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Stability of thin liquid curtains
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We investigate the stability of thin liquid curtains with respect to two-dimensional perturbations. The dynamics
of perturbations with wavelengths exceeding (or comparable to) the curtain’s thickness are examined using the
lubrication approximation (or a kind of geometric optics). It is shown that, contrary to the previous theoretical
results, but in agreement with the experimental ones, all curtains are stable with respect to small perturbations.
Large perturbations can still be unstable, however, but only if they propagate upstream and, thus, disrupt the
curtain at its outlet. This circumstance enables us to obtain an effective stability criterion by deriving an existence
condition for upstream propagating perturbations.
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I. INTRODUCTION

The process of curtain coating is traditionally used for
manufacturing photographic materials and, more recently,
paper. Typically, a liquid curtain is formed using a reservoir
with a slot (outlet) in its bottom; having emerged from the
outlet, the curtain falls under gravity until it hits the substrate
to be coated. Clearly, for this to work as an industrial process,
the falling curtain should be hydrodynamically stable.

The stability of liquid curtains with respect to small
perturbations was first considered in Ref. [1] using a some-
what intuitive approach (not based on a formal asymptotic
expansion). A stability criterion was obtained, predicting that
all curtains with a sufficiently small Weber number We < 1
are unstable. It was also argued that the instability is caused
by sinuous perturbations, traveling upstream. The conclusions
obtained appeared to agree with the experimental results
reported in Refs. [2,3]. The effect of the surrounding air on the
curtain’s stability was examined in Refs. [4,5] using the same
intuitive approach as that of Ref. [1].

Note, however, that, in experiments [2,3], the curtain was
perturbed by a solid object inserted in the flow so that the
resulting perturbations could hardly be assumed small. Subtler
experiments were carried out in Refs. [6,7] with perturbations
created by either fluctuations of air pressure or a thin needle,
respectively. On the basis of these experiments the authors
of Ref. [6] concluded that “despite the fact that previous
work . . . shows that curtains . . . where We < 1 are unstable to
small disturbances, our experiments show that these curtains
can exist over a wide range of flow conditions.” A similar
conclusion was drawn in Ref. [7] where it was also claimed
that a curtain can disintegrate only due to a “hole” (i.e., a large
perturbation).

In the present paper, we examine the stability of liquid
curtains through a formal asymptotic expansion and thus
show that all curtains are linearly stable with respect to
sinuous perturbations. We also calculate an expression for the
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perturbations’ speed (which is similar to the corresponding
result of Refs. [1,4,5] but with an extra term). Then, adopting
the hypothesis of Ref. [8]—that sufficiently strong upstream
traveling perturbations can destabilize the curtain—we obtain
a stability criterion for large perturbations.

This paper has the following structure. In Sec. II, we
formulate the problem. In Secs. III and IV, we derive an
asymptotic model for long-wave perturbations and use it to
examine their stability. In Sec. V, we examine perturbations
whose wavelengths are comparable to the curtain’s thickness.
Large-amplitude perturbations are discussed in Sec. VI where
we also compare our results to those of Ref. [1].

II. FORMULATION

Let the horizontal and vertical axes x and z be directed
to the right and downwards, respectively, and consider a
two-dimensional liquid sheet emerging from an outlet located
at z = 0 (see Fig. 1). The free boundaries of the sheet are
described by the equation x = x±(t,z), where t is the time. The
liquid is assumed incompressible with density ρ, kinematic
viscosity ν, and surface tension σ ; and the flow is characterized
by its velocity (u,w) and pressure p.

A. The governing equations

We employ the Navier-Stokes equations,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+ 1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+ ∂2u

∂z2

)
, (1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+ 1

ρ

∂p

∂z
= g + ν

(
∂2w

∂x2
+ ∂2w

∂z2

)
, (2)

∂u

∂x
+ ∂w

∂z
= 0, (3)

where g is the acceleration due to gravity. The kinematic
conditions at the free boundaries are

∂x±
∂t

− u + w
∂x±
∂z

= 0, at x = x±, (4)

and the standard dynamic conditions are rearranged into a
more convenient form

2
∂u

∂x
− p − σc±

ρν
=

(
∂u

∂z
+ ∂w

∂x

)
∂x±
∂z

, at x = x±, (5)
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FIG. 1. The setting: a free-falling liquid curtain.

∂u

∂z
+ ∂w

∂x
=

(
2
∂w

∂z
− p − σc±

ρν

)
∂x±
∂z

, at x = x±, (6)

where the curvatures of the free boundaries are

c± = ∓∂2x±
∂z2

[
1 +

(
∂x±
∂z

)2]−3/2

. (7)

We will use the following nondimensional variables:

t∗ = t

T
, x∗ = x

X
, z∗ = z

Z
, u∗ = u

U
,

(8)

w∗ = w

W
, p∗ = p

P
, x±∗ = x±

X
, c±∗ = Z2

X
c±,

where the dimensional scales are constrained by the standard
hydrodynamic balance,

1

T
= U

X
= W

Z
. (9)

Let the vertical acceleration of liquid particles be comparable
to g, the horizontal pressure gradient be balanced by viscosity,
and X and W are linked to the volumetric flow rate Q per unit
width of the curtain, i.e.,

W

T
= g,

P

ρX
= νU

X2
, WX = Q. (10)

Conditions (9) and (10) imply that

T = Q

gX
, Z = Q2

gX2
, (11)

U = gX2

Q
, W = Q

X
, P = ρgνX

Q
. (12)

Rewriting the governing set (1)–(7) in terms of the nondimen-
sional variables (8), taking into account conditions (11) and
(12), and omitting asterisks, we obtain

δ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
+ ∂p

∂x

= ∂2u

∂x2
+ ε

∂2u

∂z2
δ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
+ ε

∂p

∂z

= δ + ∂2w

∂x2
+ ε

∂2w

∂z2
, (13)

∂u

∂x
+ ∂w

∂z
= 0, (14)

∂x±
∂t

− u + w
∂x±
∂z

= 0, at x = x±, (15)

2
∂u

∂x
− p + δγ c± =

(
ε
∂u

∂z
+ ∂w

∂x

)
∂x±
∂z

,

ε
∂u

∂z
+ ∂w

∂x
= ε

(
2
∂w

∂z
− p + δγ c±

)
∂x±
∂z

,

at x = x±, (16)

c± = ∓∂2x±
∂z2

[
1 + ε

(
∂x±
∂z

)2]−3/2

, (17)

where

δ = gX3

νQ
, ε =

(
gX3

Q2

)2

, γ = σX

ρQ2
. (18)

Observe that δ multiplies the convective derivatives in the
Navier-Stokes equations (13)—hence, it should be interpreted
as the Reynolds number. ε, in turn, is the curtain’s aspect ratio
(it can be shown that ε = X2/Z2), and γ characterizes surface
tension.

B. The governing parameters

Note that the horizontal scale X characterizing the curtain’s
thickness has not been fixed so far. Physically, the best choice
for X is the outlet’s width Xoutlet.

Assuming, thus, X = Xoutlet, we formulate our main as-
sumptions in the form

δ � 1, ε � 1. (19)

These conditions make the flow “slow” and the curtain thin—
together, they amount to the lubrication approximation. We do
not make any assumptions about γ , so it will be treated as an
order-one parameter.

III. LONG-WAVE PERTURBATIONS:
THE ASYMPTOTIC EQUATIONS

When the curtain emerges from the outlet, its velocity
profile is parabolic (as that of a Poiseuille flow). However,
since the side walls supporting this shape are no longer in place,
the flow has to adjust to the new boundary conditions—and it
does so in a certain adjustment region, whose size is sometimes
referred to as the “exit length.” Unfortunately, this parameter
has been calculated only for large Reynolds numbers [9,10],
whereas we are interested in the opposite limit δ � 1. One
can assume, however, that, for small δ, the “exit problem” is
symmetric to the “entrance problem” (where a plug flow enters
a channel and eventually assumes the Poiseuille profile). The
latter setting has been examined in more detail; in particular,
the entrance length has been computed for a wide range of δ

in Ref. [11]. It has turned out to be surprisingly small: about
half of the channel’s width.

In this paper, we are not concerned with the flow behavior in
the small adjustment region. We only assume that the curtain’s
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thickness does not change much over the exit length and, thus,
remains approximately equal to the outlet’s width.

A. The analysis

There are two approaches to the asymptotic analysis of
problems with multiple small parameters. In most cases, one
assumes a certain relationship between these—say, δ = cε

with c = O(1)—and then expands the problem in ε only.
Alternatively, one keeps the small parameters unrelated and
works with expansions in εnδm, which yields more general
results but may involve more algebra.

In what follows, we employ the latter approach. The price
to pay for the generality is not too high in the problem at hand
as we do not need to go beyond the first-order perturbations,
i.e., linear in ε and δ.

Thus, let the solution of Eqs. (13)–(17) have the form

(u,w,p,x±) = (u(0),w(0),p(0)) + (u(1),w(1),p(1)) + · · · ,

where

(u(0),w(0),p(0)) = O(1), (u(1),w(1),p(1)) = O(ε,δ).

Note that the unknowns characterizing the free-surface x± are
not expanded (as one often does when using the lubrication
approximation).

To leading order, (13)–(17) yield

w(0) = w0, u(0) = −x
∂w0

∂z
+ u0, (20)

p(0) = −2
∂w0

∂z
, (21)

∂x±
∂t

+ x±
∂w0

∂z
− u0 + w0

∂x±
∂z

= 0, (22)

where the undetermined functions w0(z,t) and u0(z,t) are
independent of x.

In the next order, we only need Eqs. (13), (14), and (16).
Taking into account (20) and (21), we obtain

∂p(1)

∂x
= ∂2u(1)

∂x2
+ ε

(
∂2u0

∂z2
− x

∂3w0

∂z3

)

+δ

{
x

[
∂2w0

∂t ∂z
−

(
∂w0

∂z

)2

+ w0
∂2w0

∂z2

]

−δ
∂u0

∂t
+ u0

∂w0

∂z
− w0

∂u0

∂z

}
, (23)

∂2w(1)

∂x2
= −3ε

∂2w0

∂z2
+ δ

(
∂w0

∂t
+ w0

∂w0

∂z
− 1

)
, (24)

∂u(1)

∂x
+ ∂w(1)

∂z
= 0, (25)

2
∂u(1)

∂x
− p(1) = 4ε

∂w0

∂z

(
∂x±
∂z

)2

± δγ
∂2x±
∂z2

, at x = x±,

(26)

∂w(1)

∂x
= ε

(
4
∂w0

∂z

∂x±
∂z

+ x±
∂2w0

∂z2

∂2w0

∂z2

∂u0

∂z

)
, at x = x±.

(27)

It can readily be verified that Eq. (24) and the boundary
conditions (27) have a solution for w(1) only if

δ

(
∂w0

∂t
+ w0

∂w0

∂z
− 1

)

= ε

[
4
∂2w0

∂z2
+ 4

x+ − x−

∂w0

∂z

∂(x+ − x−)

∂z

]
. (28)

If condition (28) holds, one can find w(1)—substitute it in
Eq. (26) and, thus, find u(1)—then substitute u(1) and w(1) into
(23) and (26) and solve these for p(1). It turns out that the
solution for p(1) exists only if

δ

{
∂u0

∂t
+ w0

∂u0

∂z
− u0

∂w0

∂z
− x+ + x−

2

×
[

∂2w0

∂t∂z
+w0

∂2w0

∂z2
−

(
∂w0

∂z

)2
]
−4γ

	

∂2(x+ + x−)

∂z2

}

= 4ε

x+ − x−

∂

∂z

[
(x+ − x−)

∂w0

∂z

∂(x+ + x−)

∂z

]
. (29)

Note that this equation has been simplified using (28).
Equations (22), (28), and (29) form a closed set for x±, w0,
and u0. They take a much simpler form in terms of

C = x+ + x−
2

, h = x+ − x−,

U = u0 − x+ + x−
2

∂w0

∂z
, w = w0,

where C(z,t) and U (z,t) are the position and horizontal
velocity of the curtain’s center line and h(z,t) is the curtain’s
thickness. One can now rewrite (22), (28), and (29) in the form

∂h

∂t
+ ∂(wh)

∂z
= 0, δ

(
∂w

∂t
+ w

∂w

∂z
− 1

)
= 4ε

h

∂

∂z

(
h

∂w

∂z

)
,

(30)

∂C

∂t
+ w

∂C

∂z
− U = 0,

δ

(
∂U

∂t
+ w

∂U

∂z
− 2γ

h

∂2C

∂z2

)
= 4ε

h

∂

∂z

(
h

∂w

∂z

∂C

∂z

)
. (31)

B. Discussion

(1) Observe that Eq. (29) governs the varicose (symmetric)
part of the curtain’s evolution, whereas (30) governs the
sinuous part. Interestingly, the former do not involve C and
U and, thus, decouple from the latter, but the latter do involve
w and h and, thus, depend on the solution of the former.

Thus, physically, sinuous motions are affected by the
varicose ones but not vice versa.

(2) Since ε and δ have already played their roles of
“indicators” of small terms in the governing equations, we
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can scale them out of Eqs. (29) and (30). To do so, let

t =
(

ε

δ

)1/3

tnew, z =
(

ε

δ

)2/3

znew,

w =
(

ε

δ

)1/3

wnew, h =
(

ε

δ

)−2/3

hnew,

C = Cnew, U =
(

ε

δ

)−1/3

Unew.

We emphasize that this rescaling does not imply extra physical
assumptions as it will not be used for omitting any terms in
the equations derived. Note also that the new variables are still
related to the dimensional ones by (8)–(12) but only if the
spatial scale X is given by

X = Q

(gν)1/3
.

Note, however, that definitions (18) of ε and δ still imply
X = Xoutlet.

Rewriting (29) and (30) in terms of the new variables and
omitting the subscripts new, we obtain

∂h

∂t
+ ∂(wh)

∂z
= 0,

∂w

∂t
+ w

∂w

∂z
− 1 = 4

h

∂

∂z

(
h

∂w

∂z

)
,

(32)

∂C

∂t
+ w

∂C

∂z
− U = 0,

(33)
∂U

∂t
+ w

∂U

∂z
− 2γ

h

∂2C

∂z2
= 4

h

∂

∂z

(
h

∂w

∂z

∂C

∂z

)
.

IV. LONG-WAVE PERTURBATIONS: STABILITY
OF A STEADY CURTAIN

In terms of Eqs. (32) and (33), steady vertical curtains are
described by

h = h̄(z), w = w̄(z), C = 0, U = 0.

Since our nondimensionalization implies that the nondimen-
sional flux equals unity, Eq. (33) reduces to

w̄h̄ = 1, (34)(
w̄ − 4w̄′

w̄

)′
= 1

w̄
, (35)

where the prime denotes differentiation with respect to z.
Equation (35) (first presented in Ref. [2]) admits an analytic
solution in terms of the Airy function [12], which can be used
to show that all physically meaningful solutions of (35) are
such that

w̄ = 1
8 (z − z̄)2 + O[(z − z̄)3], as z → z̄ + 0, (36)

w̄ = (2z)1/2 + O(z−1/2), as z → +∞, (37)

where z̄ is arbitrary [due to the translational invariance of
(35)]. As w̄ → 0 implies h̄ → ∞, z̄ should be smaller than
the coordinate of the curtain’s outlet; the latter is assumed to
be at z = 0—hence, z̄ < 0 [see Fig. 2(a)]. Note also that the
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FIG. 2. The solution of the boundary-value problem (35)–(37)
for z̄ = −2. The curtain’s outlet is located at z = 0. (a) w̄ vs z; (b) P̄

[defined by (41)] vs z. zcr is the coordinate of the critical point such
that P̄ (zcr) = 0.

limit of small Xoutlet is described by the limit of large negative
z̄ in which case all of the curtain is described by asymptotics
(37).

Note that all available experiments [2,3,6,7] suggest that
varicose perturbations are stable—therefore, we only examine
sinuous perturbations. To do so, we let w = w̄, h = h̄ in
Eq. (33) and use (34) to eliminate h̄, which yields

∂C

∂t
+ w̄

∂C

∂z
− U = 0, (38)

∂U

∂t
+ w̄

∂U

∂z
= w̄

∂

∂z

(
4w̄′

w̄

∂C

∂z

)
+ 2γ w̄

∂2C

∂z2
. (39)

Note that these equations were not linearized with respect to
C and U as the original Eq. (33) is already linear.

We confine our study to perturbations with exponential
dependence on t ,

C = Ĉ(z)eλt , U = Û (z)eλt ,

where Re λ and Im λ are the growth rate and frequency.
Reducing then (38) and (39) to a single equation for Ĉ, we
obtain

(P̄ Ĉ ′)′ + 2λĈ ′ + λ2

w̄
Ĉ = 0, (40)

where

P̄ (z) = w̄ − 4w̄′

w̄
− 2γ. (41)

Before setting boundary conditions for (40), note that the origi-
nal partial differential Eqs. (38) and (39) are of hyperbolic type
and their characteristics z(t) satisfy the following differential
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equations:

dz

dt
= w̄(z) ±

√
2γ w̄(z) + 4w̄′(z). (42)

Evidently, if

P̄ (z) � 0 for all z ∈ (0,∞), (43)

where P̄ (z) is defined by (41), then (42) implies dz/dt � 0.
Keeping in mind that, physically, characteristics are associated
with waves, we conclude that these cannot travel upstream.
If, however, a region of negative P̄ (z) exists, some of the
waves there do travel upstream. Solving of the steady-curtain
problems (35)–(37) numerically, one can show that this region,
if it exists, is adjacent to the outlet, i.e., occupies an interval
[0,zcr) with zcr such that

P̄ (zcr) = 0.

An example of P̄ (z) allowing for waves traveling upstream is
plotted in Fig. 2(b).

Next, the number of boundary conditions at z = 0 should
equal the number of characteristics emerging from the outlet.
Thus,

(1) if P̄ � 0 for z ∈ [0,∞), (40) requires two boundary
conditions at z = 0;

(2) if P̄ < 0 for z ∈ [0,zcr), (40) requires one boundary
condition at z = 0.

In Case 1, we require

Case 1: Ĉ = 0, Ĉ ′ = 0, at z = 0, (44)

i.e., the position of the outlet is fixed, and the curtain is vertical
there.

It can readily be shown that (40)–(44) admit only the trivial
solution Ĉ = 0. Thus, no unstable solutions exist, and we
conclude that, in Case 1, the curtain is stable.

In Case 2, the waves coming from below still cannot change
the outlet’s position—hence,

Case 2: Ĉ = 0, at z = 0. (45)

The upstream traveling waves, however, can alter the angle
at which the curtain emerges from the outlet. The condition
for Ĉ ′ should, thus, be discarded, leaving us one boundary
condition short.

Observe, however, that the coefficient of the highest
derivative of Eq. (40) vanishes at z = zcr, making it a singular
point. Then, using the Frobenius method, one can show that

Ĉ = a1Ĉ1 + a2Ĉ2, (46)

where a1,2 are constants and

Ĉ1 = 1 + O(z − zcr),

Ĉ2 = (z − z0)−2λ/P̄ ′(zcr)[1 + O(z − zcr)], as z → zcr.

(47)

We are only interested in unstable solutions for which Re λ >

0. In this case Ĉ2 is unbounded as z → zcr and, therefore,
should be eliminated by setting a2 = 0. Assuming without
loss of generality that a1 = 1, we reduce (46) and (47) to

Ĉ = 1, as z = zcr. (48)

It turns out, however, that problems (40), (45), and (48) do not

have solutions with Re λ > 0. To prove this, multiply (40) by
Ĉ∗ and integrate from z = 0 to z = zcr. Integrating by parts,
using the boundary conditions (45) and (48), and separating
the real and imaginary parts, we obtain

λi + λr

∫ zcr

0
Im

(
Ĉ∗ dĈ

dz
− dĈ∗

dz
Ĉ

)
dz

+2λrλi

∫ zcr

0

|Ĉ|2
w̄

dz = 0, (49)

λr − λi

∫ zcr

0
Im

(
Ĉ∗ dĈ

dz
− dĈ∗

dz
Ĉ

)
dz

−
∫ zcr

0
P̄

∣∣∣∣dĈ

dz

∣∣∣∣
2

dz + (
λ2

r − λ2
i

) ∫ zcr

0

|Ĉ|2
w̄

dz = 0,

(50)

where λr = Re λ and λi = Im λ. Equality (49) can be used
to eliminate the integral involving Im(· · · ) from (50), which
yields∫ zcr

0
P̄

∣∣∣∣dĈ

dz

∣∣∣∣
2

dz = |λ|2
( ∫ zcr

0

|Ĉ|2
w̄

dz + 1

λr

)
. (51)

Since in Case 2 P̄ < 0 for z ∈ [0,zcr), equality (51) cannot
hold for λr > 0. We conclude that the eigenvalue problems
(40), (45), and (48) do not have unstable solutions.

Thus, no unstable solutions exist in either Case 1 or
Case 2, which should be interpreted as stability.

V. SHORT-WAVE PERTURBATIONS

We will now consider short-wave perturbations with wave-
lengths comparable to the curtain’s thickness. Note that,
although the lubrication approximation does not apply to
these, it still applies to the curtain—which circumstance will
considerably simplify our task.

Seek a solution of Eqs. (13)–(17) (with δ = ε) in the form

u = us(x,z) + ũ(t,x,z), w = ws(x,z) + w̃(t,x,z),

p = ps(x,z) + p̃(t,x,z),

x± = xs±(z) + x̃±(t,z), c± = cs±(z) + c̃±(t,z),

where the variables with the subscript s and tildes describe
the curtain and a small perturbation, respectively. The latter is
governed by the linearized version of (13)–(17) (again, with
δ = ε),

ε

(
∂ũ

∂t
+ us

∂ũ

∂x
+ ũ

∂us

∂x
+ ws

∂ũ

∂z
+ w̃

∂us

∂z

)
+ ∂p̃

∂x

= ∂2ũ

∂x2
+ ε

∂2ũ

∂z2
, (52)

ε

(
∂w̃

∂t
+ us

∂w̃

∂x
+ ũ

∂ws

∂x
+ ws

∂w̃

∂z
+ w̃

∂ws

∂z
+ ∂p̃

∂z

)

= ∂2w̃

∂x2
+ ε

∂2w̃

∂z2
, (53)

∂ũ

∂x
+ ∂w̃

∂z
= 0, (54)
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∂x̃±
∂t

− ũ − ∂us

∂x
x̃± + ws

∂x̃±
∂z

+
(

w̃ + ∂ws

∂x
x̃±

)
∂xs±
∂z

= 0, at x = xs±, (55)

2

(
∂ũ

∂x
+ ∂2us

∂x2
x̃±

)
− p̃ − ∂ps

∂x
x̃± + εγ c̃±

=
(

ε
∂us

∂z
+ ∂ws

∂x

)
∂x̃±
∂z

+
[
ε

(
∂ũ

∂z
+ ∂2us

∂x ∂z
x̃±

)

+∂w̃

∂x
+ ∂2ws

∂x2
x̃±

]
∂xs±
∂z

at x = xs±, (56)

ε

(
∂ũ

∂z
+ ∂2us

∂x ∂z
x̃±

)
+ ∂w̃

∂x
+ ∂2ws

∂x2
x̃±

= ε

{(
2
∂ws

∂z
−ps+εγ cs±

)
∂x̃±
∂z

+
[

2

(
∂w̃

∂z
+ ∂2ws

∂x∂z
x̃±

)

−p̃ − ∂ps

∂x
x̃± + εγ c̃±

]
∂xs±
∂z

}
at x = xs±, (57)

c̃± = ∓∂2x̃±
∂z2

[
1 + ε

(
∂xs±
∂z

)2
]−3/2

±3ε
∂2xs±
∂z2

∂xs±
∂z

∂x̃±
∂z

[
1 + ε

(
∂xs±
∂z

)2
]−5/2

. (58)

Since the perturbation is no longer assumed to be long wave,
these equations need to be rescaled. To understand how,
recall our original nondimensionalization where the x-to-z
aspect ratio was O(ε1/2). Accordingly, the assumption that
the dimensional wavelength is comparable to the curtain’s
thickness amounts to making the nondimensional wavelength
∼ε1/2.

With regard to the characteristic period τ of the perturba-
tion, two different modes can be distinguished

Mode 1: τ ∼ ε1/2,

Mode 2: τ ∼ ε.

It turns out that the two modes also differ by the amplitude of
the free-surface displacement,

Mode 1: x̃ ∼ ũ,

Mode 2: x̃ ∼ εũ.

As for the curtain itself, it is still described by the steady
version of Eqs. (13)–(17) with no rescaling necessary. This
circumstance allows us to “reuse” the lubrication results of
Sec. III, i.e., set

ws = w̄ + O(ε), us = −xw̄′ + O(ε), (59)

ps = −2w̄′ + O(ε), xs± = ± 1

2w̄
+ O(ε), (60)

where w̄(z) satisfies the boundary-value problems (35)–(37).
Perturbations of Modes 1 and 2 are examined in Secs. V A

and V B, respectively—in both cases using an asymptotic
approach similar to the geometric optics.

A. Mode 1

Seek a solution describing a wave packet traveling in a
slowly changing medium,

ũ = û(x,z,t) exp

{
iε−1/2

[∫
k(z)dz − ωt

]}
,

(61)

w̃ = ε1/2ŵ(x,z,t) exp

{
iε−1/2

[∫
k(z)dz − ωt

]}
,

p̃ = p̂(x,z,t) exp

{
iε−1/2

[∫
k(z)dz − ωt

]}
,

(62)

x̃± = x̂±(z,t) exp

{
iε−1/2

[∫
k(z)dz − ωt

]}
,

where the variables with hats describe the so-called envelope
of the wave packet and ω and k are the frequency and
wave number of the carrier wave. The former is a constant,
whereas the latter depends on the local properties of the
curtain where the perturbation is currently traveling. In the
case under consideration, k(z) can immediately be determined
from Eq. (55), which admits a nontrivial leading-order solution
only if

k = ω

w̄(z)
. (63)

Thus, the perturbation speed locally coincides with that of the
flow.

Substituting (61) and (62) into (52)–(58) and keeping the
leading-order terms only, we obtain

∂p̂

∂x
= ∂2û

∂x2
− ω2

w̄2
û,

iω

w̄
p̂ = ∂2ŵ

∂x2
− ω2

w̄2
ŵ, (64)

∂û

∂x
+ iω

w̄
ŵ = 0, (65)

∂x̂±
∂t

− û + w̄′x̂± + w̄
∂x̂±
∂z

= 0, at x = ± 1

2w̄
, (66)

2
∂û

∂x
− p̂ ± γω2

w̄2
x̂± = 0, at x = ± 1

2w̄
. (67)

iω

w̄
û + ∂ŵ

∂x
= 4iω

w̄
w̄′x̂±, at x = ± 1

2w̄
. (68)

Equations (64) and (65) form a set of ordinary differential
equations in x, which can be readily solved

û = (A + Bx) exp
ωx

w̄
+ (F + Gx) exp

(
−ωx

w̄

)
,

ŵ = i

[(
A + w̄

ω
B + Bx

)
exp

ωx

w̄

−
(

F − w̄

ω
G + Gx

)
exp

(
−ωx

w̄

)]
,

p̂ = 2B exp
ωx

w̄
+ 2G exp

(
−ωx

w̄

)
,

where A, B F , and G are undetermined functions of z

and t . Substituting the above expressions into the boundary
conditions (66)–(68) and eliminating A, B, F , and G, we
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obtain (after straightforward but tedious algebra)

∂X̂

∂t
+ w̄

∂X̂

∂z
+ DXX̂ = 0,

∂ĥ

∂t
+ w̄

∂ĥ

∂z
+ Dhĥ = 0, (69)

where

X̂ = 1
2 (x̂+ + x̂−), ĥ = x̂+ − x̂−

represent the sinuous and varicose perturbations, and

DX = w̄′( sinh ω
w̄2 + ω

w̄2

) + γω

2w̄

(
cosh ω

w̄2 + 1
)

sinh ω
w̄2 − ω

w̄2

,

Dh = w̄′( sinh ω
w̄2 − ω

w̄2

) + γω

2w̄

(
cosh ω

w̄2 − 1
)

sinh ω
w̄2 + ω

w̄2

.

Equation (69) can readily be solved by characteristics, and it
can be shown that, since DX,Dh > 0 for ω 
= 0, the solution
decays as t → ∞, which means that Mode-1 perturbations are
stable.

B. Mode 2

Seek a solution in the form

ũ = û(x,z,t) exp

{
i

[
ε−1/2

∫
k(z)dz − ε−1ωt

]}
,

w̃ = ε1/2ŵ(x,z,t) exp

{
i

[
ε−1/2

∫
k(z)dz − ε−1ωt

]}
,

p̃ = p̂(x,z,t) exp

{
i

[
ε−1/2

∫
k(z)dz − ε−1ωt

]}
,

x̃± = εx̂±(z,t) exp

{
i

[
ε−1/2

∫
k(z)dz − ε−1ωt

]}
.

Substituting these expressions into (52)–(58) and keeping the
leading-order terms only, we obtain

− iωû + ∂p̂

∂x
= ∂2û

∂x2
− k2û, − iωŵ + ikp̂ = ∂2ŵ

∂x2
− k2ŵ,

(70)

∂û

∂x
+ ikŵ = 0, (71)

− iωx̂± − û = 0, at x = ± 1

2w̄
, (72)

2
∂û

∂x
− p̂ = 0, ikû + ∂ŵ

∂x
= 0, at x = ± 1

2w̄
. (73)

Observe that, unlike their Mode-1 counterparts, Eqs. (70)–(73)
do not involve the derivatives of x̂± with respect to z and t

(they appear in the next order of the expansion). We will still
be able, however, to draw a conclusion about stability as the
relationship between ω and k described by (70)–(73) turns out
to be complex and corresponding to wave decay. This kind of
decay is even faster than the one for the Mode-1 perturbation.

Omitting technical details, we just state that (70)–(73) yield
the following dispersion relation for sinuous perturbations:

4

√
1 − iω

k2
tanh

(√
1 − iω

k2

k

2w̄

)
=

(
2 − iω

k2

)2

tanh
k

2w̄
.

(74)

To illustrate how this equality can be used, we solve it for ω

for the following limits:

ω ∼ − ik4

3w̄2
, as k → 0,

ω ∼ −iak2, as k → ∞,

where a ≈ 0.912 62. These dispersion relations correspond to
the linear fourth- and second-order diffusion equations, whose
solutions rapidly decay. Generally, if a dispersion relation is
resolved with respect to ω and yields

Im ω < 0 for real k, (75)

one can safely assume stability.
Unfortunately, (74) does not have an obvious solution for

ω, so condition (75) has been verified numerically. This is not
a difficult task as w̄ can be scaled out from (74), so it has to be
solved only for a range of k.

Thus, Mode-2 perturbations are stable.

VI. LARGE PERTURBATIONS

Even though liquid curtains are stable with respect to small
perturbation, experiments [2,3,6,7] show that they can be
unstable with respect to large ones. According to a hypothesis
put forward in Ref. [8], curtains are unstable if (large)
perturbations can travel upstream. Such perturbations can
disrupt the flow near the outlet, whereas downstream traveling
perturbations are simply swept away.

Adopting this hypothesis and using expression (42) for the
wave speed, one can readily show that instability occurs if

w̄ < 2γ + 4w̄′

w̄
. (76)

The second term on the right-hand side of criterion (76) makes
it different from its counterpart obtained in Ref. [1], which
gives rise to two questions. First, why the two criteria are
different, and, second—if we insist that ours is correct—how
can we explain the agreement of the results of Ref. [1] with
the experimental ones [2,3,6,7]?

The first question is a mathematical one and, thus, can be
answered with certainty. Reference [1] as well as the follow-up
papers [4,5] assumed that the stability properties of a curtain
depend only on its local characteristics and, thus, neglected
its streamwise variability. We, on the other hand, use a formal
asymptotic procedure not based on any ad hoc assumptions and
obtained an expression (42) for the wave speed involving local
terms as well as a nonlocal one (associated with the streamwise
gradient of the curtain’s velocity). Most importantly, the local
and nonlocal terms are on the same order, which leaves us with
no other option but to conclude that the locality hypothesis was
unjustified.

Before we address the second question, we emphasize that
it has nothing to do with the first one. The issue of which of the
two criteria is correct can only be resolved by mathematical
means. It is still puzzling though that measurements agree with
a theoretical result missing a term.

The most likely explanation of the paradox is that, in the
above-mentioned experiments,

ε � δ (77)
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[for the definitions of these parameters, see (18)]. Indeed,
recalling the nonrescaled equations (30) and (31), one can
see that the nonlocal term [the one on the right-hand side of
the second equation in (31)] involves ε and, thus, disappears
subject to (77).

To illustrate this argument, we quantified estimate (77) for
the experiments described in Fig. 7 of Ref. [6] for which

ε ≈ 4.5 × 10−4, δ ≈ 0.13.

Thus, nonlocal effects are indeed weak in this case, so the speed
of sinuous perturbations calculated in Refs. [1,4,5] should
apply.

VII. CONCLUDING REMARKS

The main result of this paper is condition (76) guaranteeing
the existence of upstream traveling perturbations in a liquid
curtain—and, hypothetically, instability of the curtain itself.
Recalling how our variables were nondimensionalized [see
(8), (11)–(12)], one can rewrite the instability criterion (76) in
the dimensional form

We < 1 + 2ρνQw′

σw
, (78)

where ρ, ν, and σ are the liquid’s density, kinematic viscosity,
and surface tension, Q is the volumetric flow rate per unit
width of the curtain, w is the dimensional velocity, w′ is its
streamwise gradient, and

We = ρQw

2σ

is the Weber number.

Criterion (78) was derived for thin curtains with a slow flow,
i.e., such that satisfy restrictions (19). Substituting definitions
(18) of the Reynolds number δ and the aspect ratio ε into (19)
and letting X = Xoutlet, one obtains

gX3
outlet

νQ
� 1,

(
gX3

outlet

Q2

)2

� 1. (79)

Note that, even though these restrictions have never been stated
explicitly in the previous work on liquid curtains, they underlie
implicitly all analytical results obtained so far. If either of
conditions (79) is violated, one simply does not have a small
parameter to use when calculating the characteristics of a liquid
curtain.

Finally, we list possible extensions of our results. First,
using the same lubrication-style expansion, one can derive
three-dimensional asymptotic equations for liquid curtains,
which can describe the transverse variability of the liquid
curtains reported in Ref. [7]. Second, one can examine how
curtains are affected by the surrounding air—which can be
important as the air-curtain interaction gives rise to instability
of perturbations propagating downstream [13]. Interestingly,
these perturbations are varicose, and the amplitude required for
triggering them off is much smaller than that for exciting the
instability due to upstream-propagating sinuous perturbations.
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