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Part 2: Multidimensional Disturbances
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We examine the stability of a thin film of viscous fluid on the inside surface of
a cylinder with horizontal axis, rotating about this axis. Depending on the
parameters involved, the dynamics of the film can be described by several
asymptotic models, one of which was examined by Benilov [J. Fluid Mech.
501:105–124 (2004)]. It turned out that the linearized stability problem for
this model admits infinitely many neutrally stable eigenmodes, which form
a complete set. Despite that, the film is unstable with respect to exploding
disturbances, which grow infinitely in a finite time. The present paper examines
the effect of surface tension on the stability of the film. Two cases are considered:
short-scale disturbances (such that the axial wavelength λ is much smaller than
the radius R of the cylinder) and long-scale disturbances (for which λ � R).
In the former case, surface tension is a stabilizing influence, because it
regularizes the exploding solutions and makes all eigenmodes asymptotically
(not just neutrally) stable. The latter case was previously examined by Acrivos
and Jin [J. Eng. Math. 50:99–120 (2004)], who showed that surface tension
destabilizes some of the eigenmodes. We argue, however, that the corresponding
growth rate is much smaller than that of the so-called inertial instability.
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1. Introduction

While examining the two-dimensional stability of a viscous film inside a rotating
horizontal cylinder, Benilov et al. [1] came across a linear equation with very
unusual properties: it admits infinitely many stable solutions with harmonic
dependence on time (eigenmodes)—which, however, are not representative
of the stability properties of the system as a whole. It turned out that the
eigenmodes coexist with exploding solutions, such that develop a singularity
in a finite time (corresponding to a drop of fluid forming on the ceiling of the
cylinder).

An even more exotic equation was derived in [2] for a three-dimensional
generalization of the above problem: not only does it admit infinitely many
stable eigenmodes, but the corresponding eigenfunctions form a complete set.
Thus, an arbitrary initial condition can be represented by a series in the
eigenmodes—but, even though all of these are stable, the series may still
diverge giving rise to an explosion.

Note, however, that the equations derived in [1] and [2] do not take into
account surface tension. In the former problem, it has been explored in [3]:
it was shown that surface tension eliminates all exploding solutions, but
destabilizes some of the eigenmodes.

The present paper explores the effect of surface tension on the problem
considered originally by [2]. In Section 2, we generalize the equation derived
in [2] for surface tension and, in Sections 3–5, examine it. In Section 6, we
compare our results to those of [4] who examined a similar problem.

2. The governing equations

Consider a thin film of liquid on the inside surface of an infinitely long cylinder
of radius R (see Figure 1). Its axis is horizontal, and the cylinder is rotating
about this axis with constant angular velocity �. The film is characterized by
its density ρ, kinematic viscosity ν, and surface tension γ . We use cylindrical
coordinates, thus the thickness ĥ of the film depends on the azimuthal angle
θ̂ , axial coordinate ẑ, and time t̂ , where the hats mark the dimensional variables.

We use the following nondimensional variables:

t = �t̂, θ = θ̂ , z = ẑ

R
, h = ĥ

εR
− ĥ2

2εR2
, (1)

where g is the acceleration due to gravity and

ε =
(

ν�

gR

)1/2

. (2)

We note that such an unusual definition of h has been chosen because it
simplifies the form of the governing equations.
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Figure 1. Formulation of the problem.

The evolution of the film is governed by a large number of parameters,
depending on which various asymptotic equations can be derived through the
lubrication theory (LT). Using the same approach as in [1, 2, 5], one can
derive the following equation:

∂h

∂t
+ ∂h

∂θ
− ∂

∂θ

(
1

3
h3 cos θ

)
+ ∂

∂θ

(
1

3
εh3 ∂h

∂θ
sin θ

)

+ ∂

∂z

(
1

3
εh3 ∂h

∂z
sin θ

)
+ ∂

∂θ

[
1

3
βh3 ∂

∂θ

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]

+ ∂

∂z

[
1

3
βh3 ∂

∂z

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]
= 0, (3)

where

β = γ ε

ρgR2
(4)

is the nondimensional capillary coefficient. In Equation (3), the two terms
following the time derivative describe viscous entrainment of the film by the
rotating cylinder and the effect of gravity, and the terms involving ε and β

describe the hydrostatic pressure effect and surface tension, respectively.
We shall not dwell on the applicability of (3) in detail, because it is no

different from any other equation derived through the lubrication theory (for
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example, the limitations of LT have been discussed in [1, 2]). We only mention
that the conditions of LT’s validity include

εh̄3


θ
� 1, (5)

where h̄ and 
θ are the characteristic amplitude and azimuthal scale of
the nondimensional thickness h(θ , z, t). This condition makes the azimuthal
gradient of hydrostatic pressure weaker than viscous entrainment.

Equation (3) is too complicated to be dealt with in its present form. To
simplify it, assume


z � 
θ, (6)

where 
z is the axial scale of the solution. Then, the fifth term in Equation (3)
is much larger than the fourth one—hence, the latter can be omitted. With
regard to the surface-tension terms, we retain only the one that includes the
highest-order derivative with respect to z. As a result, (3) reduces to

∂h

∂t
+ ∂h

∂θ
− ∂

∂θ

(
1

3
h3 cos θ

)
+ ∂

∂z

(
1

3
εh3 ∂h

∂z
sin θ + 1

3
βh3 ∂3h

∂z3

)
= 0. (7)

This equation can be simplified further by assuming

h̄2 � 1, (8)

in which case viscous entrainment is much stronger than gravity. Omitting the
latter term, we can reduce (7) to

∂h

∂t
+ ∂h

∂θ
+ ∂

∂z

(
1

3
εh3 ∂h

∂z
sin θ + 1

3
βh3 ∂3h

∂z3

)
= 0. (9)

Approximation (8) has been previously used in [1, 2] (where it was termed
“the small-flux limit”) and has been shown to work for up to h̄ � 0.5.

To illustrate restriction (8), we need to express h̄ in terms of dimensional
variables. Recalling how h is nondimensionalized [see (1)] and keeping in
mind that, in the LT, the quadratic term in (1) is much smaller than the linear
term, we have

h̄ ≈
ˆ̄h

εR
. (10)

Now, condition (8) can be rewritten in the form

ˆ̄h
2

ε2 R2
� 1.

Thus, if ε is small, the small-flux approximation is stronger than the usual

thin-film approximation (which requires ˆ̄h � R).
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3. Eigenmodes

It turns out that the full short-scale model (7) is too complicated to be examined
analytically, and we confine ourselves to studying its small-flux limit (9).

Equation (9) admits the following steady state:

h(θ, z, t) = h̄,

where h̄ is a constant (observe that, because the effect of gravity was assumed
weak, the thickness of the film is, to leading order, uniform). In order to
examine this steady state for stability, assume

h = h̄ + h′(θ, z, t), (11)

where h′ represents the disturbance. Substituting (11) into (7) and omitting
nonlinear terms, we obtain (primes dropped)

∂h

∂t
+ ∂h

∂θ
+ 1

3
εh̄3 ∂2h

∂z2
sin θ + 1

3
βh̄3 ∂4h

∂z4
= 0. (12)

Before we proceed, it is convenient to introduce

znew =
√

3

εh̄3
z. (13)

Rewriting (12) in terms of znew and omitting the subscript new, we obtain

∂h

∂t
+ ∂h

∂θ
+ ∂2h

∂z2
sin θ + µ

∂4h

∂z4
= 0, (14)

where

µ = 3β

ε2h̄3
(15)

[recall that β, ε, and h̄ are defined by (4), (2), and (10)]. Note that, except for
the surface-tension term, (14) coincides with equation (2.13) of [2].

Now, seek a solution of (14) in the form

h(θ, z, t) = φ(θ )ei(kz−ωt), (16)

where ω and k are the frequency and axial wavenumber, respectively.
Substitution of (16) into (14) yields a first-order ODE for φ(θ ); solving this
ODE with the periodicity condition, we obtain an infinite set of solutions

φn = exp(inθ − k2 cos θ ), (17)

ωn = n − iµk4, (18)

where n is an integer (the mode number). Observe that, because Im ωn < 0, all
modes are asymptotically stable, i.e., all harmonic disturbances decay.
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Observe also that eigenfunctions (17) turned out to be independent of µ—in
fact, they are exactly the same as those found in [2] for µ = 0. Then, as
shown in [2], they form a basis in the space of 2π -periodic functions with
absolutely convergent Fourier series—hence, they can be used for solving the
initial-value problem.

Let the initial condition for Equation (14) be

h = H (θ, z) at t = 0. (19)

According to the completeness theorem proved in [2], this initial condition can
be represented by a Fourier integral with respect to z combined with a series in
φn(θ ),

H (θ, z) =
∫ ∞

−∞

∞∑
n=−∞

Hknφneikz dk, (20)

where the coefficients Hkn are

Hkn = 1

(2π )2

∫ 2π

0

∫ ∞

−∞
H (θ, z) exp(−inθ + k2 cos θ − ikz) dz dθ (21)

(for details, see [2]). Then, to solve the initial-value problem (14), (19), we
need to multiply each term of series (20) by e−iωn t :

h(θ, z, t) =
∫ ∞

−∞

∞∑
n=−∞

Hkn exp[inθ − k2 cos θ + ikz − (in + µk4)t] dk, (22)

where ωn is given by (18).
Formulae (21)–(22) deliver the solution to the initial-value problem (14),

(19).

4. Exploding solutions modified by surface tension

Let the initial condition be

H (θ, z) = exp

(
− z2

2W 2
0

)
, (23)

which represents a ring-like disturbance encircling the cylinder from the inside.
The z cross-section of the ring is Gaussian and is independent of θ (i.e., it is
of constant width W 0 and unit amplitude). Substituting (23) into (21) and
carrying out the integration, we obtain

Hkn = W0√
2π

exp

(
−1

2
W 2

0 k2

)
In(k2),
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where In is the modified Bessel function. Then, substituting Hkn into (22) and
using the identity

∞∑
n=−∞

exp[in(θ − t)] In(k2) = exp[k2 cos(θ − t)] (24)

(which follows from formula 5.8.4.4 of [6], volume 2), we obtain

h(θ, z, t) = W0

(2π )1/2

∫ ∞

−∞
exp

{
−

[
1

2
W 2

0 + cos θ − cos(θ − t)

]
k2

+ ikz − µk4t

}
dk. (25)

4.1. The case of zero surface tension, µ = 0 (brief review of [2])

If µ = 0, and

1

2
W 2

0 + cos θ − cos(θ − t) > 0, (26)

the integral (25) converges and can be evaluated analytically,

h(θ, z, t) = W0√
W 2

0 + 2[cos θ − cos(θ − t)]

× exp

{
− z2

2W 2
0 + 4[cos θ − cos(θ − t)]

}
. (27)

Observe that, for sufficiently wide initial conditions (W 0 > 2), this solution is
periodic and smooth—whereas, for narrow ones (W 0 ≤ 2), it explodes (i.e., the
denominators in (27) vanish at a finite t). The time and place of the explosion are

te = 2 arcsin

(
1

4
W 2

0

)
, θe = 1

2
π + arcsin

(
1

4
W 2

0

)
, ze = 0.

To understand the reason of the explosion, one needs to clarify the physical
meaning of the governing equation (14). For example, its second term describes
propagation of disturbances due to rotation (to leading order, viscosity makes
the film move together with the cylinder). The third term describes diffusion of
disturbances due to hydrostatic pressure (it involves a diffusion operator with
sign-variable diffusivity, −sin θ ; observe that, in the upper half of the cylinder,
0 < θ < π , the diffusivity is negative). Finally, the fourth term describes
surface tension (which is currently absent, µ = 0).

Thus, if the initial disturbance is sufficiently narrow, antidiffusion causes
a singularity somewhere in the region of negative diffusivity (physically, it
corresponds to a drop forming on the cylinder’s ceiling). If, however, the
initial disturbance is wide, the rotation of the cylinder moves the developing
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θ = θ+(t
)
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t)

Figure 2. Convergence properties of integral (25) on the (θ , t)-plane for W 0 = 1.85, µ = 0.
In the shaded region, condition (26) does not hold, and (25) diverges. The place and time of
the explosion (the first occurrence of the divergence) are indicated by a filled circle. Observe
that, after the antiexplosion (marked by an empty circle), (25) converges again.

singularity outside the region of negative diffusivity before it explodes. Then,
propagating through the region of positive diffusivity, the disturbance regains
its original form.

Recall also that, in the case of explosion, solution (27) is valid only in a
certain region of the (θ , t)-plane, defined by condition (26) (see Figure 2). On
the (θ , z)-plane (see Figure 3), the validity region consists of two strips of
variable width

0 < θ < θ−(t), −∞ < z < ∞,

θ+(t) < θ < 2π, −∞ < z < ∞,
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Figure 3. The regions of applicability of the no-surface-tension solution (27) and asymptotic
solution (30)–(33) on the (θ , z)-plane for W 0 = 1.85, µ = 0.002, t = π . The boundaries of
the shaded strip are determined by condition (26); see also Figure 2.

with θ±(t) determined by (26) and Figure 2. Note, however, that—for the case
with no surface tension—the physical meaning of the t > te part of Figure 2 is
unclear, as, after the explosion, solution (27) is unsafe.

4.2. The general case (µ 	= 0): Asymptotic results

If µ 	= 0, the integral in (25) cannot be evaluated exactly. Observe, however,
that in many applications,

µ � 1, (28)
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and we can evaluate (25) asymptotically. Note also that limit (28) is the most
interesting one theoretically—as, for large µ, the solution is likely to quickly
decay.

It turns out, however, that condition (28) is not sufficient—we actually need
to assume

µt � 1. (29)

Then, for those θ and t that satisfy condition (26), the solution is close to that
with no surface tension (to leading order, the term involving µt can be simply
ignored, and the resulting integral would still converge). If, however, (26) is
not satisfied, the term involving µt must be taken into account, because it
provides convergence of the integral as k → ∞. Furthermore, if µt is small,
the maximum of the integrand in (25) occurs at large k, which enables us to
evaluate (25) using the method of steepest descent.

Examining (25) on a complex k-plane, one can see that the critical points
satisfy

2

[
cos(θ − t) − cos θ − 1

2
W 2

0

]
k − 4µtk3 + i z = 0. (30)

This equation has two symmetrically located complex roots,

k1 = −κr + iκi ,

k2 = κr + iκi ,
(31)

with their imaginary parts being of the same sign as that of z; and a purely
imaginary root, with its imaginary part being of the opposite sign. Omitting
technical details, we mention that the path of steepest descent passes through
k1,2, whereas k3 turns out to be unimportant (see Figure 4). Then, integral (25)
can be estimated as

h(θ, z, t) ≈ − W0√|�′′(k1)| Im
{

exp

[
�(k1) − i

2
arg �′′(k1)

]}
, (32)

where

�(k) = −
[

cos(θ − t) − cos θ − 1

2
W 2

0

]
k2 + ikz − µk4t (33)

and �′′ = d2�/dk2.
The most important conclusion to be drawn from the asymptotic solution

(30)–(33) is that even weak surface tension prevents the disturbance from
reaching infinite amplitude [(32) shows that h remains finite for all θ , z, and t].
We conclude that surface tension transforms the explosive instability into a
transient one, i.e., such that the disturbances initially grow, and sometimes
quite significantly, but in the end always decay (see [7–9]). Note that examples
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Figure 4. Integral (25) on the plane of complex k for W 0 = 1.85, µ = 0.002, θ = π , z = 1,
and t = π . Black circles show critical points, solid line shows the original path of integration,
and dotted line shows the path of steepest descent.

of transient instability have also been found in settings similar to the present
one—for lubrication flows on a sloping surface (e.g., [10]) and for films with
inverted density stratification (e.g., [11, 12]).

Next, observe that (30)–(33) describe a packet of short capillary waves
radiated by the disturbance towards z → ±∞. The axial wavenumber of the
waves is Re k1, and the spatial decay rate (in the z-direction) is Im k1—both
depend on (θ , z, t) through Equation (30). The temporal decay rate, in turn,
equals µRe k4

1.
Note also that solution (30)–(33) is valid only if condition (26) does not

hold—hence, it is confined to a strip of variable width

θ−(t) < θ < θ+(t), −∞ < z < ∞,
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with θ±(t) defined by (26) (see Figures 2 and 3). Note also that, as can be seen
from Figure 2, the strip exists only for t ∈ (te, tae)—hence, the capillary waves
radiated by the explosion at t = te disappear without a trace at t = tae.

Finally, observe that integral (25) can be readily evaluated numerically (see
the next section). At the same time, due to restriction (29), the asymptotic
solution (30)–(33) does not describe the long-term evolution (unfortunately,
this shortcoming cannot be remedied analytically, because, for t ∼ µ−1,
integral (25) involves neither small nor large parameters). Thus, (30)–(33)
should be mostly used for interpretation and qualitative analysis of the solution,
rather than for its calculation.

4.3. The general case (µ 	= 0): Numerical results

Integral (25) was computed via truncation of its integrand at a sufficiently
large k and the use of Simpson’s Rule.1 Typical results, for W 0 = 1.85, µ =
0.002, are shown in Figures 5 and 6.

Figure 5 illustrates the short-term (0 < t < 2π ) evolution of the disturbance:
one can see how it grows, then bursts in capillary waves (confined to a strip
stretched in the z-direction), then becomes smooth again. Another way to
characterize the disturbance is to calculate the maximum amplitude at a given
time

hmax(t) = max
0<θ<2π,−∞<z<∞

{h(θ, z, t)} (34)

(see Figure 6(a)). One can see that the maximum of hmax(t) is reached at
approximately t ≈ 3.04 and is about 108 times larger than the initial amplitude
(which explains why the disturbance can hardly be seen in the first and last
frames of Figure 5). Note also that, over the first period, the disturbance loses
less than 0.5% of its initial amplitude (see Table 1).

Figure 6(b) illustrates the long-term (0 < t < 20π ) evolution of the
disturbance. Interestingly, the amplitudes of the solution’s local maxima
decrease much faster than those of the local minima (see Table 1). To illustrate
the latter, observe that the loss of the initial amplitude over the first 10 periods
is less than 3%, and that over the first 100 periods is less than 15%. Thus,
after each period, the solution almost exactly restores its previous (minimum)
amplitude—in this sense, the decay of the solution is very slow.

Thus, surface tension keeps the amplitude of the disturbance finite (prevents
the explosion) and also causes decay.

1The truncation value of k and the Simpson’s Rule step have been chosen to ensure that, if they are
changed unfavorably by a factor of 2, the results would not change by more than 0.1%. Because the
problem at hand involves just single integration and is not computationally challenging, such accuracy
was not difficult to achieve.
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Figure 5. Snapshots of solution (25) with W 0 = 1.85, µ = 0.002 for various values of t.

4.4. Applicability of Equation (14)

Observe that Equation (14) used for obtaining all of the above results, implies
that the axial scale of the solution is much smaller than the azimuthal scale [see
restriction (6)]. This, however, does not create a problem for the eigenmodes:
if, for a particular mode, (6) holds initially—it will hold for all t (simply
because the mode’s wavenumbers n and k do not change).

For transient solutions, such as (25), the situation is different, as the spatial
scales of those vary in time.

To validate (25), we should justify the omission of the θ -derivatives in
Equation (3)—taking into account substitution (13), we have

1

εh̄3

∂2h

∂z2
 ∂2h

∂θ2
. (35)
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Figure 6. The maximum amplitude of solution (25) vs. time [hmax(t) is determined by
(34)]. (a) Short-term evolution (te and tae are the times of explosion and antiexplosion,
both determined using the no-surface-tension approximation; see Figure 2). (b) Long-term
evolution (the region corresponding to Figure 6(a) is shaded).

To estimate the derivatives of the solution, we use the asymptotic expression
(32), according to which

∂h

∂θ
= O

(
k2

1

)
,

∂h

∂z
= O(k1). (36)

Table 1
The Long-Term Evolution of Solution (25) with W 0 = 1.85, µ = 0.02 [hmax(t)

is Determined by (34)]

Time Period Local Minima of hmax(t) Local Maxima of hmax(t)

0 < t ≤ 2π 0.9968 108.7372
2π < t ≤ 4π 0.9938 11.6936
4π < t ≤ 6π 0.9908 7.0846
6π < t ≤ 8π 0.9880 5.5148
8π < t ≤ 10π 0.9852 4.6994
10π < t ≤ 12π 0.9825 4.1886
12π < t ≤ 14π 0.9799 3.8328
14π < t ≤ 16π 0.9773 3.5675
16π < t ≤ 18π 0.9748 3.3603
18π < t ≤ 20π 0.9724 3.1927

. . . . . . . . .

198π < t ≤ 200π 0.8518 1.3872
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Then, for t = O(1), (30) yields

k1 = O(µ−1/2), (37)

and, substituting (36)–(37) into (35), we obtain

µ  εh̄3. (38)

Thus, the transient solution of Equation (14) is applicable only if the effective
capillary coefficient µ is not too small.

5. The general initial-value solution (21)–(22)

In the previous section, it was shown that the particular solution (25) remains
finite for all t, and in this section, we prove the same for the general initial-value
solution (21)–(22).

The latter is more convenient to analyze if it is rewritten in terms of the
Fourier integral/series of the initial condition,

H (θ, z) =
∫ ∞

−∞

∞∑
m=−∞

Hpm exp(imθ + ipz) dp, (39)

where

H F
pm = 1

(2π )2

∫ 2π

0

∫ ∞

−∞
H (θ, z) exp(−imθ − ipz) dθ dz (40)

are the Fourier coefficients. The relationship between these and the original
coefficients Hkn can be established by substituting (39) into (21). Changing the
order of integration/summation where necessary (the validity of which will be
discussed later), and using the formula∫ ∞

−∞
exp[i(p − k)z] dz = 2πδ(p − k),

where δ(p) is the Dirac delta function, we obtain

Hkn = 1

2π

∞∑
m=−∞

∫ 2π

0
H F

km exp[i(m − n)θ + k2 cos θ ] dθ.

To evaluate the integral with respect to θ in this expression, change its limits
to (−π , π ). Then, it becomes clear that its imaginary part is zero, and the real
part can be calculated in terms of a modified Bessel function:

Hkn =
∞∑

m=−∞
H F

km Im−n(k2). (41)
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Next, substituting (41) into (22), shifting the index of summation n → n + m,
replacing I−n with In , and making use of identity (24), we obtain

h(θ, z, t) =
∫ ∞

−∞

∞∑
m=−∞

H F
km exp{im(θ − t)

+ ikz + k2[cos(θ − t) − cos θ ] − βk4t} dk. (42)

To find our whether or not (42) can explode, examine its absolute con-
vergence—i.e., consider∫ ∞

−∞

∞∑
m=−∞

∣∣H F
km

∣∣ exp{k2[cos(θ − t) − cos θ ] − µk4t} dk.

For t > 0, the convergence of this integral/series can be guaranteed by the
following sufficient conditions:

µ > 0, (43)

∞∑
m=−∞

∣∣H F
km

∣∣ ≤ AeBk2
for k ≥ k0, (44)

where A, B, and k0 are constants. Note that, importantly, (43)–(44) also
justify the changes of the order of integration/summation carried out while
transforming the original solution (22) into (42) (it should be recalled here
that the order of integration/summation may be changed only for absolutely
convergent integrals/series).

The meaning of condition (43) is obvious (it simply requires surface tension
to be present), thus we only need to illustrate the restrictions imposed by
condition (44). To do so, consider an initial condition of the form

H (θ, z) = P(θ ) Q(z).

Then, (44) yields

∞∑
m=−∞

PF
m = A < ∞, (45)

QF
k ≤ AeBk2

for k ≥ k0, (46)

where PF
m and QF

k are the Fourier coefficients of the functions P(θ ) and Q(z),
respectively. It is clear that (45) is satisfied by any continuous P(θ )—whereas
Q(z) does not even have to be continuous: condition (46) is satisfied even for
the Dirac delta function or any of its derivatives.

Thus, in the presence of surface tension, solution (40), (42) remains finite
and smooth for a wide class of initial conditions, which effectively means that
capillary effects eliminate exploding solutions.
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6. Comparison with the results of [4]

In this paper, we have argued so far that surface tension is a stabilizing
influence and, in particular, makes all eigenmodes asymptotically stable. Note,
however, that this conclusion seems to be at odds with that of [4], who
considered the same setting, but a slightly different asymptotic regime.

6.1. The large-scale model

Observe that, instead of (6), [4] assumed


z � 
θ. (47)

Conditions (5) and (47) make both components of the hydrostatic pressure
gradient [fourth and fifth terms of (3)] negligible, whereas the surface tension
may or may not be of leading order. To be on the safe side, we retain the latter,
after which Equation (3) reduces to

∂h

∂t
+ ∂h

∂θ
− ∂

∂θ

(
1

3
h3 cos θ

)
+ ∂

∂θ

[
1

3
βh3 ∂

∂θ

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]

+ ∂

∂z

[
1

3
βh3 ∂

∂z

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]
= 0. (48)

In what follows, this equation will be referred to as the large-scale model,
where the large applies to the axial scale 
z. The old equation, (7), will be
referred to as the short-scale model.

As before, we restrict our analysis to the small-flux approximation. Then,
taking into account (8), one can reduce (48) to

∂h

∂t
+ ∂h

∂θ
+ ∂

∂θ

[
1

3
βh3 ∂

∂θ

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]

+ ∂

∂z

[
1

3
βh3 ∂

∂z

(
h + ∂2h

∂θ2
+ ∂2h

∂z2

)]
= 0. (49)

To examine the stability of this equation’s steady-state solution, h = h̄, assume

h(θ, z, t) = h̄ + h′(θ, z, t).

Linearizing (49), we obtain

∂h′

∂t
+ ∂h′

∂θ
+ 1

3
βh̄3

[
∂2

∂θ2
+ ∂2

∂z2
+

(
∂2

∂θ2
+ ∂2

∂z2

)2
]

h′ = 0. (50)

This equation has constant coefficients—hence, it admits harmonic solutions

h′ = ei(nθ+kz−ωt), (51)



18 E. S. Benilov

where ω is, again, the frequency, and n and k are the azimuthal and axial
wavenumbers (to ensure 2π -periodicity in θ , n must be an integer). Substituting
(51) into (50), we obtain

ω = n + 1

3
iβ h̄3

[
n2 + k2 − (n2 + k2)2

]
. (52)

Then,

Im ω = 1

3
β h̄3k2(1 − k2) > 0 for n = 0, k ∈ (0, 1),

which corresponds to instability and is equivalent to the corresponding result
[formula (85)] of [4]. The characteristics of the most unstable disturbance are

kmax = 1√
2
, (Im ω)max = 1

12
βh̄3.

Dimensionally [see (1)–(2), (4)], these parameters correspond to

k̂max = kmax

R
= 1√

2R
, (Im ω̂)max = �(Im ω)max = γ

12ρRν

(
ˆ̄h

R

)3

, (53)

where ˆ̄h is the dimensional thickness; R and � are the radius and angular
velocity of the cylinder; ρ, γ , and ν are the density, surface tension, and
kinematic viscosity.

Thus, the axial wavelength of the most unstable disturbance is comparable
to the radius of the cylinder—which explains why the instability is missed by
the short-wave model (these scales are simply not included in it, because it
implies 
z � 1). Observe also that, mathematically, instability is caused by
the k2 term in expression (52). Tracing this term back to Equation (50), we see
that it appears due to the cylindricity of the problem (i.e., there would be no
such term for a film on a plate). We conclude that the instability is caused by
surface tension acting under the conditions of cylindrical geometry.

Note that, despite destabilizing some of the harmonic solutions of the
large-scale model, surface tension still stabilizes (eliminates) all of the
exploding solutions. Indeed, any large-scale disturbance can explode only
through a reduction of its spatial scale. Then, as a result of such reduction,
it will enter the validity region of the short-scale model—where, as shown
above, disturbances never collapse.

6.2. An example

To illustrate formulae (53), consider the following example: let the fluid under
consideration be glycerin at 20◦C, for which

ν = 1.12 × 10−3 m2/s, γ = 0.063 N/m, ρ = 1.26 × 103 kg/m3. (54)
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Assume also that

� = 1 rev/s, R = 5 cm, ˆ̄h = 2.5 mm, (55)

where ˆ̄h is the dimensional mean thickness of the film. Then, for particular
case (54)–(55), the e-folding time is

τ̂ = 1

(Im ω̂)max
≈ 1790 min,

i.e., the instability is very weak. By comparison, the so-called inertial instability
in this case is much faster: its e-folding time (estimated using the results of
[5]) is τ̂ ≈ 38 min.

Several other examples, similar to (54)–(55) have been considered and, in all
cases, inertial instability turned out to be much stronger than the capillary one.

7. Concluding remarks

In this paper, we have explored the impact of surface tension on three-dimensional
stability of a liquid film inside a rotating horizontal cylinder. For short
disturbances (such that their wavelengths are much smaller than the radius R of
the cylinder), surface tension turned out to be a stabilizing influence. Indeed,
it makes all eigenmodes asymptotically stable (without surface tension, they
would be neutrally stable) and regularizes exploding solutions that would exist
without it.

For long disturbances, with wavelengths comparable to, or larger than R,
surface tension is a destabilizing influence, because it makes the eigenmodes
unstable (which agrees with the conclusion of [4]). Physically, the instability
is caused by the joint effect of surface tension and cylindrical geometry. It
should be noted, however, that this (capillary) instability is much weaker than
the so-called inertial one (for more information on the latter, see [5]).
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