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C H A N N E L  W I T H  

The scattering of surface water-waves in a channel with corrugated bottom and walls is investigated. We study two cases: 
(1) ordinary wave reflection; (2) scattering into specific "mode" waves, i.e. into oscillations propagating along the channel's 
axis and having a standing-wave structure in its cross-section. An analytical expression for the damping-due-to-scattering 
coefficient is obtained. The second type of scattering proved to be more effective. 

/ 

1. Introduction 

Surface-wave scattering in basins with a periodically uneven bot tom was thoroughly investigated during 
recent years, e.g. Refs. [ 1-6]. In particular, Bragg scattering (occuring when the wavelength of  the incident 
wave is approximately equal to the half-period of  the bot tom irregularities) was studied in Ref. [4]. An 
attempt of  straightforward generalization of  these results was made in Ref. [7], where channels with 
corrugated walls and bot tom were considered. A wave, penetrating into such a channel, is damped  due 
to scattering, its energy being transferred to reflected waves. The practical interest o f  the author of  [7] 
was concerned with a design of  harbour  resonators. 

We note, that in the case of  a channel, (not "open"  basin) there is an additional type of  surface-wave 
oscillations. These oscillations are formed by a pair  of  ordinary surface waves with wave vectors being 
equiangular to the channel 's  axis. The phases of  the waves are related in such a way that a standing wave 
arises in the cross-section of  the channel. Such oscillations (we shall call them mode  waves) have a 
dispersion relation which is essentially different from that of  ordinary surface waves. As a consequence, 
resonant (Bragg) scattering into mode oscillations essentially differs from the case which was considered 
in Ref. [7]. In particular, the scattering of  an ordinary surface wave into a first mode  appears  to be much 
more effective. This can also be important in view of  practical applications of  the theory. 

In the present paper  we investigate scattering of  surface waves into surface and first mode in channels 
with corrugated boundaries. In Section 2 we derive an equation governing Bragg wave scattering of  the 
waves in the channels by means of  a multiple-scale method. In Section 3 some solutions of  this equation 
are obtained and analysed. 

2. Statement of the problem and the governing equations 

We consider surface waves in a channel with an ideal fluid (cf. Fig. 1). The corrugated walls and bot tom 
of  the channel are defined by the equalities 

z = h ( x ) ,  y = D + d + ( x ) ,  y = - D - d - ( x )  
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Fig. 1. Statement of the problem. 

(the x-axis is directed along the channel's axis, the z-axis is in the upward direction). The mean width 
of the channel is equal to 2D, the upper boundary of  the fluid is free and situated (in the absense of 
disturbances) at z = H ( H  is the mean depth of the channel). The amplitudes of  the undulations are small 
compared with a typical wavelength X = 2"rr/k: 

Ikhl ,~ 1, Ikd±l ,~ 1. ( la)  

Surface waves in the channel are assumed to be small 

Ikn[ ~ 1, ( lb)  

where B is the elevation of the free boundary. We consider potential motion of  the fluid: 

Z ~  =0.  (2) 

The inequalities given by eq. (1) enable us to use linearized boundary conditions, which are taken at 
undisturbed positions of  the boundaries of  the fluid (both rigid and free). Substituting h ~ eh, d ± ~  ed ~ 

(where 0 ~  e ~< 1 is a small parameter), we can write down boundary conditions in the form: 

• ,, + g@, = 0 

~y = ± ~ [ ( ~ d ~ ) x  + q, zzd ~] 

at z = 0, 

at z = H ,  

at y = + D ;  

(3) 

cp = ¢.,k(Y, Z) exp(ioJt-- ikx); 

cosh(Kz) ~ ,  , cosh(Kz) / 1 if n = 0, 
~.,k -- ~ ~ J . ~ Y )  = cosh(KH)  x / ~ sin (x.y)  if n is odd, (4b) 

[,¢~ cos(x.y) if n is even; 

where the factor ,f2 is inserted for convenience. The solution (4a, b) can be fixed by the wavenumber k 
and the modenumber  n, the rest parameters being determined by the formulas: 

,rrn K = (k2+ x2,) 1/2, 02  = g K  t anh(KH) .  (4c) 
~" = 2D ' 

(4a) 

where g is the acceleration due to gravity. 
First we shall consider free waves in the channel with even boundaries. In this case e = 0, and the 

boundary value problem defined by eqs. (2) and (3) has the following solutions: 
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Figure 2 shows the dispersion curves of  these free waves. The zeroth mode (n = 0) corresponds to the 

ordinary surface waves. 

n: i  n:2 6) (H/9)  l / "  

I ' .0 RH" 

Fig. 2. D i spe r s ion  curves for sur face  waves  in a channe l ,  for  the pa r t i cu la r  case D = H. 

To carry out an asymptotic analysis of  the boundary value problem given by eqs. (2) and (3) for the 
case e # 0 we shall make use of  a multiple-scale method (see, e.g. Ref [8]). Accordingly let us, along with 
the "fast"  variables (x, t), introduce a hierarchy of  "slow" variables 

X = e x ,  T = e t ,  Xj=e~+Jx, Tj=el+Jt, j =  1,2,3 . . . .  

The derivatives in (2) and (3) should be changed according to the formulas 

a 0 a 0 0 a 
- - ~ - - +  e ~ - + .  • • ax ax , -~-~ ~ +  e - ~  . 

We shall look for the solution in the form of  an asymptotic series 

qb = ~(°)-I- e ~  (~) +.  • •. 

To describe "mutual"  scattering of  the waves (kl, n l) and (k2, n2), the zeroth approximation to the potential 
should be chosen in the form 

cP(°)( x, y, z, t, X,  T) = A~( X, T)~ n,.k, ( y, z) exp( ioJ ,l,k, t - iklx  ) 

+A2(X, T)~,2k2(y, z) exp(i~o,~k~--ik2x). (5) 

(Here and hereafter Xj and Tj are omitted from formal lists of  arguments). We note also that wave 
amplitudes A~, A2 in (5) are slowly varying in space and time. 

Apparently, wave scattering in media with stationary perturbations does not change the frequency of  
a w a v e :  

OJ n,,k . = O) n2.k 2 = 0). (6) 

Consequently, K, ,k ,  = K,u.k: = K, and if the wavenumbers of  the incident wave k~ and the mode numbers 
nl, n2 are given, eq. (6) determines the wavenumber of  the reflected wave. 

It is well-known that a scattering wave "feels" only those Fourier-components of  the inhomogeneities 
which satisfy Bragg resonant conditions (e.g. [4]): 

p = k l - k 2 + e ( A p ) ,  q ± = k ~ - k 2 + e ( Z q ± ) ,  (7a) 
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where p, q± are the wavenumbers resonant components due to boundary undulations, and Ap, Aq ± are 
the corresponding (small) detuning wavenumbers. Thus, we can assume the undulations to be not only 
periodic but sinusoidal as well: 

h = h0 cos(px), d ± = do cos(q±x + a±). (7b) 

The phase of h(x) can be assumed to be zero without any loss of generality. Equation 7(a) yields 

px=(k l - kE)x+(Ap)X ,  q±x=(k~-k2)x+(Aq±)X.  (7c) 

We should note that the resonant condition adduced in Refs. [4, 7]: 

k2 = --kh p --~ q± ~-- 2kl 

is satisfied only if n~ = n 2 = 0. In the general case 

k2 = [ ( k , ) 2 +  (~,,,)2 _ (x,,~)2]1/2. (8) 

Equalities (5), (6) and (8) define the zeroth approximation of our perturbation theory. Note that the 
dependence of A I ,  2 o n  the slow variables remains undetermined. 

In the next order of the perturbation theory we seek ~(~) in the form 

• (~)(x, y, z, t, X, T) = ei'°t[ gt(y, z, X, T) e-ik'x+x(y , Z, X, T) e -ik~x 

+ ~' (X,  T, y, z) e-i(2k'-kP+x'(y , Z, X, T) e-i(2k~-k')]. (9) 

Substituting (5), (7) and (9) into eqs. (2) and (3), and equating coefficients in front of the exponents with 
equal indices, we obtain four boundary value problems determining q', X, 1/" and X' as functions of y and 
z. For example, !/t satisfies Helmholtz equation with a right-hand side: 

• OAl 
~yy + g t  _ (k~)Egt = 21k , -~-  ~01 (10a) 

and the following boundary conditions 

gtz = - ½ho[(X,~) 2 + kl k2]A2~o2 e -i(~p)x at z = 0 

g g t  _ to2~  = _2ito~T1 ~ol at z = H (10b) 

±~do(K -klk2)A2~o2 e-i(ziq±)x a t  y =  ± D  l i l y  ~ 1 ~: 2 

where % = ~ , ,k j ; j  = 1, 2. Since the parameters (kl,  to) are the eigenvalues of the homogeneous boundary 
value problem.cot rcs t :~ l iag  to eq. (10), the system (10) can be solved only under certain conditions. In 
order to dotermine these conditions, we multiply (10a) by ~o~(y, z) and integrate over the domain 
( - D  < y < D, 0 < z < H).  Using Green's formula and the boundary conditions (10b) (or simply integrating 
by parts) we obtain an equation for A~: 

.[OA1 OAl~ 
~[-~-T+ c~ "~-'~ / = A2{ Uho exp[ - i ( ap )X]  

+ V+d-~ exp[-i(Aq+)X - ia  +] + V-do e x p [ - ( a q - ) X  - ia-]}. (1 la) 

The analogous procedure for X yields: 

.IoA  
lt-~-~+ c20X / = AI{ Uho exp[i(Ap)X] 

+ V+d-~ exp[i(Aq+)X + ia  +] + V-do exp[i(Aq-)X + ia-]}. (1 lb) 
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Here c~.2 is the group velocity of  surface waves: Cn,k = dtO.,k/d/c The scattering coefficients U and V have 

the forms 

U -  g (x2+ klk2) 
4to cosh2(KH) 8"""2' (12a) 

where 8 ... .  2 is the Kronecker  delta, so that x., = u.~ = x, and 

V ± (ClC2~ 1/2 K 2 - k l k 2  [ 
= \ ~ k ~ ]  8D (f"'f"2) (12b) 

y f ± O  

Here f~(y), x ,  and K are defined by the relations (4b, c). Terms proport ional  to U correspond to wave 
scattering due to bot tom irregularities, and terms proport ional  to V ± describe wave scattering due to 
boundary  undulations. We remark that the expressions (12) for the scattering coefficients in the particular 
case n~ = n 2 = 0  coincide with the corresponding results of  Refs. [4, 7]. Equations (11) form the desired 
system governing the slow evolution of  the amplitudes of  the incident and reflected waves. 

3. Stationary scattering of surface waves 

Let us consider a gravity wave whose front, which is normal to the channel 's  axis, arrives at the channel 's  
entrance f rom the left. I f  the transitional diffraction effects are negligible the further evolution of  the wave 
is determined by the system (11). One can see that scattering of  the incident wave by the undulations of  
the channel 's  boundaries causes the appearance of  a reflected wave and, consequently, damping of  the 
incident wave. We consider a stationary case, when (11) can be reduced to 

OAl . OA2 W'A1; (13) icl ~ = WA2, Ic2 O---ff = 

where an asterisk denotes the complex conjugate. We are interested in the case of "maximum" reflection 

corresponding, apparently, to the equality Ap = Aq~= 0. Let us also set nl = 0 (the incident wave is an 

ordinary surface wave). We remark that the presence of the Kronecker delta in eq. (12a) shows that the 

bottom undulations do not participate in intermode wave scattering (this fact is quite natural from the 

physical point of view). Since we are interested just in the intermode interaction, we assume h0 = 0 as 
well as (for simplicity) d~ = do = do. All these simplifications yield 

d° ( _cl ~c2~ 1/2 -ia+ d- -i,~- 
W= (K2-k, k2)( e f, dy=D e f, Jy=-D). 

8D ~ k,k~ I x  1 2/ 

The solution of  eq. (13) has the form Al.E~e -='x, where 

3' = I W[( - c~c2) -1/2 (14) 

is the desired damping coefficient o f  the incident wave. One can see that 3' is a real number  because the 
directions of  the group velocities of  the incident and the reflected waves are opposite (ClC2 < 0). The final 
expressions for 3" are 

i f ° , = 0  
3' (15a) 

.12_~ kl (kl -- k2) if  n2 ~ 0 
• ( - 2 k l k 2 )  1/2 
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These results give the max imum values of  7, corresponding to the following values of  ~±: a ±= + ~r/2 if 
n2 is an odd number  and a ~ =  0 if n2 is an even number. 

Let us now discuss the applicability of  these results. One can see that the condition I~(°)1 ~ e I ~(1) I after 
substitution of  q~(o) and ~ 0 )  entails the inequality e(kD)  ~ 1 (we remind that e ~ kd). Thus, the expressions 
(15) become incorrect in the short-wave limit (when k>~ (dD)-U2). This restriction remained unnoticed 
in Ref. [7]. 

We should also remark that if kl --> u,2(k2--> 0) the damping coefficient tends to infinity 3/-> oo (of. (15b)). 
This follows from the vanishing of the group velocity of the wave mode when k 2 ~ 0  (cf. (14) and Fig. 
2). Accordingly, we have to take into account a next-order term in ( l l b ) ,  proport ional  to 02AJOX 2. The 

proportionali ty coefficient can be easily found by analogy with similar equations governing evolution of  
wave envelopes (e.g. [9-11]) as ~ =½d2oj,,k/dk 2. As a result a more accurate variant of  the stationary 

equations (11) for the case ]k2[ ~ Ik~[ has the form 

OAt 0A2 ~2 02A2 
i c , - ~ - =  WA2, ic:~--~-+ ~ = W ' A , .  (16a) 

In order to avoid unnecessary accuracy, we should also substitute k~ = K = xn:, k2 = 0 in all the terms, 
except the ones that are proport ional  to c2: 

- - ~  ~rt n g [ .; 
- 4om~ 2 I_cosn [x .2n)  _1 

W =  do (2clff'~1/2 x 2 -ia + -i~,- 
( , ~ )  (e f,~Jy~r,+e fn2ly=-D) (16b) 

8 3  ~ x,, 2 / 

(a rigorous asymptotic derivation of eq. (16) is quite analogous to that of  eq. (13), differing only by 
substitution k2-> ek2). Accordingly, for Y we have: 

iclc2A2-~ClA3=-ilwl 2, T = R e A ;  (17) 

where the appropriate  root should be fixed by the inequality Re A > 0. Equation (17) complements the 
expression (15) at kl = xn~. The dependence of  y on the wavenumber  of the incident wave k~ is shown 
in Fig. 3. One can see that scattering into mode waves (n2 # O) is more effective than that into an ordinary 
surface wave (/12 = 0) ( o f  course, if  the former is not forbidden - for kl/> x,:). This is the main result of  
the present paper. 

0.1 

~'D 

1 . 0  • / 2  ff RD 

Fig. 3. Damping coefficient versus wave number of the incident surface wave nt = 0, d~ D = 0.1. 
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4. Conclusions 

We have considered surface-wave propagation in a channel with corrugated boundaries. It was shown 
that the waves fade (due to backward Bragg reflection) and the damping coefficient attains its maximum 
value at scattering into mode waves, i.e. into oscillations propagating along the channel's axis and having 
a standing-wave structure in the cross-section of  the channel. The damping coefficient is determined by 
the formulas (15) (for kl > u,2) and by eq. (17) (at kl-~ xn2). 

In the present paper we have considered only the particular case when the three types ofinhomogeneit ies 
of  the channel (corrugated walls and bottom) were all " tuned"  to the only resonance (6). it is clear that 
calculations of  three or more resonances do not differ principally from the case considered, but in this 
situation the channel becomes "opaque"  in a wide range of the incident waves' wavenumbers. Four or 
more resonances assume boundary irregularities to comprise more than one Fourier component.  This fact 
can be taken into account in practical applications of the theory. 
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