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1. The scattering of nonlinear waves in a
weakly dispersive medium with random inhomogeneities
is an important problem in the general theory of
waves. Powerful general methods have been developed
for the linear case (see Ref. 1 and the literature
cited there), but in the nonlinear case it is non-
trivial to take into account inhomogeneities and
far fewer results have been obtained in this case.
There are three different approaches to the problem
of nonlienar waves in a fluctuating medium: the
Born approximation, perturbation theory for systems
which are almost integrable, and the mean-field
method. The Born approximation2:3 is applicable
only to small space—time intervals, while use of
the second appraoch“ assumes that the "homogeneous"
form of the problem is integrable by means of the
methods used to solve inverse-scattering problems.
The mean-field method® has been widely used in
different physical problems. Although it assumes
that the nonlinearity and inhomogeneity of the problem
are additive, this assumption was later shown to be
incorrect.®

The present paper is devoted to a modification
of the mean-field method, which allows a rigorous
asymptotic justification. The modification is based
on a transformation to a reference frame which
moves with the fluctuating velocity of the wave.

In this frame the phase fluctuations can be filtered
out and the evolution of the wave profile can be
described. We will show that because of this trans-
formation to a new reference frame, secular terms
are absent in all orders of perturbation theory.

2. We consider the standard equation describ-
ing the evolution of sound waves of small, but
finite, amplitude in a one-dimensional medium with
small fluctuations in the speed of sound:

Ugr — (1 +€0)  uyy = €2 (U?)yx

(1)

where ¢ is a small positive number, and a(x, t)

is a stationary random function with a zero mean.
We first consider purely temporal fluctuations:

a = a(t). We transform to a reference frame moving
with the fluctuating velocity (which is to be deter-
mined:

x'=x — fe(t)dt, (2)

In terms of these new variables Eq. (1) takes the
form (the primes are omitted)

t'=1t

(3)

In analyzing (3) we shall use the asymptotic method
of multiple time scales; i.e., in addition to the
"fast" time t, we introduce a hierarchy of "slow"
times: T = €2t, T, = €’t, and so on. The time
derivatives in (3) can then be transformed to

Ugr — 2ClUyy — Cotty + [c? — (1 + €0)* Ty = 0.

€ o
aT
The solution of Eq. (3) is written in the form of
asymptotic series
uoe, t,T,..) = u®@, T,...) + eaVx,0,T,...) +...,

(4)
ot,T,...) = 1+ec(,T,..) +...
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The lowest-order terms in (4) correspond to waves
travelling to the right with a velocity close to the
speed of sound. To zero order in ¢ the perturba-
tion-theory equations are satisfied automatically.

To first order we obtain an equation for the scattered
field u(1):

Qa
ul) —2ul) =eMu® 426~ Dy (5.1)

Equation (5.1) should be supplemented with the
condition that there be no reflected waves in the
limit t » —:

e =y

x+2t=const =0
= —o

x = const
t— —es
Here it is implicitly assumed that the fluctuation
is switched on adiabatically; i.e., Eq. (5) should be
solved by replacing a(t) > a(t) eVt, 0 < v « 1
and then by taking the limit v = 0. This device
ensures that the improper integrals arising below
converge. The problem (5) can be trivially in-
tegrated:

W0 e+ 27, Page - dr -4 T) [ [a()- cV@ldr.
0 e (6

(5.2)

Because of the arbitrariness in the choice of c(t),
we assume

c(l)=a(f),
which will be justified below.

To second order in € we have an inhomogeneous
linear equation for ul2

5— (u,m —2u)=F(x,1,T),

(7)

@) (0) (8
F=2ul® + [@©) ]x + 20083 rauM +2c@uQ + cPuf 8
Because of the stationary nature of a'(t'), the finite-
ness of u(2) can he ensured by requiring that

1 A

= — ,T)dt=
(F) Aliin‘. 5 ~fA F(x,t,T)dt=0, (9)
and, taking the special case <c(2)> = 0, we obtain
with the help of (6)-(8) an equation describing
the slow evolution fo the wave [the index (0) is
omitted]:

2 oo

urt -gz-—ux +uy, t+ ofuxx(x*z‘r! T)W(r)dr=0, (10)
where W(t) = <a(t)a(t + t)> is the correlation func-
tion of the speed of sound fluctuations,?) g¢? =
W(0). Equation (10) involves only determined co-
efficients, which is an advantage over the original
equation (1). Since the field is averaged in a
reference frame moving with the local speed of
sound and "following" the phase fluctuations of
the wave, u(x, T) describes the mean wave form
and not the mean field. We note also that the fast-
time average in our method arises as a natural
condition for the absence of secular terms and
in this sense our method differs in an essential
way from the ensemble average technique ordinarly
used in problems of this kind. Our averaging
technique better corresponds to the experimental
situation, where one typically averages over time.
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We emphasize that we have nowhere used the hy-
pothesis that the distribution of the speed of sound
fluctuations is a Gaussian; this is also true of the
higher-order approximations of perturbation theory,
which are constructed in a similar way.

3. To justify condition (7) and to compare
our results with the mean-field method, we return
to expression (6) for u{1) and assume, as is
customary in the mean-field method, that c(1) =0
(i.e., we transform to an inertial reference frame
moving with a constant velocity). In this case
the first term in (6) describes the scattered wave,
while the second term describes a small shift of
the incident wave as a whole (this shift is due

to the fluctuations in the propagation velocity of
the wave):

w@x - e8(t), T) ~u®@(x, T) - eul x, T)O (),
where § = f agr)dr. It is easy to show that the

mean-square [in the sense of (9)] phase fluctuation
<6?> is infinitely large. In fact,

o 0 0 o
)= [ [la@+ta@' +t))drdr’' = [ | W(r-r')drd(f'l.
It is thus clear that the integral in (11) diverges
for any W(r): [ W(r)dr #0. It is also clear that,

together with <6?>, the quantity <(u(!) )2> also
diverges. Because of the nonlinearity of the
original equation, this quantity appears in the
boundedness condition of u(*) in the limit t -+ .
Hence secular terms appear in the higher approxi-
mations of perturbation theory when e(1) = ¢ and,
therefore, perturbation theory as a whole breaks
down.2) This was not noted in Ref. 5 or in later
papers on this subject, causing the erroneous re-
sults. A natural condition removing the increase
of u(®) ig (7): It can be assumed as a necessary
condition for this reason. If this increase is ignored
(as was done in Ref. 5), the resulting equation
will describe the mean field U (rather than the
mean wave form u) and will be in a reference frame
(x,T) moving with the constant velocity ¢ = 1:

Ur+ —-a; +aug

NI%

(12)
(F+21, T)W(r)dr+id

+ 'o,‘ - ;;{ W(r)dr=0.

In order to compare our results with those obtained
using the mean-field method, we calculate the mean
field in a "field-averaged" reference frame in terms
of the randomly oscillating reference frame (2):

a(x,T)= fu(f-ea,r)r(a)da, (13)
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where T'(6) is the probability distribution of the
phase, which is determined through the distribution
of fluctuations in the speed of sound I(a) and

t
the equation 6(f) = [ a(r)dr. Similarly, it can be

shown® that if r(a) is Gaussian, then (13) for
u(x,T) satisfies an equation which is fundamentally
different from the ordinary mean-field equation
(12) (the difference lies in the different types

of nonlinear terms). In the linear approximation,
however, the results of the two approaches are
identical, since there are no diverging (quadratic)

terms of the type <(u(?))2> in perturbation theory
for linear systems.

4. We consider now the case of purely spatial
fluctuations of the speed of sound a = a(x). This
case can be included in the method described here
if the substitution x <> t is carried out in all of
the computations [for example, in place of (2) we
dx
c(x)
s0 on]. We thus obtain an equation of the type
(10), but one that describes the evolution with.
respect to X (X = e2x is the slow spatial coordinate):

2 -
ux~izu,+uu,— [ up(X, t+27)W(r)dT=0. (14)
0

make the substitution x'=x,¢t' =t f

, and

Finally, we note that our approach can be
extended trivially to a weakly dispersive medium.

- )We emphasize that the average of the correlation function
is to be understood in the sense of (9).

2)We note that u(*) depends on t quadratically, and the con-

dition | u(°)| » g ul®) | is violated for t "~ 1/ e? or,

equivalently, when T = €2t A 1, i.e., the case of interest to
us.
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