bridge image before breakup
was processed to measure both the volume and distance between
the two disks. The same experimental run was conducted with and
(mJ/m2) l (mPa	s) Oh

17 
1 0.82 0.00691
20 
1 33 0.237
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without the upper disk vibration to study the influence of the
vibration-induced pressure field on the stability limit.

We also analyzed the influence of the upper disk vibration on
the liquid bridge breakup process in a single experiment with an
amplitude a ¼ 5:0 lm and at frequency f ¼ 13:2 kHz. In this case,
a liquid bridge with a fixed slenderness was formed. The liquid
was withdrawn with the pump until the volume reached a value
close to that of the minimum volume stability limit. The actuator
was switched on. Then, we let the liquid evaporate so that the
bridge broke up spontaneously. Images of the process were
recorded with the high-speed video camera. The same experimen-
tal procedure was followed without the upper disk vibration.
4. Results

4.1. Equilibrium shapes and stability

It is well known that liquid bridges become unstable due to the
growth of the first axisymmetric oscillation mode for a wide range
of experimental conditions [35]. In this work, we will restrict our
analysis to those conditions. Fig. 5 shows both the damping factor
and oscillation frequency characterizing the first axisymmetric
oscillation mode as function of liquid bridge slenderness while
the rest of parameters remain fixed. Without vibration, the oscilla-
tion frequency vanishes and the damping factor curve splits into
two branches (only the dominant one is plotted) for K ’ 1:78.
The dominant branch behind the curve split decreases very shar-
ply. The numerical method fails to calculate the equilibrium shape
very close to the stability limit, so the marginal stability point had
to be determined by extrapolation (this point is expected to be
located very close to the end of that curve). Interestingly, the
damping factor does not monotonically decrease as the slender-
ness increases. On the contrary, there is a small interval of K before
the split of the damping factor curve where the liquid bridge stabi-
lizes as K increases. This effect has been previously observed close
to the minimum volume stability limit [36], and must be attributed
to gravity because it does not appear in cylindrical shapes [37]. The
liquid bridge vibration does not significantly affect the eigenfre-
quency for slendernesses smaller than that of the split point. How-
ever, it produces an almost constant lateral displacement of the
dominant branch between the split and the neutral stability point.
As a consequence, liquid bridges with slendernesses within the
interval 1:8KKK1:83 are stabilized by the upper disk vibration

for fW ¼ 5:24� 10�3. The fact that the damping factor far from
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Fig. 5. Damping factor c and oscillation frequency x of the first axisymmetric
oscillation mode calculated as function of liquid bridge slenderness K for fW ¼ 0
(blue solid line), 2:86� 10�3 (red dashed line), and 5:24� 10�3 (black dashed-dot
line). The values of the rest of governing parameters are V ¼ 1;B ¼ 0:478, and
Oh ¼ 0:237. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
the stability limit is not significantly affected by the disk vibration
implies that the stabilization effect cannot be anticipated from the
damping of perturbations in stable shapes.

Fig. 6-left shows the free surface position for the same liquid
bridge with and without the vibration-induced pressure field.
The lines and symbols correspond to the experimental and numer-
ical contours, respectively. The difference between the volumes
enclosed by the two curves is smaller than 0.03%. The numerical
results perfectly fit the experimental contour in the absence of
vibration. As can be observed, the vibration-induced pressure field
partially compensates for the effect of gravity on the liquid bridge
equilibrium shape. The upper disk vibration reduces the liquid
bridge deformation, which slightly decreases the average free sur-
face curvature (Fig. 6-right).

In the absence of vibration, the local mean curvature ĈðzÞ of the
free surface is a linear function of the axial coordinate z [29]. For
vibrated liquid bridges with KJ1; ĈðzÞ exhibits a quasi-linear
dependence with respect to z in the major part of the liquid bridge
(Fig. 6-right), where the vibration-induced pressure magnitude
1
4 j$qj2 takes very small values (Fig. 7). The difference between
the vibration and non-vibration cases concentrates near the upper

disk, where 1
4 j$qj2 increases up to values on the order of B (Fig. 7).

The curves ĈðzÞ remain practically parallel in the rest of the liquid
bridge. The slope Beff of the linear function ĈðzÞ ¼ Ĉ0 � Beffz fitted to
the experimental values can be regarded as the effective Bond
number accounting for both gravity and the vibration-induced
pressure field. Fig. 8 shows the values of Beff measured with and
without vibration. As can be observed, Beff slightly decreases due
to the vibration-induced pressure field. The effect on the curvature
slope decreases as the liquid bridge slenderness increases. This
does not imply that the shape of slender liquid bridges is less
affected by vibration because these bridges are more sensitive to
variations of the Bond number than the short ones. The decrease
of the effective Bond number is one order of magnitude larger than

the fW value.
Using the experimental procedure described in Section. 3.2, the

maximum slenderness of 1 and 35-cSt silicone oil liquid bridges
with volumes around unity was determined with and without
vibration. As mentioned in Section. 3.1, the ratio q=r takes practi-
cally the same value for the two working liquids, and therefore

both B and fW are practically constant when the vibration ampli-

tude and frequency are fixed. However, B � fW , and therefore
small variations of B may produce effects comparable with those
caused by the vibration-induced pressure field. In order to collect
all the experimental data in a single K against V graph, we used
the Taylor expansion

Kð1þ dV ;B;fW Þ ’ Kð1þ dV ;Bþ dB;fW Þ � dB
@K
@B

����
ð1;B;0Þ

� dBdV
@2K
@B@V

�����
ð1;B;0Þ

� dV2@
2K

@V2

�����
ð1;B;0Þ

; ð14Þ

where B is the Bond number averaged over all the experimental

realizations, and dV ; dB;fW are assumed to be much smaller than

unity. The values Kð1þ dV ;Bþ dB;fW Þ were measured in the exper-
iments, while the Taylor expansion coefficients were evaluated
numerically with the method proposed in Ref. [35]. In this way,
the stability limit KðVÞ could be approximately obtained for fixed

values B and fW of the Bond number and vibration magnitude,
respectively.

Fig. 9 shows the maximum slenderness of 1 and 35-cSt silicone
oil liquid bridges with and without vibration. When the upper disk
vibrates, the maximum slenderness increases in around 0.03–0.1
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depending on the liquid bridge volume. This increase is around
0.03 for V ’ 1, which is consistent with the numerical results
shown in Fig. 5. The two liquids follow the same trend despite
the large difference between the corresponding values of the
Ohnesorge number, which indicates that viscosity does not signif-
icantly affect the stability limit. This result could be anticipated
from the linear stability analysis because both the frequency and
damping factor become zero at marginal stability (Fig. 5), and
therefore the eigenmode velocity field vanishes there. However,
it must be noted that the liquid bridge was not strictly at equilib-
rium when vibration was applied due to the finite values taken by
both the vibration amplitude and frequency [38]. In fact, the
dynamical effects of the upper disk vibration on the base state
became more apparent as viscosity decreased. The fact that viscos-
ity did not significantly affect the maximum slenderness in our
experiments (Fig. 9) suggests that those dynamical effects do not
considerably alter the liquid bridge stability.
4.2. Breakage at the minimum volume stability limit

To conclude our analysis, we examined both experimentally
and numerically the breakage of a liquid bridge at the minimum
volume stability limit with and without vibration. As explained
in Section. 3.2, we conducted a single experiment with an ampli-
tude a ¼ 5:0 lm and at a frequency f ¼ 13:2 kHz to clearly appre-
ciate the vibration effects on the breakage process (these
conditions were not reproducible because the vibration unhooked
the disk after some time). Fig. 10 shows a sequence of images right
before the free surface pinching with and without vibration. As can
be observed, the minimum volume decreases when the upper disk
vibrates due to the stabilization effect of the induced pressure field.
The initial equilibrium shape is more symmetric in this case, and so
is the unstable eigenmode responsible for instability. In the nonlin-
ear regime, a liquid thread is formed between the upper and lower
parent drops. Both the gravitational force and the vibration-
induced pressure field play no significant role in this phase of the
breakage. The free surface pinching takes place first in the lower
end of the liquid thread due to the footprint of gravity in the initial
shape. The delay of the second pinching pulls up the satellite



-1.6 ms 0 ms-0.7 ms 0.7 ms

Fig. 10. Sequence of images right before the free surface pinching for fW ¼ 0 (upper
images) and 43:4� 10�3 (W ¼ 3:744) (lower images). The labels indicate the time
to the pinching. The values of the rest of governing parameters are
K ¼ 1:439;V ¼ 0:5798 (upper images) and 0.5448 (lower images), B ¼ 0:499, and
Oh ¼ 6:91� 10�3.
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droplet. This delay decreases in the vibrated case owing to the par-
tial compensation of gravity. As a consequence, the satellite droplet
remains suspended longer between the two parent drops. The sizes
of these two parent drops are clearly affected by vibration [39]. The
ratio of the upper drop volume to that of the lower drop is 0.546
and 0.218 with and without vibration, respectively, which means
that vibration enhances very considerably the transfer of liquid
to the upper solid surface.

Fig. 11 shows the numerical simulation of the vibrated liquid

bridge breakup. The vibration-induced pressure magnitude 1
4 j$qj2

sharply increases near the upper triple contact line at beginning
of the process. Despite its highly local character, this effect alters
significantly the whole initial liquid bridge shape. The vibration-
induced pressure remains confined in that very small region during
breakage. For this reason, one expects that the liquid bridge evolu-
tion be essentially the same as that in absence of vibration, but
starting from a different initial shape. In particular, the formation
of the inner liquid thread and the free surface pinch-off are practi-
cally insensitive to the upper disk vibration. As explained in Sec-
tion. 2, the simulation integrates the hydrodynamic equations
asymptotically exact in the limit A � 1 and X � 1. The effects
associated with the finite values taken by these two quantities in
the experiment are noticeable in the critical region next to the
-5.905 -0.1267 -0.0282 -0.000927

20

10

0

Fig. 11. Sequence of images right before the free surface pinching forfW ¼ 43:4� 10�3 (W ¼ 3:744). The labels indicate the time to the pinching. The
values of the rest of governing parameters are K ¼ 1:460;V ¼ 0:5366;B ¼ 0:505,
and Oh ¼ 6:91� 10�3. These values are slightly different from those of the
experiment (Fig. 10) because the latter correspond to a quasi-stable equilibrium
shape, which considerably increases the CPU time.
upper triple contact line [38]. This explains the quantitative differ-
ences between the experimental and numerical results.

When a liquid drop is placed between two horizontal parallel
solid surfaces, part of the drop mass can be transferred from the
lower surface (donor surface) to the upper one (acceptor surface)
through the quasi-static stretching and subsequent breakup of
the liquid bridge formed between those surfaces. This process of
mass transfer has applications in several technological fields [3].
For a small difference between the contact angles of the donor
and acceptor surfaces, the triple contact lines pin on those surfaces.
In this case, the process exactly corresponds to the liquid bridge
breakage at its minimum volume stability limit (Fig. 10). The static
transfer ratio a is defined as the ratio of volume of liquid trans-
ferred to the acceptor surface to the total liquid bridge volume
after its breakup. For sufficiently small liquid bridges, the Bond
number vanishes, and a becomes an intrinsic property of the sys-
tem which only depends on the contact angles [41].

Consider a small liquid bridge formed between two horizontal
parallel solid surfaces with the same contact angles. The liquid
bridge is stretched quasi-statically until its maximum slenderness
(minimum volume) stability limit is almost reached. Then, one of
the surfaces is vibrated under the conditions explained in this
work, while the liquid bridge is further stretched until it breaks
up. The surface vibration allows one to select a by adjusting the

vibration intensity fW . Fig. 12 shows the values of aðfW Þ when
either the acceptor or donor surface is vibrated. The transfer mass

ratio can be significantly modified within the range of fW consid-
ered in our experiments.
5. Concluding remarks

The stabilization of liquid bridges in air is a long-standing prob-
lem which has been approached by different means (see, e.g., Refs.
[20–25]). We have shown in this work that axisymmetric millime-
ter liquid bridges subject to the gravitational field can be stabilized
by vibrating the upper disk at a high frequency (in terms of the
inverse of the capillary time) and with small amplitude (in terms
of the disk radius) [40]. The liquid bridge stabilization is caused
by a pressure field which produces virtually no capillary waves.
In fact, if the amplitude were comparable with the liquid bridge
radius (say, 100 lm), the upper disk vibration would produce
large-amplitude surface waves and the phenomenon would be
completely different. The liquid bridges were stabilized indefi-
nitely, i.e., until the upper disk vibration stopped (the evaporation
rate was very low). In contrast to what occurs in the stabilization
by electric [23] or magnetic fields [21,22], our technique does
not demand any electrical property, and can be applied to any
liquid.
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Fig. 12. Transfer mass ratio aðfW Þ calculated from the simulation for
V ¼ 0:545;B ¼ 0, and Oh ¼ 6:91� 10�3 when either the acceptor (solid symbols)
or donor (open symbols) surface is vibrated. In each simulation, the slenderness
was that of the minimum volume stability limit with vibration.
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The previous theoretical analysis [29] was restricted to configu-
rations asymptotically close to the Plateau-Rayleigh stability limit
(K ¼ p;V ¼ 1;B ¼ 0). We have extended that analysis to any
axisymmetric configuration by numerically solving the linearized
Navier-Stokes equations. Also, we have solved the full nonlinear
hydrodynamic equations to describe the liquid bridge breakup
under the action of the vibration-induced pressure field.

The liquid bridge dynamics can be seen as the superposition of a
fast and slow motion. The fast motion was hardly noticeable in the
experiments for the Ohnesorge numbers considered, while the
slow one was significantly affected by the vibration-induced pres-
sure field. This pressure field reduces the apparent gravity force,
which stands the liquid bridge upright, and consequently increases
its maximum slenderness. This effect was relatively small in our
experiments due to limitations of the experimental setup. In fact,
oscillations of the upper disk with frequencies larger than 11 kHz
unhooked it when the amplitude exceeded about 2 lm, which
set an upper limit for the acoustic pressure magnitude. If this lim-
itation is overcome, more significant effects can be obtained, and
applications of this technique will become more obvious.

One of those applications is the transfer of a liquid drop from a
solid surface (donor surface) to another (acceptor surface) through
the stretching and breakup of liquid bridges formed between those
surfaces. This mass transfer process has been used in many indus-
trial applications, including offset printing, drop deposition, pack-
aging industry and electronic circuits printing [3]. In the so-
called quasi-static transfer process, the solid surfaces are moved
away from each other at a speed much lower than the capillary
velocity, and the bridge evolution can be seen as a series of equilib-
rium states. If the difference between the contact angles of the
donor and acceptor surfaces is small enough, the triple contact
lines pin on those surfaces, and the problem exactly corresponds
to the experiment shown in Fig. 10. For sufficiently small liquid
bridges, the static transfer ratio a is an intrinsic property of the sys-
tem because it only depends on the contact angles [41]. The upper
and lower surface vibration allows one to select a by adjusting the

vibration intensity fW . For larger liquid bridges, the gravitational
force becomes relevant, and the transfer ratio also depends on
the Bond number, whose effective value can be controlled by the
surface vibration.

The experimental analysis presented here can be extended to
liquid bridges with unpinned contact lines to study the effect of
the vibration-induced pressure field on the mass transfer process
mentioned above. It can also be extended to both liquid lenses
and pendant drops. In all these systems, one must expect a signif-

icant effect on the system’s stability as long as the parameter fW be
comparable to the corresponding Bond number.
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