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N O N L I N E A R  W A V E S  IN W E A K L Y  DISPERSIVE R A N D O M  MEDIA 

E. S. B e ~ o v  and E. N. Pelinovskii 

The propagation of nonlinear waves in random media is an important aspect of nonlinear wave theory and 

has a long and informative history. This paper describes the basic ideas of the approaches that have been 

applied. The average-field method, which has been used most extensively in linear problems, is considered. 

This approach is then shown to be incorrect as far as nonlinear processes are concerned. Finally, a new 

scheme is proposed average-form the method, which allows consistent evolution equations to be obtained for 

nonlinear waves in random media. 

1. INTRODUCTION 

Wave scattering in media with space-time inhomogeneities is among the basic problems in the general theory of 
wave processes, The problem is reduced in the simplest case to analyzing a linear wave equation with variable random 
coefficients. Its first (not very rigorous) solution, which is called the average-field method, was proposed by Kaner [1] and 
Bourret [2] and was substantiated later by Tatarsky [3, 4] with the help of a diagram procedure. Using these results, many 
authors have been successfully in using the average-field method to solve various problems of plasma physics, radiophysics, 
acoustics, and oceanology. It is only natural that the problem of extending the results obtained to nonlinear media seems very 

attractive and important. Such generalizations were made 20 years ago [5-11]. It should be noted, however, that the methods 

of the diagram procedure have not been extended to nonlinear problems, and additional substantiation was required for use of 
the average-field method, which is not altogether correct. Moreover, an example of a nonlinear system with fluctuating 
parameters for which obviously incorrect results were obtained through the average-fieldmethod has been suggested [12]. A 
new impetus came 10 years later [14, 15], when an asymptotically rigorous generalization of the average-field method for a 

nonlinear one-dimensional wave equation was proposed, which is called the average-form method. This method is now being 

extended to more-general wave systems [16-18]. 
The present paper highlights the basic ideas underlying nonlinear generalizations of the average-field method. The 

approach suggested seems rather effective in solving various physical problems of nonlinear wave field scattering in random 

media. 

2. AVERAGE-FIELD METHOD 

Let us consider first the central ideas of nonlinear generalization of the average-field method in the form in which it 

was introduced 20 years ago [5-11]. The simplest example of the idea can be an operator equation in the form 

Zu = ~.~u + t~Ou 2, (2.1) 

where I~, l~I, and 0 are determinate linear integrodifferential operators; u is the vector of the functions describing the wave 
field; /~ is a parameter characterizing the nonlinearity; and e(r,  t) is the vector of random functions with a given statistics 

defining the space-time inhomogeneities of the medium. We choose E(r, t) such that 
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(e(F,t)) = 0, (2.2) 

where (...) is used to denote averaging over the realizations ensemble. Let us write the wave field in the form of average (u} 
and scattered u' fields 

u = (u)  + u', (u ' }  = 0. (2.3) 

Let us substitute (2.3) into (2.1) and average the equation obtained over the inhomogeneity ensemble taking (2.2) into account 

Z,(u) = + uO(u}' + (2 .4)  

Equation (2.4) is non-closed with respect to the average field. Another equation will be derived by subtracting (2.4) from 

(2.1) 

Lu '  = e M ( u )  + ( e M u '  - ( eMu ' )  ) + #Q,(u '2 - (u'2i + 2(u)u'). (2.5) 

It is hardly easier to obtain solutions of Eqs. (2.4) and (2.5), as compared with the initial equation (2.1), since the former 

contain a random vector function e. 
An objective of the average-field method is to obtain equations containing determinate functions along (e.g., correla- 

tion functions of e). This procedure is usually realized using some approximations. For example, (e 2) can be often assumed 

to be a small parameter, and this case corresponds to a certain smallness of scattering so that the wave can propagate for a 

long time while retaining its individual nature. Also, nonlinearity will be assumed 

# ,-~ (e2). (2.6) 

Scattered-field generation is described by the first term in (2.5), and scattered field u' can be expected to be proportional to 
e for small e. In this case, the remaining terms in (2.5) are of the second order (or higher) of smallness and can be omitted 

in a first approximation. Equation (2.5) is then reduced to the form 

Zu' = ~'q( '4  (2.7) 

and is readily integrated in quadratures 

u' = I , - l e ~ ( u ) .  (2.8) 

(We shall ignore possible technical problems in obtaining the inverse operator ~-1,  since they have nothing to do with the 

medium's randomness.) 
If we take an unperturbed solution of (2.4) (with zero left side) as (u), all characteristics of a scattered field are easily 

studied with the help of (2.8); this approximation is called Born's approximation or a single-scattering approximation [3, 4]. 
Such an approach is usually valid for a small inhomogeneity magnitude and a small volume occupied by the inhomogeneities, 
and u' remains small as compared with (u). One can try, however, to obtain solution of the initial equation that is applicable 

for large scattering volumes. To this end, by analogy with as)anptotic methods, field {u) should not be assumed as given or 

be used in such a way that u' could remain restricted at sufficiently great distances. 
The desired equation for (u) has already been written (Eq. (2.4)), and tile problem can be reduced essentially to 

calculating the scattered field u' through (u) with a certain degree of accuracy in order to make Eq. (2.4) closed. In the first 
approximation, u' can be naturally related to (u} through (2.8) (but with (u} not assumed as a given function), and then the 

equation for the average field takes the form 

L(u) = (e i~Z- le .~ ) (u )  + Q{u) 2. (2.9) 
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A closed equation with determinate coefficients results, and its solution can be obtained using regular methods of nonlinear 
wave theory. We have just described the entire concept of the average-field meaSod, and the approximations themselves were 
as foltovcs: 

Bourret approximation (scattering multiplicity is ignored), under which the terms in the first brackets on the right 

side of Eq, (2.5) are dropped. 
Howe approximation (nonlinearity of  the scattered field is ignored), under which the terms of  the type (u '2} and 

u'x(u) are dropped in (2.4) and (2.5). 
This method is rather attractive, since the smallness of each term seems obvious at the sign level, and, moreover, this 

method (i.e., Bourret approximation) has been substantiated in linear problems. Difficulties arise, however, in nonlinear 

problems. 

3. NONLINEAR WAVE EQUATION 

Let us consider the simplest model of a one-dimensional weakly nonlinear nondispersive medium with small fluctua- 

tions of propagation velocity. 

Applying the above average-field method to Eq. (3.t) we obtain a closed equation for the average field (for details 

see [15]): 

o r ,  o , 2  w ( . , . ) ~ ( ,  - ,., t - lrf)dt - ~ ] ,  (3.2) 

where W(~') = {e(x)e(x + ~-)) is the correlation function of propagation-velocity fluctuations and o 2 = (e 2} ---- W(O) is file 

variance of fluctuations. The scattered field in this approximation can be written in quadratures in the form 

02(u)  . t f  
(3.3) 

- - r i o  

Here G is Green's function of a linear wave equation, which is equal to G(x, t) = l l 2H( t -  [xl), where H is the Heaviside 

function. 
It seems convenient for a deeper analysis to use a single-wave approximation, which is valid if, for example, the 

initial conditions are satisfied for a wave travelling in the right-hand direction alone. The solution of Eq. (3.2) will then 

depend on the variables x and t through the following arguments 

z = m - t, T = / f i t  (3.4) 

and using standard methods of nonlinear wave theory, which are accurate to within/z 2, Eq, (3.2) takes the form 

( / )  O(u) 00~) 3~,: 0(,~) w(,)a~- 02('`) 
O T  + (u) 2 Oz Oz= (3.5) 

a9 2 
- f W ( ' r ) ~ ( z  + 2r, T)dr = O. 

o 
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This equation coincides with the Burgers equation to within the last term and is reduced to the latter under the condition of 

small-scale fluctuations. Equation (3.5) is considered the "final product" of the average-field method. 

In order to evaluate the applicability of the average-field method it seems convenient to pass to a single-wave 
approximation in the expression for the scattered field (3.3) 

0 

(3.6) 

where 

z 

(3.7) 

are phase fluctuations. It Should be noted that the first term in (3.6) describes the small displacement of the incident wave as 
a whole (forward scattering). Indeed, the sum of an incident wave and the term responsible for the forward scattering 
"because" a single term (u(z-#O)) to within the accuracy mentioned. The mean-square fluctuation of the phase (0 2) is easily 

seen to be unrestricted with an increase of x 

(O 2) --, 2~ f W(r)dt. 
o 

(3.8) 

It is evident that (/z '2) is infinitely large along with (O2~, i.e., this term is dropped when passing from exact equations (2.4) 
and (2.5) to the approximate equation for an average field (2.9) to Eq. (3.2) in this case. Therefore, the average-field method 

is found to be incorrect in nonlinear problems. The above does not refer to linear media, where the term of type (u '2) is not 

observed at all and the average-field method is reliable enough. 

4. THE AVERAGE FORM METHOD 

It becomes evident from the above that the inapplicability of the average field method is due to phase fluctuations in 
the wave (forward scattering). However, we should then see how phase fluctuations can be excluded, since they have no 

physical meaning and do not correspond to the energy losses in a random medium. The answer is very simple in a one- 
dimensional problem: we must employ a coordinate system that moves with the fluctuation velocity without phase fluctua- 
tions. Let us consider again the nonlinear wave equation (3.1), but, for the sake of simplicity, e will be assumed to be a 
function of t alone (space fluctuations were considered in [15]). We shall use a reference system that travels at an undeter- 

mined (as yet) velocity 

z' = , - f e ( t ) d t ,  t' = t. (4,1) 

In the new variables, Eq. (4.1) takes the form (primes are omitted) 

02u O~u Oe Ou (4,2) 
Ot2 - 2c(t) o--~-, Ot O + [e' - (l + , , i ']  O'u b-~fi2 -- 0. 

Here we consider a single-wave approximation again and. in accordance with the many-scale method used to derive evolution 
equations [19. 20] (in fact. we used it in the previous section), we introduce along with the "fast" time the slow time T =/z2t 

and seek a solution in the form of asymptotic series that are accurate to within/z 2 

u(z,t ,T) = u(~ + I~u(:)(z,t,T) + ~2u(2)(~,,t,T), (4.3) 
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c(t) = 1 + t~cO)(t) + pt2e(=)(t). (4.4) 

The principal terms in these series correspond to a wave heading to the right. The zeroth order of perturbation theory with 

respect to/z is satisfied automatically, wRile for the first order an equation for the scattered field is derived 

02u(1) O 2 u O ) O e O ) O u ( ~ 1 7 6  
Ot ~ 20tO-----~ = Ot O---X- + 2 ~ - e (1) (4.5) O Z 2  " 

It can be integrated trivially taking into account the initial conditions of the absence of reflected waves as t --- - c~ 

0 t Ou( ) Ou(~ 

0 --oo 

(4.6) 

The last term in (4.6) is easily seen to correspond to forward scattering, and it results in an unrestricted increase in u (i)2. To 

exclude this, we assume 

e(1)(t) =E( t ) ,  (4.7) 

then the scattered field remains restricted. For the second order in/~ we have an inhomogeneous linear equation for u (2) 

o(o ~ - 2 u~ ~) = F(~,t,T), 

02u(~ 02(u(~ 2~ 02u(x) Oe OuO) 
F = 2 o - - ~ g +  o,---w-+ o--i~,+o-7 o-S - +  

Oe(2) Ou(o) 
+ 2e(2)O2u(~ + - -  

O~ 2 Ot Ot 

(3.8) 

(3.9) 

In order to keep u (2) restricted as t --, oo, the following condition should be satisfied 

+ A  

f = 0. 
- A  

It is this condition that results in the desired evolution equation for u (0) (index (0) is omitted) 

Ou ~20u Ou 7 02u. 
O---T + -2"ff~z + u~-s + ] W(r)~iz2 (, + 2r, T ) d r  = 0, 

0 

(4. lO) 

(4.11) 

where W is the correlation function of e, as previously. Equation (4.11) contains only determinate coefficients, as in the case 

of the average field method. However, since field averaging is performed in a reference system that moves at a random 

velocity and "tracking" fluctuations of the wave phase, then u(x, T) will describe the average wave form rather than the 

average field. The average field is easily calculated by the formula 

(u) = ? ur176 - t - o ) r ( O ,  t)aO, (4.12) 
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where F is the probability distribution of phase @. 
Therefore, we have developed a consistent scheme to describe the properties of nonlinear waves in random media. It 

is clear from this paper that the degree of completeness and generality obtained is less than that known for linear media. A 
number of generalizations of the scheme have been carried out [17, 18] but only for one-dimensional medium fluctuations. 
The issue of nonlinear wave-fMd behavior in two-dimensional and three-dimensional random media requires further investi- 
gation. 
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