Evolution of Packets of Surface Gravity Waves
over Strong Smooth Topography

By E. S. Benilov and C. P Howlin

Wave packets in a smoothly inhomogeneous medium are governed by a
nonlinear Schrédinger (NLS) equation with variable coefficients. There are two
spatial scales in the problem: the spatial scale of the inhomogeneities and the
distance over which nonlinearity and dispersion affect the packet. Accordingly,
there are two limits where the problem can be approached asymptotically:
when the former scale is much larger than the latter, and vice versa. In
this paper, we examine the limit where the spatial scale of (periodic or
random) inhomogeneities is much smaller than that of nonlinearity/dispersion
(i.e., the latter effects are much weaker than the former). In this case, the
packet undergoes rapid oscillations of the geometric-optical type, and also
evolves slowly due to nonlinearity and dispersion. We demonstrate that the
latter evolution is governed by an NLS equation with constant (averaged)
coefficients. The general theory is illustrated by the example of surface gravity
waves in a channel of variable depth. In particular, it is shown that topography
increases the critical frequency, for which the nonlinearity coefficient of the
NLS equation changes sign (in such cases, no steady solutions exist, i.e., waves
with frequencies lower than the critical one disperse and cannot form packets).

1. Introduction

Problems involving solitary waves in media with smoothly varying properties
arise in many areas of continuum mechanics. In physical oceanography, for
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Table 1
Main Results on the Evolution of Solitary Waves Over Topography

Limit (1) Limit (2)
Shallow-water solitons [2, 3] [4]
Wave packets [5] Present paper

example, internal, surface, inertial, or Rossby waves are often affected by
topography and/or varying currents. Similar problems are of interest for
atmospheric sciences, seismology, etc.

Dynamics of a solitary wave in an inhomogeneous medium is associated
with several spatial scales, such as the distance L,;, which the wave needs to
travel before nonlinearity or dispersion affects it, and the spatial scale L, of
the medium’s inhomogeneity (we are particularly interested in water waves
over an uneven bottom, so; stands for topography). In the general case, where
L; ~ L,4, only numerical approach is possible (e.g., [1]), but for

L;> Ly (D
or
L; < Ly, (2

the problem can be approached asymptotically. In what follows, we shall also
assume that the characteristic wavelength is much smaller than L, i.e., the
medium is smoothly inhomogeneous.

Limit (1) has been first studied for surface gravity waves in a shallow
channel of variable depth in [2, 3], see Table 1. It has been shown that, to
leading order, the wave field can be represented by a KdV soliton, with its
amplitude depending on the current value of the channel’s depth. A similar
problem for topography (2) has been considered in [4], where it was shown that
the wave undergoes rapid oscillations of the geometric-optical type and also
evolves slowly due to nonlinearity and dispersion. Assuming the topography to
be periodic or random, [4] derived an asymptotic equation describing the slow
evolution.

The above results have been partly extended in [5] from shallow-water
solitons to wave packets, for surface gravity waves over topography (1).
Topography (2) has yet to be examined in application to packets.!

In addition to the papers cited above, [6] studied wave packets propagating over step-like topography
of type (2). In this case, the wave passes over the bottom irregularity too quickly for nonlinearity and
dispersion to interact with topography, which makes this case simpler than the periodic/random one. A
similar setting [step-like topography of type (2)] has been examined by [7] for KdV solitons.
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The present paper examines propagation of a wave packet over topography
(2). In Sections 2—4, we formulate the problem, present an asymptotic analysis
for periodic topography, and consider an example of such. In Section 5, we
discuss random topography.

2. Formulation

Consider surface gravity waves in a plane channel of variable depth H(x),
where x is the horizontal coordinate (see Figure 1). Introducing the elevation
n (x, t) of the free surface (¢ is the time), we assume that all parameters and
variables are nondimensionalized using by mean depth of the channel and
acceleration due to gravity.

If the bottom is flat, the frequency w and wavenumber & of a monochromatic
wave are related by the dispersion relation,

w? = ktanhkH. (3)

This paper is concerned with smooth topography, such that the horizontal scale
of H(x) is much larger than the characteristic wavelength,

Li> (k)7 (4)

I I I

Figure 1. Formulation of the problem: a packet of surface gravity waves in a channel with
topography.
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where (k) is the characteristic wavenumber. In this case, we can introduce
quasimonochromatic waves, i.e., such that

n(x,t) =Re {A(x, t)exp |:ifk(x)dx — ia)t]} , (5)

where A is a slowly changing function (its spatial/time scales exceed k!
and ™!, respectively). Observe that the frequency w in expression (5) is
independent of x (which is always the case for linear or weakly nonlinear waves
in media with stationary inhomogeneities, e.g., [8]), whereas the wavenumber
varies in accordance with the dispersion relation (3).

The amplitude of the packet is governed by the nonlinear Schrodinger (NLS)
equation derived in [6],

To4 1 94 9% 4 )
i [5 ot /L(x)A] +a) S5+ AP =0, (©)

where
1
cg = 2—(tanh kH + kHsech®kH ), (7)
w

is the group velocity and

1 dc,
_ L de 8
h= e dx ®)
1 2wH tanh kH H
o= l+— ==, 9)
2wcg Cq s
2k + k2c,sech’kH)*
B = 3kt + 20k — 0® — ( £ ) . (10)
2wic, H— cé

Observe that relationship (8) guarantees that

d o0
5/ cglA[*dt =0,

which reflects conservation of the net energy flux.

Note also that Equation (6) is based on the assumption that the temporal
spectrum of the solution is narrow-band (see [6]), whereas derivations of the
standard NLS equation for homogeneous media are usually based on a similar
assumption for the spatial spectrum. Accordingly, the role of the evolutionary
variable in (6) is played by x, not ¢.
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3. Wave packets over topography

It is convenient to change to a co-moving reference frame, i.e., replace ¢ with

[

Then, in terms of (x, ), the NSE equation (6) becomes

.0 1/2 1/2 9°4 2
1a—(cg A) + ¢, aa7+ﬁA|A| =0. (11)

X

In what follows, this equation will be examined asymptotically.

3.1. Asymptotic analysis

The problem at hand involves four spatial scales. In addition to the characteristic
wavelength (k)~! and the topographic scale L,, we shall introduce the scales
of nonlinearity and dispersion, L, and L, representing the distances which a
solitary wave needs to travel before these effects influence it. In terms of
Equation (11), L, and L; can be determined by comparing the x-derivative
with the last two terms, which yields

L Tj L ! (12)

d = 7 > n= Ao g

2(B)14, 2

where T, and A4, are the packet’s timescale and amplitude, (@) and (B) are
the characteristic values of the corresponding coefficients, and the factor of 2
in L, has been introduced to make the two scales equal for a soliton over
flat bottom (see formulae (30) below). We shall assume that nonlinearity and
dispersion are of the same order, and are both weaker than topography, i.c.,

Ly, Li> L. (13)

Ordering (13) corresponds to the following change of variables:

F=¢"%t, A=¢"124, (14)
where
L L
L2 L

is a small parameter. Substituting (14) into (11), we obtain (tildes omitted)

.0 1/2 1/2 9’4 2
1£(cg A) + ec, aﬁ—l—ﬁAlAl =0. (15)
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To simplify this equation, we shall use the method of multiple scales, that is,
in addition to x, introduce a slow spatial variable,

X = ¢x,

and let
Ax, 1) = AV, X, 1)+ AV, X, 1)+ -+ -.
To leading order, Equation (15) yields
9 im0
la(cg/ A( )) = 0,
that is,
A0(x, X, 1) = ¢;'*(x) B(X, 1), (16)

where B(X, t) is an undetermined function. Expression (16) is a typical
geometric-optical result, reflecting conservation of the energy flux, cglA(O)lz,
along a ray.

In the next order, we have

.0 1/2 4(1) . 0 1/2 4(0) 1/2 9°4© ©) | 4(0),2
15(% Y )+187(cg AD) +¢)* (@ + AV 1492 ) = 0.

at2

Assuming that [AD (x, X, 7)],—o = 0, we obtain

AV(x, X, 1) = ic;/z(x)/ F(x', X, t)dx’, (17)
0
where
RN, 172 924 0) | 4(0)}2
F(X,X,‘L’):lﬁ(cg A )+Cg O(V—F,BA |A | . (18)

Now, assume that H(x) is periodic, and so is the function F(x, X, ) with
respect to the variable x. Then, to prevent A from secular growth as x — o0,
one has to require

(F)=0, (19)

where (- - -) denotes averaging with respect to x over one period of topography.
Substituting (16) and (18) into (19), we obtain

. 0B 3°B . 5

it (a)m +(c;'B)B|BI> =0. (20)
This is an NLS equation with constant coefficients, which makes it much
simpler than the original equation (11).
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4. Examples

The asymptotic equation (20) has a two-parameter family of soliton solutions,

B(X, 7) = (f:‘f‘;>x sech [A(z — vX)]
| vt v? 9.2
<onli 3+ (s @) 7}, @D

where A and v are arbitrary real constants (the former determines the packet’s
amplitude and timescale, and the latter determines its velocity). In terms of the
exact Equation (11), solution (21) corresponds to

_ 2(a)
Ax, vy~ c,'? A sech[A(T —
(x, 7)) =, 77(x) (C§1ﬁ> sech[A(T — vx)]
2
ol @)l @

In order to verify that (22) is indeed an (asymptotic) solution, Equation (11)
was solved numerically with the initial condition

A(O, T) — cg—l/z(()) j(a>

(cz'B)

The nondimensional depth of the channel was assumed sinusoidal,

Asech(L7) exp <%> . (23)

H(x) =1+ AHsin (%) : (24)

t

where AH and L, are the amplitude and spatial scale of the depth variation.
We shall present results for

AH = 0.6, (25)

L =5, (26)
and for the following value of the initial wavenumber:
k=2 at x=0. 27)

Substituting (24)—(27) into (3), we can compute k(x), and then the characteristic
wavelength,

(k™' = 0.475. (28)
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The simulations were carried out for the following parameters of the wave
packet:

A=0.1, v=0. (29)

Before describing the numerical results, we shall demonstrate that the above
values satisfy the restrictions of our asymptotic approach. To do so, observe
that, as follows from (22), A determines both the timescale and amplitude of
the packet, which we shall define as follows:

2(a)
A.
(cz'B)

Then, (12) yields the following expressions for the dispersion and nonlinearity
scales:

T,=x"" A,=(c""

!
Li=——. L, = 12 &if>. (30)
(@)A= (e 7Y ()

Observe that, for a soliton over flat bottom, the topographic factor in L, cancels,
resulting in L; = L, i.e., dispersion and nonlinearity are in perfect balance.

Upon substitution of expressions (7), (9), and (10) for ¢4, o, and B into
(30), followed by a straightforward computation using the previously computed
k(x), we obtained

L; =920, L,=114.1. 31)

Equations (26), (28), and (31) show that assumptions (4) and (13) hold well.
The solution of the initial value problem (11), (23) was assumed periodic
in 7, with a period that was sufficiently large to eliminate interaction of
two successive solitary waves. The condition of periodicity allowed us to
use the pseudo-spectral method for approximation of the t-derivatives in
Equation (11), and the Runge—Kutta scheme was used for the x-derivative. The
results of simulations are presented in Figures 2 and 3.
Figure 2(a) shows the short-term evolution of the
max {|A(x, 7)|}
o

—o00<T<

max {A4(0, 1)}’
—o0<T <O

Relative amplitude of the packet = (32)

for parameters (27), (29), over the sinusoidal topography (24)—(26). One can
see that the topography-induced oscillations are described by the asymptotic
solution (22) well.

Compare also Figures 2(a) and (b) (the latter shows the topography profile),
where two characteristic features are worth noting. Firstly, the packet’s
amplitude does two oscillations per one oscillation of topography; secondly,
packet generally decays with decreasing depth and vice versa (which comes as
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Figure 2. Short-term evolution of a wave packet (27), (29) over topography (24)—(26). (a) The
relative amplitude of the wave packet [defined by (32)] vs. x. Solid line shows the numerical
solution of the exact initial value problem (11), (23); dotted line shows the asymptotic solution
(22). (b) The depth of the channel vs. x (the horizontal dashed line corresponds to H = w™2).
(c) The group velocity of the carrier wave vs. x.
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Figure 3. Long-term evolution of a wave packet (27), (29) over topography (24)—(26): the
numerical solution of the exact initial value problem (11), (23). The shaded area corresponds
to Figure 2(a), the dotted lines show the maximum and minimum values of the packet’s
amplitude and emphasize that these do not change from period to period.

a surprise, as one would expect a shoaling wave to amplify). Both features
follow from the nonmonotonic dependence of the group velocity (and, hence,
the wave’s amplitude) on the channel’s depth (it was first observed in [9]).
Indeed, formulae (22) and (32) yield

cg(o)i|—1 /2
Cg(x) ’

that is, the packet’s amplitude has maxima at those points where c,(x) has
minima and vice versa (compare Figures 2(a) and (c)). It is still unclear,
however, why c,(x) has more than one minima per topography period, which
can be clarified by differentiating expression (7) with respect to x,

Relative amplitude of the packet ~ [
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deg . w?sech’kH
dx (0?4 Hsech’kH)

Now, one can see that c,(x) has extrema, where

dH
1 — Ho*)—.
( w)dx

dH
.

with the former points being maxima and the latter, minima (compare
Figures 2(b) and (c)). This property of ¢, explains the first feature of the
evolution observed.

To explain the second feature, differentiate expression (7) with respect to H
and use (3) to substitute for dk/dH, which yields

H - (X)_z or Ov

deg sech’(kH)(1 — Hw?)

dH 2¢q

Thus, if @ is sufficiently large, then dcy/dH < 0, which corresponds to the
packet’s amplitude increasing with growing H, with the opposite behavior, the
amplitude decreasing with H, occurring for small w. Given that our intuition for
water waves is mainly developed at beaches (where H, and hence w, are small),
the former case is the one we are less accustomed to, but is still quite possible.

The long-term evolution of the packet is illustrated in Figure 3, one can see
that, apart from the topography-induced oscillations, the packet is steady. This
agrees with the fact that the packet’s averaged profile is a steady solution of
the asymptotic equation (20) and confirms our asymptotic results.

An important property of equation (20) is associated with the dependence
of its nonlinearity coefficient, (cg_l,B), on the parameters of the carrier wave.
For topography (24)—(26), for example, we have

K0) =20, w=138  (c;'B)~ 11.627,
K0)=19, w=1348  (c;'B)~3.720,
k(0)=1.8, o =1.305 (c;'B) ~ —2.906.

The change of the sign of the nonlinearity coefficient has important implications,
because, in this case, Equation (20) has no soliton solutions. We emphasize that
the case of flat bottom exhibits a similar property, but the critical parameter
values, for which this occurs, are different. Indeed, assuming that H = 1 for
all x, one can show that the nonlinearity coefficient, B, changes sign at

k=~1363, w=1.093,

see [10].
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5. Random topography

It appears that the asymptotic approach used in subsection 3.1 for periodic
topography is equally applicable to a random one. Indeed, if H(x) is statistically
homogeneous with respect to shifting x, we only need to replace averaging
over a period with averaging over the whole space.

It turns out, however, that, for random topography, condition (19) does not
prevent A from growth as x — oo.

To observe this, use solution (17) to calculate

AD(x, X, 1)AD*(x, X, T) co(x) = / / F(x', X, 1) F*(x”, X, 1) dx" dx”,
0o Jo
(33)
where the overbar denotes averaging over ensemble of realizations. Because

spatial homogeneity of H entails a similar property for F, the integrand in (33)
depends on x’ — x’/, not on x’ and x”’ separately,

Fx', X, 1) F*(x", X, 1) = W(x' —x").

Then,
/ / W' —x"ydx dx” — x/ W(x")dx" as x — oo, (34)
0 0 —00

where it is implied that the correlation function W(x) decays sufficiently fast
as x — 00, so the integral on the right-hand side of (34) converges.

Equalities (33) and (34) demonstrate that, if ffooo W(x")dx" # 0 (which is
the general case), then

AV = 0(xY?) as x — oo.

Finally, comparing £ A1) with the leading-order solution 4, we conclude that
our asymptotic method is valid only for

x L e 2. (35)

Restrictions of the allowable distance similar to (35) are typical for asymptotic
theories for media with random inhomogeneities. In similar problems, they
have been observed in [4, 11]. Another paper, [12], considered wave packets
in a basin of mean depth H with small non-smooth depth variations, i.e.,

\H—H| < H, L~ (k™"

However, the first-order solution was not tested for growth in this case.
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6. Summary and concluding remarks

In this paper, we have examined the evolution of packets of surface gravity
waves in a channel with topography, in the limit where the topographic scale
is much smaller than those of nonlinearity/dispersion. It was shown that the
amplitude of the packet is proportional to c;l/ 2 (x) [see formula (22)] and, thus,
undergoes fast spatial oscillations on the scale of the depth variation. Apart
from this, the packet slowly evolves due to nonlinearity and dispersion, and a
nonlinear Schrédinger equation (20), with constant (averaged) coefficients has
been derived for the slow evolution. It was also shown that, in case random
topography, the applicability of this equation is restricted by condition (35).

Finally, note that the results obtained in this work could be extended in
two ways. Firstly, it would be interesting to compare them with a numerical
simulation of the free-surface problem. Secondly, the present results need to
be extended to topography depending on both horizontal coordinates, H(x, y),
which would enable one to apply them to a number of important problems of
physical oceanography.
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