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Thin three-dimensional drops on a slowly oscillating substrate
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We examine the evolution of a liquid drop on an inclined substrate oscillating vertically. The drop is assumed
thin, and the oscillations are assumed weak and slow (the latter makes the liquid’s inertia and viscosity negligible,
so the drop’s shape is determined by a balance of surface tension, gravity, and vibration-induced inertial force).
On the basis of these approximations, asymptotic expressions are derived for the mean velocities of two- (2D)
and three-dimensional (3D) drops. It is shown that, if the amplitude of the substrate’s oscillations exceeds a
certain threshold value, both 2D and 3D drops climb uphill. The two cases, however, exhibit different behaviors
of the threshold amplitude of the oscillations on their frequency, in the low-frequency limit: to make 2D drops
climb uphill, the oscillations must be much stronger than those in the 3D case. This difference is important, as
the 2D behavior does not fit the existing experimental results.
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I. INTRODUCTION

One’s intuition suggests that liquid drops on a vibrating
solid object should slide down, yet experiments of Brunet,
Eggers, and Deegan [1,2] demonstrate that drops on a vibrating
inclined substrate can actually climb uphill. Their results were
extended by the experiments of Ref. [3], where it was shown
that drops on a horizontal substrate vibrating at an angle to
itself can be driven in a given direction, at a given velocity
by “tuning” the phase difference between the vertical and
horizontal components of the vibration.

Two attempts to explain the observed effects have been
made, and, in both cases, the drops were assumed thin and
two-dimensional. Reference [4] examined the limit of low
Reynolds numbers and modeled the drop’s contact lines by
precursor films due to van der Waals forces. It was shown that,
if the substrate’s acceleration is strong enough, the drop climbs
uphill. A similar conclusion was reached in Ref. [5] for the
opposite limit of small viscosity, with contact lines governed
by a “contact-line law” (i.e., a functional dependence of the
contact line’s velocity on the contact angle). Reference [5]
also demonstrated that the drop’s uphill motion is due to an
interaction of “swaying” and “spreading” oscillatory modes
induced by the vibration.

All of the above experimental and theoretical results were
obtained for harmonic oscillations of the substrate. Anhar-
monic oscillations were also examined, both experimentally
[6,7] and theoretically [8]. Two important conclusion were
drawn. Reference [7] explored how drops on a anharmonically
vibrating substrate are affected by the so-called hysteresis
interval, i.e., the range of contact angles for which velocity
of the drop’s contact line is zero. It was shown that, counterin-
tuitively, drops with a wider hysteresis interval can sometimes
climb faster than those with a narrower one. Reference [8],
in turn, showed that, if the dependence of the substrate’s
acceleration on time involves narrow deep “troughs” and wide
low “crests,” the drop’s uphill motion is much stronger than
that caused by a harmonic vibration.
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Note, however, that all of the above theoretical models
were two-dimensional (2D), and it is unclear how they relate
to the experiments of Refs. [1–3,6,7] where the drops were,
of course, three-dimensional (3D). Potentially, the behaviors
of 2D and 3D drops can be quite different, as in the latter
case, vibration-induced disturbances can travel around the
drop’s crest, whereas in the former, they have to climb
over the crest (which requires more energy and may inhibit
their development). One can furthermore conjecture that the
2D-3D asymmetry should be stronger for low-frequency
vibrations, for which the disturbances have more time to travel.
The quantitative comparison of the two cases, however, is
hampered by the fact that 3D flows with free boundaries and
contact lines are much more difficult to model than their 2D
counterparts.

The present work is a first step toward a 3D model of
climbing drops on oscillating substrates. Given the complexity
of the problem, we use a number of approximations, outlined
in Sec. II A. The problem is formulated mathematically in
Secs. II B–II C, and it is analyzed in Sec. III. In Sec. IV we
compare the theoretical results obtained through 3D and 2D
models and, thus, clarify to which extent the latter grasps the
essential physics of the problem. Finally, in Sec. V, we outline
how a more general 3D model of drops on oscillating substrates
can be developed.

II. FORMULATION

A. Qualitative aspects of the model

Consider a drop of liquid (of density ρ, kinematic viscosity
ν, surface tension σ ) on a vibrating substrate inclined at an
angle α to the horizontal (see Fig. 1). We assume the substrate’s
vibration to be vertical, so the acceleration due to gravity g,
whichever equation or boundary condition it normally appears
in, can be replaced by an effective acceleration a due to
both gravity and the vibration-induced inertial force. We shall
assume that a(t) is periodic with a characteristic amplitude
a0 and time scale t0 [the latter being of the order of, but not
necessarily equal to, the period of a(t)]. We also introduce the
characteristic thickness h0 of the drop and the mean radius R0

of its base.
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FIG. 1. The setting: a drop on an inclined substrate oscillating
vertically.

All results obtained in this work rely on the assumption
that the liquid’s inertia and viscosity are weak, so the drop’s
shape is determined by a balance of surface tension, gravity,
and vibration-induced inertial force. This assumption has been
used for drops before, e.g., in Refs. [8,9]; in the latter paper,
it was dubbed “the quasistatic approximation” (QSA) and was
shown to hold if

ρR4
0

σh0t
2
0

� 1
ρνR4

0

σh3
0t0

� 1. (1)

Observe that the QSA can be enforced by making the vibration
sufficiently slow (t0 → ∞).

Next we introduce

ε = ρR3
0a0 sin α

σh0
, (2)

which characterizes the strength of gravity and vibration-
induced inertial force relative to surface tension. We assume
that

ε � 1.

This condition enables us to obtain a relatively simple
asymptotic solution that will help to explore the essential
physics of the problem.

We shall also assume that the drop is thin,

h0

R0
� 1.

This condition is not crucial to our analysis, but it dramatically
reduces the amount of algebra involved.

B. The governing equations

Let the z axis of the cylindrical coordinate system (r,φ,z)
be perpendicular to the substrate and directed upward, with the
angle φ counted from the direction of the steepest ascent (see
Fig. 1). The shape of the drop’s surface will be described by
the equation z = h(r,φ,t), and we shall assume that the origin
of our coordinate system is associated with the maximum of
h(r,φ,t); hence,

∂h

∂r
→ 0,

1

r

∂h

∂φ
→ 0 as r → 0. (3)

In what follows, we shall briefly outline the derivation of
the QSA (for more details, see Ref. [8]). First, conditions
(1) are used to neglect the inertial and viscous terms in
the Navier-Stokes equations. Second, the truncated equations
(still including the pressure, gravity, and the vibration-induced

inertial force) are integrated with respect to the spatial
variables, which yields

σ

[
1

r

∂

∂r

(
r
∂h

∂r

)
+ 1

r2

∂2h

∂φ2

]
− ρa (r cos φ sin α + h cos α)

= P (t), (4)

where P (t) is a constant of integration (physically, it represents
the nondimensional pressure at the drop’s center).

Physically, the term involving σ in Eq. (4) describes the
effect of surface tension (the expression in the square brackets
is the curvature of the drop’s surface under the thin-drop
approximation). The term involving sin α describes the
down-the-slope acceleration of the liquid due to gravity and
the inertial force, whereas the term involving cos α describes
the hydrostatic pressure due to the variability of the drop’s
thickness.

Let the equation r = R(φ,t) describe the contact line, i.e.,
the boundary of the drop’s base, where

h = 0 if r = R. (5)

As in the case of 2D drops [8], we shall explicitly require that
the drop’s mass be conserved,

ρ

∫ 2π

0

∫ R

0
h r dr dφ = M, (6)

where M should be treated as a known constant.
Following numerous other researchers (e.g., Refs. [10,11]

and references therein), we shall assume that the normal
velocity of the contact line is a known function, v(θ ), of the
contact angle θ . Expressing the former in terms of R(φ,t) and
introducing the Cartesian velocity [Vx(t),Vy(t)] of the origin
of our coordinate system (i.e., the drop’s center), we obtain

1√
1 + (

1
R

∂R
∂φ

)2

[
∂R

∂t
+ Vx

(
cos φ + 1

R

∂R

∂φ
sin φ

)

+ Vy

(
sin φ − 1

R

∂R

∂φ
cos φ

)]
= v(θ ), (7)

where the contact angle is, under the thin-drop approximation,
given by

θ = − 1√
1 + (

1
R

∂R
∂φ

)2

(
∂h

∂r
− 1

r2

∂h

∂φ

∂R

∂φ

)
r=R

. (8)

Subject to a suitable initial condition, Eqs. (3)–(8) determine
the evolution of h(r,φ,t), R(φ,t), V (t), and P (t). The functions
a(t) and v(θ ) appear in (3)–(8) as given parameters.

Typically, the contact-line law (the dependence of the
contact-line velocity v on the contact angle θ ) is such that

v < 0 if θ < θr,

v = 0 if θr � θ � θa,

v > 0 if θ > θa,

where the receding and advancing contact angles, θr and θa ,
are the boundaries of the hysteresis interval. In this paper
we assume that the hysteresis interval is of zero length,
i.e., θr = θa = θ0, where θ0 is the equilibrium contact angle.
This simple model (used previously in Refs. [5,8,9]) works
well for substrates with narrow hysteresis intervals (e.g.,
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microfibrillated polydimethylsiloxane (PDMS) (Dow Corning
Sylgard 184) surfaces [see Ref. [12]]) and also can help us to
explore qualitative aspects of the general case.

C. Nondimensionalization

We shall use the following nondimensional variables:

r̂ = r

R0
, φ̂ = φ, t̂ = t

t0
,

ĥ = h

h0
, P̂ = R2

0

σh0
P,

(9)

R̂ = R

R0
, V̂x,y = t0

R0
Vx,y,

â = a

a0
, v̂ = v

v0
, θ̂ = θ

θ0
,

where v0 is the characteristic velocity of the contact line
(i.e., the boundary of the drop’s base), and the rest of the
dimensional scales have been introduced in Sec. II A.

Let the scales h0, R0, and t0 satisfy

M

ρh0 (R0)2 = 2π,
θ0R0

h0
= 1,

v0t0

R0
= 1. (10)

Note that these conditions will not be used to simplify
the governing equations; thus, they are not new physical
assumptions, but rather means of choosing the most convenient
set of nondimensional variables.

Substituting (9)–(10) into (3)–(8) and omitting the hats, we
obtain

1

r

∂

∂r

(
r
∂h

∂r

)
+ 1

r2

∂2h

∂φ2
− εa (r cos φ + γ h) = P, (11)

∫ 2π

0

∫ R

0
h r dr dφ = 2π, (12)

∂h

∂r
→ 0,

1

r

∂h

∂φ
→ 0 as r → 0, (13)

h = 0 if r = R, (14)

1√
1 + (

1
R

∂R
∂φ

)2

[
∂R

∂t
+ Vx

(
cos φ + 1

R

∂R

∂φ
sin φ

)

+ Vy

(
sin φ − 1

R

∂R

∂φ
cos φ

)]
= v(θ ), (15)

θ = − 1√
1 + (

1
R

∂R
∂φ

)2

(
∂h

∂r
− 1

r2

∂h

∂φ

∂R

∂φ

)
r=R

, (16)

where ε is determined by (2) and

γ = h0

R0 tan α
(17)

is the ratio of the slope of the drop’s surface to the substrate’s
slope. Note that, since the former is small, so should be the
latter; otherwise, the corresponding term in Eq. (11) is small.

In the next section, we shall construct an asymptotic
solution of the boundary-value problem (11)–(16) under the
assumption ε � 1.

III. THE ANALYSIS

Observe that, if the substrate’s oscillations are strictly
vertical, the drop can neither move nor tilt in the y direction,
which implies

Vy = 0, (18)

h(t,r, − φ) = h(t,r,φ),

R(t, − φ) = R(t,φ), (19)

R(t, − φ) = R(t,φ).

Note also that a sustained uphill motion of the drop can be
described only by a periodic solution; thus, in what follows,
nonperiodic solutions will be discarded.

It is convenient to subdivide a(t) into the oscillating and
constant parts, representing the substrate’s acceleration and
gravity respectively, i.e.,

a = a(0)(t) + a(1), (20)

where a(0)(t) is a periodic function with a zero mean and a(1) >

0 is a constant. Following the experiments [1,2], we assume

|a(0)| � a(1). (21)

This condition and the fact that a was nondimensionalized by
its own magnitude [see (9)] imply a(0) ∼ 1 and α(1) � 1. The
latter condition can be conveniently quantified by assuming

a(1) = O(ε),

which actually includes the limits a(1) � ε and a(1) � ε as
well.

For the sake of generality, a(0)(t) will initially be kept
unspecified, but in the end we shall set

a(0)(t) = sin ωt, (22)

which, again, corresponds to the experiments [1,2].
In what follows, it will be convenient to expand the contact-

line law, v(θ ), in powers of the deviation of the contact angle
from its equilibrium value. Recalling that, nondimensionally,
the latter equals unity, we obtain

v = (θ − 1) + 1
2v′′ (θ − 1)2 + · · · , (23)

where v′′ is the second derivative of v(θ ) at θ = 1, whereas
the first derivative is implied to have been scaled out by an
appropriate choice of v0 in nondimensionalization (9).

The solution of Eqs. (11)–(16) and (18)–(19) will be sought
in the form of an expansion in ε,

h = h(0) + εh(1) + · · · ,
R = R(0) + εR(1) + · · · , P = P (0) + εP (1) + · · · ,
Vx = εV (1)

x + · · · , θ = 1 + εθ (1) + · · · .
The asymptotic results presented below can be better under-
stood if they are interpreted physically. To this end, observe that
the acceleration a in Eqs. (11)–(16) appears only together with
a small parameter; hence, the leading-order solution describes
a stationary drop with a shape determined by surface tension,
i.e., a spherical cap (or rather its thin-film approximation).
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The first-order solution, in turn, describes small periodic
perturbations of the drop’s surface and small-amplitude os-
cillations of the drop’s position. Two oscillatory modes can
be distinguished: an axisymmetric mode describing periodic
spreading and contraction of the drop and an asymmetric mode
describing “swaying” of the drop up and down the slope.
Following Ref. [5], we shall refer to the former and latter
as the “spreading” and “swaying” modes, respectively.

Finally, the second-order solution describes the nonlinear
interaction of the spreading and swaying modes, resulting in a
mean drift of the drop up or down the slope.

A. The leading-order solution

Assuming, as mentioned above, that the leading-order
solution is axisymmetric and stationary (time-independent),
one can reduce Eqs. (11)–(16) and (18) to

∂2h(0)

∂r2
+ 1

r

∂h(0)

∂r
= P (0),

2π

∫ R(0)

0
h(0) r dr = 2π,

h(0) = 0 if r = R(0),

1 = −
(

∂h(0)

∂r

)
r=R(0)

,

(
∂h

∂r

)
r=0

= 0.

The solution of this set of equations can be readily found:

P (0) = −1, h(0) = 1 − 1
4 r2, R(0) = 2. (24)

The above expression for h(0) is, essentially, a thin-drop
approximation of a spherical cap.

B. The first-order solution

In the next order, Eqs. (11)–(16), (18), (20), and (23) yield

∂2h(1)

∂r2
+1

r

∂h(1)

∂r
+ 1

r2

∂2h(1)

∂φ2
− a(0)(r cos φ + γ h(0)) = P (1),

(25)∫ 2π

0

[ ∫ R(0)

0
h(1)r dr + R(1)(h(0)r)r=R(0)

]
dφ = 0, (26)

h(1) + ∂h(0)

∂r
R(1) = 0 if r = R(0), (27)

∂R(1)

∂t
+ V (1)

x cos φ = θ (1), (28)

θ (1) = −
(

∂h(1)

∂r
+ ∂2h(0)

∂r2
R(1)

)
r=R(0)

, (29)

(
∂h(1)

∂r

)
r=0

=
(

∂h(1)

∂φ

)
r=0

= 0. (30)

The general solution of Eq. (25) subject to the symmetry
condition (19) is

h(1) = h
(1)
0 (r) + h

(1)
1 (r) cos φ +

∞∑
n=0

cnr
n cos nφ, (31)

where the last term (involving the infinite sequence of
constants cn) is the solution of the homogeneous (Laplace)
equation, and the first two terms represent a particular solution
of the nonhomogeneous (Poisson) equation. Physically, the

former terms describe the drop’s response to oscillations,
whereas the latter describes an initial change of the drop’s
shape and, thus, is of no interest to us. Omitting it from
expression (31) and substituting (31) into Eqs. (25)–(30), we
find (after a certain amount of routine algebra)

P (1) = −2A(1) − 5γ a(0)

6
,

h(1) = A(1)+
(

γ a(0)

24
− 1

2
A(1)

)
r2−γ a(0)

64
r4+a(0)r3

8
cos φ,

(32)

R(1) = −A(1) − γ a(0)

12
+ a(0) cos φ, (33)

θ (1) = 3

2
A(1) + 7γ a(0)

24
− a(0) cos φ, (34)

V (1) = −a(0) − da(0)

dt
, (35)

where the function A(1)(t) satisfies

dA(1)

dt
+ 3

2
A(1) = − γ

12

(
da(0)

dt
+ 7a(0)

2

)
. (36)

For the sinusoidal a(0)(t) [given by (22)], the only periodic
solution of Eq. (36) is

A(1) = − γ

12

(
21 + 4ω2

9 + 4ω2
sin ωt − 8ω

9 + 4ω2
cos ωt

)
. (37)

Observe that expressions (32)–(34) include axisymmetric
terms and those involving cos φ, describing the spreading and
swaying mode, respectively. The modes, however, do not in-
teract at this order; as a result, the velocity V (1) [given by (35)]
has zero mean.

To illustrate the zeroth- and first-order solution, the shape
of the drop’s base [given by (24) and (33)] and the drop’s cross
section [given by (24) and (32) with φ = 0,π ] are plotted in
Fig. 2 for the sinusoidal acceleration (22) and four values of
the phase of the oscillations [13]. One can see that, when
the substrate accelerates upward (ωt = π/2, a(0) = 1), the
drop’s left-hand slope becomes steeper than its right-hand
counterpart, while its base becomes wider: These two effects
correspond to the swaying and spreading modes, respectively.
The velocity V (1), at the same, is negative [as determined by
(35) and (22)]; i.e., the drop slides down. When, in turn, the
substrate accelerates downward (ωt = 3π/2, a(0) = −1), the
drop becomes “skewed” to the right with its base contracting,
whereas V (1) is positive.

Qualitatively, such a behavior agrees with that observed
experimentally [1,2].

C. The second-order solution

Unfortunately, the second-order approximation involves a
lot of cumbersome algebra. In a similar problem examined in
Ref. [5], the similar calculations were bypassed by a relatively
simple argument based on momentum conservation. The same
argument can be used in the present case; however, it involves
even more algebra than the straightforward approach. In the
end, to verify the results obtained, both approaches have
been followed through, but only the direct expansion will be
presented below.

066301-4



THIN THREE-DIMENSIONAL DROPS ON A SLOWLY . . . PHYSICAL REVIEW E 84, 066301 (2011)
y

  tω = 0
     a(0) = 0

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

h

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

  tω = π/2
 a(0) = 1

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

(b)

y

  tω = π
     a(0) = 0

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

h

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

  tω = 3π/2
 a(0) = −1

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

1.2

(b)

FIG. 2. The evolution of the drop
over one period of oscillations, as de-
scribed by the first-order expansion, for
the sinusoidal acceleration (22) and ε =
0.15, γ = 5, ω = 1. Panels marked (a)
show the shape of the drop’s base, panels
(b) show the corresponding cross sec-
tions, h(x), of the drop. The unperturbed
curves are shown in dotted line. The
corresponding phase of the oscillation,
ωt , and the value of the inertial acceler-
ation, a(0), are indicated in the panels (a)
(when a(0) > 0, the substrate accelerates
upward, and vice versa).

In the second order, Eqs. (11), (13)–(16), (18), (20), and (23) yield

∂2h(2)

∂r2
+ 1

r

∂h(2)

∂r
+ 1

r2

∂2h(2)

∂φ2
− γ

[
a(0)h(1) + a(1)

ε
(r cos φ + γ h(0))

]
= P (2), (38)

(h(2))r=R(0) +
(

∂h(0)

∂r

)
r=R(0)

R(2) +
(

∂h(1)

∂r

)
r=R(0)

R(1) + 1

2

(
∂2h(0)

∂r2

)
r=R(0)

R(1)2 = 0, (39)

∂R(2)

∂t
+ V (2)

x cos φ + V (1)
x

1

R(0)

∂R(1)

∂φ
sin φ = θ (2) + 1

2
v′′θ (1)2, (40)

θ (2) + 1

2

(
1

R(0)

∂R(1)

∂φ

)2

= −
(

∂h(2)

∂r
+ ∂2h(0)

∂r2
R(2) + ∂2h(1)

∂r2
R(1) + 1

2

∂3h(0)

∂r3
R(1)2 − 1

r2

∂h(1)

∂φ

∂R(1)

∂φ

)
r=R(0)

, (41)

(
∂h(2)

∂r

)
r=0

=
(

∂h(2)

∂φ

)
r=0

= 0. (42)
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Upon substitution of the zeroth- and first-order solutions, (24)
and (32)–(35), into Eq. (38), one can see that its solution is of
the form

h(2)(t,r,φ) = h
(2)
0 (t,r) + h

(2)
1 (t,r) cos φ. (43)

It can be shown that, to calculate the rise velocity V (2), the
function h

(2)
0 is not needed; hence, we present the solution

only for

h
(2)
1 = γ a(0)2

192
r5 + a(1)

8ε
r3. (44)

Similarly, the solutions of Eqs. (39) and (41) have the form

R(2) = R
(2)
0 + R

(2)
1 cos φ + R

(2)
2 cos 2φ,

(45)
θ (2) = θ

(2)
0 + θ

(2)
1 cos φ + θ

(2)
2 cos 2φ,

of which we only need

R
(2)
1 = −1

4
γ a(0)2 + a(1)

ε
− 3a(0)A(1),

θ
(2)
1 = 1

4
γ a(0)2 − a(1)

ε
+ a(0)A(1).

(46)

Substituting (43)–(46) into Eq. (40) and keeping track of terms
involving cos φ, we obtain

V (2) = γ a(0)2

4
+ a(0)A(1) − v′′

(
3

2
A(1) + 7γ a(0)

24

)
a(0)

− a(1)

ε
− d

dt

(
−γ a(0)2

4
+ a(1)

ε
− 3a(0)A(1)

)
. (47)

We are interested in the non-oscillating part of V (2), which can
be obtained by averaging (47) over the period of the substrate’s
oscillations,

〈V (2)〉 = γ 〈a(0)2〉
4

− v′′
(

3〈a(0)A(1)〉
2

+ 7γ 〈a(0)2〉
24

)
− a(1)

ε
,

(48)

where the angle brackets denote the averaging, and it was
recalled that a(1) is constant (representing gravity), i.e.,

〈a(1)〉 = a(1).

Finally, for sinusoidal oscillations described by (22) and (37),
Eq. (48) yields

〈V (2)〉 = γ (3 + 4ω2 − 2v′′ω2)

12(9 + 4ω2)
− a(1)

ε
. (49)

This expression is the main result of the present work. If 〈V (2)〉
is positive, the drop climbs uphill.

It is worth recalling here that γ is the slope of the drop’s sur-
face scaled by the substrate’s slope [see (17)], v′′ is the second
derivative of the contact-line law v(θ ) at the equilibrium value
of the contact angle, a(1) is the nondimensional gravity (scaled
by the substrate’s acceleration), and ω is the nondimensional
frequency.

IV. COMPARISON OF 3D AND 2D MODELS

We shall now compare expression (49) for the drop’s rise
velocity with its 2D counterpart derived under the same set of
approximations (QSA, thin drop, ε � 1) in the Appendix.

x

z

α
x-

x+

FIG. 3. A 2D drop (liquid ridge) on an inclined substrate.

Note that 2D drops are not really drops, but liquid ridges
(see Fig. 3) and, thus, are different geometrically from the
real, 3D drops. This leaves us with a question: which ridge
should be regarded analogous to, and thus be compared with,
a given 3D drop? It seems natural to choose the ridge whose
width matches the drop’s diameter; i.e., D(0) introduced in the
Appendix should equal R(0) of Sec. III A.

The most important result to be deduced from formula (49)
is the condition of zero rise velocity, which can be viewed as
a curve in the (ω,ε∗) plane where

ε∗ = ε

a(1)
. (50)

Note that, even though ε is assumed small, ε∗ can be large
(provided a(1) is sufficiently small).

Now, equating 〈V (2)〉 to zero, we obtain

ε∗ = 12
(
9 + 4ω2

)
γ [3 + (4 − 2v′′) ω2]

. (51)

Thus, if ε∗ exceeds the threshold value (51), the drop climbs
uphill.

The 2D equivalent of (51) follows from Eq. (A19),

ε∗ = 15
(
1 + ω2

)
a(1)

2γ (1 − v′′) ω2
. (52)

The curves of zero rise velocity determined by (51) and (52) are
shown in Fig. 4, one can see that they differ mainly in the low-
frequency limit. Indeed, as ω → 0, 2D drops can climb uphill
only for an increasingly largeacceleration of the substrate’s
oscillations, whereas, for 3D drops, the acceleration can be
finite. This is an important difference, as the experimental
results exhibit the latter pattern (see Fig. 2 of Ref. [1] and
Fig. 1 of Ref. [2]).

We conclude that, for low frequencies, the 2D QSA-based
model is qualitatively incorrect. The same conclusion applies
to the 2D non-QSA model examined in Ref. [5]. The 2D
model of Ref. [4], in turn, exhibits the correct behavior of
ε∗(ω) as ω → 0. The difference between Ref. [4] and other
2D results is probably due to the fact that the former modeled
the drop’s contact lines by precursor films due to van der
Waals forces, whereas the latter employed contact-line laws.
This difference between the two models of contact lines
in vibrating liquids is important and, thus, deserves further
investigation.

In the opposite (high-frequency) limit, neither of the models
presented in this paper is adequate. Indeed, the experimental
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FIG. 4. The curves of zero rise velocity for 3D and 2D drops [described by (51) and (52), respectively], for γ = 1, v′′ = 0. The parameter
ε∗ characterizes the substrate’s acceleration [see (53)], and ω is the nondimensional frequency of its oscillations [given by (54)].

results suggest that ε∗ grows as ω → ∞, whereas both (51)
and (52) yield finite limiting values. This discrepancy is due
to the inapplicability of the QSA at high frequencies. In other
words, an adequate description of large ω can be obtained only
if the QSA is not used (as in Refs. [4,5]).

Note also that both criteria (51) and (52) do not involve
the static zone separating climbing and sliding drops, which
is always observed in the experiments. That can be recovered
only using a contact-line law with a nonzero hysteresis interval
(this work is currently in progress).

Finally, we shall link the nondimensional criterion (51) to
physically measurable parameters. Treating (10) as a set of
equations for the scales h0, R0, and t0, then substituting these
into (2) and (50), and taking into account that a(1) = g/a0, we
obtain

ε∗ =
(

the drops volume

2πθ0

)2/3 sin α

θ0

ρ (a0)2

σg
, (53)

ω =
(

the drops volume

2πθ0

)1/3
ωdim

v0
, (54)

where ωdim is the dimensional frequency, θ0 is the equilibrium
contact angle, v0 is the derivative of the contact-line law v(θ )
at θ = θ0, σ is the surface tension, and α is the angle between
the substrate and the horizontal.

V. CONCLUDING REMARKS

Thus, we have examined the evolution of drops on an
inclined substrate oscillating vertically. The analysis was
based on four assumptions: the quasistatic and thin-drop
approximations, the assumption that the contact-line law does
not involve an hysteresis interval, and that the substrate’s
oscillations are weak [so that the parameter ε, given by (2),
is small]. Our main result is expression (49) for the drop’s
mean velocity, which was compared to its two-dimensional
counterpart, and the latter turned out to be qualitatively
incorrect in the limit of small frequencies of the substrate’s
oscillations.

In principle, expression (49) can be verified by a specifically
designed experiment, but our assumptions are too restrictive

for a comparison with the existing experiments [1,2] (where
the drops were thick, ε was order one, and the contact-line law
did involve an hysteresis interval).

Thus, to quantitatively model the results of Refs. [1,2], we
shall need to give up three of the four assumptions used in this
work. The quasistatic approximation, however, can be retained,
as it did hold in some of the experiments of Refs. [1,2]. This is
quite fortunate, in fact, as the QSA dramatically simplifies the
governing equations and, thus, is crucial, whereas the other
three assumptions simplify the asymptotic analysis. Even if
they are not used, the problem can still be solved numeri-
cally, and by relatively simple means (this work is now in
progress).
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APPENDIX: THE TWO-DIMENSIONAL CASE

Consider a 2D drop (or rather a liquid ridge) on an inclined
substrate vibrating vertically (see Fig. 3). It is governed by
the following 2D equivalent of the 3D governing equations
(4)–(8):

σ
∂2h

∂x2
− ρa (x sin α + h cos α) = P, (A1)

x+∫
x−

h dx = A, (A2)

h → 0 as x → x±, (A3)

dx±
dt

= ±v(θ±), θ± = ∓
(

∂h

∂x

)
x=x±

, (A4)

where θ± and x± are the contact angles and the coordinates
of the contact lines, respectively, and A is the drop’s (ridge’s)
cross-sectional area. We shall use the following nondimen-
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sional variables

x̂ = x

x0
, t̂ = t

t0
, ĥ = h

h0
,

â = a

a0
, v̂ = v

v0
, θ̂ = θ

θ0
, (A5)

and assume that

Ax0

h0
= 8

3
,

θ0x0

h0
= 1,

v0t0

x0
= 1, (A6)

where the choice of the factor 8/3 will be explained later.
In terms of variables (A5)–(A6), Eqs. (A1)–(A4) become

(hats omitted)

∂2h

∂x2
− εa (x + γ h) = P, (A7)
∫ x+

x−
h dx = 8

3
, (A8)

h → 0 as x → x±, (A9)

dx±
dt

= ±v(θ±), θ± = ∓
(

∂h

∂x

)
x=x±

, (A10)

where ε and γ are determined by (2) and (17).
As in the 3D case, it is convenient to change to a comoving

reference frame, which amounts to introducing the position of
the drop’s center and its half-width,

X(t) = x− + x+
2

, D(t) = x+ − x−
2

,

and replacing x and P with

xnew = x − X, Pnew = P + εaX.

Omitting the subscript “new,” one can see that the change of
variables does not affect (A7), whereas (A8)–(A10) become∫ D

−D

h dx = 8

3
, (A11)

h → 0 as x → ±D, (A12)

V ± dD

dt
= ±v(θ±), θ± = ∓

(
∂h

∂x

)
x=±D

, (A13)

where V = dX/dt is, as before, the drop’s velocity. Finally, we
shall assume that the acceleration a is given by (A11)–(A13)
and v(θ ) by (23).

The first two orders of the expansion of Eqs. (A7) and
(A11)–(A13) in ε yield

h(0) = 1 − 1

4
x2, D(0) = 2,

and

h(1) = a(0)

(
x3

6
− γ x4

48

)
− γ a(0)

15
− 1

2
D(1)

−2a(0)

3
x +

(
γ a(0)

10
+ 3

8
D(1)

)
x2,

(A14)

θ
(1)
± = ∓4a(0)

3
+ 4γ a(0)

15
− D(1),

V (1) = −4a(0)

3
,

dD(1)

dt
+ D(1) = 4γ a(0)

15
. (A15)

Observe that the 2D drop’s half-width D(0) equals the 3D
drop’s radius R(0) [see expression (24)], which gives us a
“reference point” for comparing the 2D and 3D cases. We
also mention that the factor 8/3 in the first equality of (A6)
was chosen to ensure that D(0) coincides with R(0).

In the 2D case (unlike its 3D counterpart), there is no need
to calculate the second-order solution; instead, the rise velocity
can be found from an identity reflecting the momentum
balance (similar to that used in Ref. [5]). We have verified
that the two approaches yield the same result, but only the
latter will be presented here (as it involves significantly less
algebra).

To derive the above-mentioned identity, multiply the exact
equation (A7) by h and integrate it with respect to x over
(−D,D). Taking into account conditions (A11)–(A12), we
obtain

−1

2

[(
∂h

∂x

)2]
x=D

+ 1

2

[(
∂h

∂x

)2]
x=−D

= 8εa

3
. (A16)

Next use (A13) and (23) to relate ∂h/∂x to V and D,

∓
(

∂h

∂x

)
x=±D

= 1 + ε

(
dD(1)

dt
± V (1)

)

+ ε2

[
dD(2)

dt
± V (2) − v′′

2

(
dD(1)

dt
± V (1)

)2 ]
+ O(ε3).

(A17)

Substituting (A17) into (A16) and averaging over the pe-
riod of the substrate’s oscillations, we obtain, to leading
order,

〈V (2)〉 = −(1 − v′′)
〈
dD(1)

dt
V (1)

〉
− 4a(1)

3ε
, (A18)

where it was taken into account that

〈a(1)〉 = a(1), 〈V (1)〉 =
〈
dD(1)

dt

〉
= 0

[the former equality holds since a(1) is a constant, and the latter
follows from (A14)–(A15) and (20)]. Finally, substituting (20)
into (A14)–(A15), we find

V (1) = −4 sin ωt

3
, D(1) = 4γ (sin ωt − ω cos ωt)

15(1 + ω2)
.

Finally, substitution of these expressions into (A18) yields

〈V (2)〉 = 8(1 − v′′)γω2

45(1 + ω2)
− 4a(1)

3ε
. (A19)

This is the 2D equivalent of the 3D expression (49).
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