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Shock waves in Stokes flows down an inclined plate
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We consider a viscous flow on an inclined plate, such that the liquid’s depth far upstream is larger than that far
downstream, resulting in a “smoothed-shock wave” steadily propagating downstream. Our numerical simulations
show that in a large section of the problem’s parameter space all initial conditions overturn (i.e., the liquid’s
surface becomes vertical at some point) and thus no steady solution exists. The overturning can only be stopped
by a sufficiently strong surface tension.
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I. INTRODUCTION

Consider a layer of viscous liquid on a sloping plate (see
Fig. 1), and let the layer’s depth far upstream be larger than that
far downstream. In this case, one could expect a “smooth-shock
wave” (SSW) to steadily propagate down the plate.

So far this classical problem has been mostly examined for
thin flows, for which the slope of the free surface is small. In
this case, the long-wave approximation can be employed using
which Benney [1] reduced the Navier–Stokes set to a single
asymptotic equation and showed that, under an extra assump-
tion of weak nonlinearity, it can be reduced further to either the
Korteweg–de Vries equation or the Burgers equation. Employ-
ing the long-wave approximation under slightly different lim-
its, Mei [2] derived the Burgers–Korteweg–de Vries equation,
whereas Homsy [3], Nepomnyashchy [4], and Lin [5] derived
the Kuramoto–Sivashinsky equation (see also [6] and refer-
ences therein). The case of two thin (long-wave) layers with
different densities and viscosities was examined by Mavro-
moustaki, Matar, and Craster [7]. Note that, in all of the above
models, SSWs exist for all values of the parameters involved.

The present work examines SSWs in a one-layer liquid
without the long-wave approximation. Our main conclusion is
that, in a significant part of the parameter space, steady SSWs
do not exist due to overturning.

II. FORMULATION

Consider a layer of liquid on a rigid plate inclined at an
angle α (see Fig. 1). Denote the acceleration due to gravity by
g and the layer’s depths far upstream and far downstream by
H (+) and H (−), respectively.

Let the liquid’s density, viscosity, and surface tension be
ρ, μ, and σ . Then, as demonstrated below, the velocity of an
SSW, if it exists, is

U =
(
H (+)2 + H (+)H (−) + H (−)2

)
ρg sin α

3μ
. (1)

To nondimensionalize the problem we use U as the velocity
scale and H = (νU/g sin α)1/2 as the scale for the spatial
coordinates and the liquid’s depth. H/U and ρHg sin α are
used as the time and pressure scales.
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The flow will be modeled using the nondimensional Stokes
equations

px = −1 + uxx + uyy, py = − cot α + vxx + vyy, (2)

ux + vy = 0, (3)

where the x axis (y axis) is directed along (perpendicular to)
the plate, u and v are the x and y components of the liquid’s
velocity, t is the time, and p is the pressure. Instead of assuming
that the SSW is steadily propagating down the plate, we let
the plate move up with the matching velocity, so the boundary
conditions at the plate-liquid interface are

u = 1, v = 0 at y = 0. (4)

We shall use the standard set of boundary conditions at the
liquid’s free surface,

ht + uhx − v = 0,

nT S n = γC, τT S n = 0

}
at y = h, (5)

where h is the nondimensional depth, γ = σ/μU is the capil-
lary coefficient, the superscript T denotes matrix transposition,
and

n = 1

[1 + (hx)2]1/2

[−1
hx

]
, τ =

[
hx

1

]
(6)

are the unit normal vector and a tangent vector (not necessarily
unit) to the free surface; and

S =
[

2ux − p uy + vx

uy + vx 2vy − p

]
, C = hxx

[1 + (hx)2]3/2
(7)

are the stress tensor and the curvature of the free surface.
Finally, we assume

h → h(±) as x → ±∞, (8)

where h(±) are the nondimensional counterparts of H (±) (see
Fig. 1).

It can be demonstrated that steady solutions of Eqs. (2)–(7)
satisfy ∫ h

0
u dy = q, (9)
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FIG. 1. The setting: a smooth-shock wave (SSW) on an inclined
plate.

where the constant of integration q is, physically, the nondi-
mensional liquid flux along the plate. It can also be shown that
the boundary conditions (8), together with Eqs. (2)–(7), imply

u → 1 − yh(±) + 1
2y2,

v → 0,

p → (h(±) − y) cot α

}
as x → ±∞. (10)

Substitution of (10) into (9) yields

h(±) − 1
3h(±)3 = q. (11)

Recalling how our variables were nondimensionalized, one
can use (11) to obtain (1) and also an expression for the
nondimensional flux,

q = 31/2H (+)H (−)(H (+) + H (−))

(H (+)2 + H (+)H (−) + H (−)2)3/2
.

Thus, our problem [governed by Eqs. (2)–(8), and (11)] is fully
determined by three nondimensional parameters: q, γ , and α.
Note that (11) implies that

0 < q < 2
3 , 0 < h(−) < 1, 1 < h(+) < 31/2, (12)

with q = 0 corresponding to h(−) = 0, h(+) = 31/2.

III. THE NUMERICAL METHOD

Equations (2)–(8), and (11) were integrated numerically,
using the finite-element solver of the COMSOL [8] Multi-
physics package. We used the module for two-dimensional
incompressible Navier–Stokes equations. The physical param-
eters were chosen in such a way that the Reynolds number Re
was very small (Re = 10−4), so the results obtained would
provide an accurate approximation of the Stokes equations
(2) and (3). The boundary conditions as x → ±∞ were
modeled by sources located far upstream and sinks located
far downstream, both distributed along the vertical intervals
0 < y < h(±). The intensities of the sources and sinks and the
boundary pressure profiles depended on y in accordance with
(10). The computations were carried out using the moving
mesh mode incorporating the arbitrary Lagrangian-Eulerian
(ALE) method, which allows the mesh to track the moving
boundary. At the free boundary, the normal component of
the mesh velocity was equal to the normal component of
the liquid’s velocity, and at the fixed boundaries the mesh
was constrained to have zero normal displacement. Within the
domain, the nodes’ motion was unconstrained and computed
by the software to optimize the elements’ quality. Typically,
the discretized problem contained about 50 000 degrees of
freedom and was solved through either the PARDISO [9] or
the UMFPACK [10] solver.

For the initial condition, we mostly used the steady-state
solution for a case with similar parameter values. If such was
not available, a smoothed step function was used for h, the
hydrostatic pressure distribution for p, and the expressions
predicted by the lubrication approximation for u and v. Even
though such conditions did not exactly satisfy the Stokes
equations, they were automatically adjusted by the software
and a self-consistent initial flow was generated. Then, Eqs. (2)–
(8) were integrated until a steady state was established.

Test simulations with decreasing mesh sizes and relative
or absolute tolerances, and different initial conditions were
performed to insure that the results converged to the same
solutions and, thus, were robust.

Note that solutions with α ≈ 0◦ or α ≈ 90◦ are difficult
to compute. In the former case, h(−) is very small, which
necessitates extreme refinement of the mesh. In the latter
case, the SSWs have oscillatory structure spreading over a
large region (for more details, see below), which necessitates
extreme enlargement of the computational domain. Therefore,
the results for α = 90◦ were extrapolated using those for
neighboring values of α, whereas the result for α = 0◦ can
be deduced analytically using the lubrication approximation.

IV. THE RESULTS

A. The case γ = 0

For zero surface tension, a unique SSW solution was found
in a certain region of the (α,q) plane [see Fig. 2(a)]. Examples
of SSWs are shown in Fig. 3: one can see that the solution for
α = 70◦ has an oscillatory structure. Those for α = 50◦ and
α = 30◦ also oscillate, but the oscillations decay so rapidly
that they are not visible in Fig. 3 (but are readily detectable
in the numeric data). This comes as a surprise, as the problem
involves neither capillary nor gravity waves (the former have
been eliminated by the assumption γ = 0 and the latter by
using the Stokes equations neglecting the liquid’s inertia).
This issue will be discussed in detail later, whereas here we
just note that oscillating SSWs have been previously observed
in Ref. [2] (where, unlike this work, the liquid’s inertia was
indeed taken into account).

Another surprising result is that, for any value of the flux q,
there is a critical angle αcr(q) such that for α > αcr all initial
conditions overturn, that is, hx becomes infinite at some x and t

(see an example in Fig. 4). We conclude that in a certain region
of the problem’s parameter space steady SSWs do not exist.

One might wonder, however, if some of the initial condi-
tions that were not simulated would evolve toward a steady
SSW. To eliminate this possibility, we employed an approach
used in Ref. [11] for a similar problem—namely sufficiently
strong surface tension was introduced to the problem, which
would stop the overturning and give rise to a steady SSW. Then
surface tension was gradually phased out and, if overturning
still occurred, we could reliably conclude that no steady
solution exists for these values of q and α.

Finally, even though we could not compute αcr(q) for small
α, we assumed αcr(0) = 0 [see Fig. 2(a)]. To understand why,
observe that in the limit α → 0 one can use the lubrication
approximation which yields a steady smooth SSW for any
q > 0 and a “marginally overturned” SSW (i.e., one with with
an infinite hx at a single point) for q = 0.
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FIG. 2. Existence of SSWs on the (q,α) plane (α is the plate’s inclination angle, q is the nondimensional liquid flux). (a) The limit of
zero surface tension (γ = 0). A black dot at a position α = α0 indicates that solutions exist for α < α0 − 0.5◦, and solutions do not exists for
α > α0 + 0.5◦. (b) Curve 0 is the same as that in (a), that is, for γ = 0. Curves 1, 2 are for γ = 0.5, 1.0, respectively.

B. The case γ �= 0

As mentioned above, surface tension acts against over-
turning. Thus, with increasing γ , the region in the parameter
space where SSW exist expands [see Fig. 2(b)]; however, the
“nonexistence” region appears to never disappear completely.
Note that, as before, αcr(0) = 0, which follows from the
asymptotic solution of the problem as α,q → 0 (see Ref. [12]).
Note also that with increasing γ the solution becomes difficult
to compute, so the error interval for curves 1 and 2 in
Fig. 3(b) is up to ±1.5◦ (as opposed to curve 1, where it
is ±0.5◦).

In the cases where overturning does not occur, surface
tension has little effect on those solutions that do not oscillate
for γ = 0, whereas the solutions that do oscillate for γ = 0
are made noticeably smoother by the capillary effects (see
examples in Fig. 5).

V. OSCILLATORY STRUCTURE OF SSWS FOR γ = 0

The nature of the solution’s oscillations for γ = 0 can be
clarified by assuming that their amplitude is small (which it

indeed is far from the shock). In this case, the steady solution
of Stokes set (2)–(7) can be represented in the form

u = ū(y) + ũ(x,y), v = ṽ(x,y),

p = p̄(y) + p̃(x,y), h = h̄ + h̃(x,y),
(13)

where the variables with overbars describe the mean flow
and tildes describe the small oscillations. The former can be
extracted from (10), that is,

ū = 1 − yh̄ + 1
2y2, p̄ = (h − y) cot α, (14)

with h̄ = h(+) (h̄ = h(−)) for the regions above (below) the
shock. Substituting (13) and (14) into Eqs. (2)–(7) with γ = 0
and linearizing them, we obtain

p̃x = ũxx + ũyy, p̃y = ṽxx + ṽyy, ũx + ṽy = 0, (15)

ũ = 0, ṽ = 0 at y = 0, (16)

ūh̃x − ṽ = 0,

ũy + ūyy h̃ + ṽx + p̄h̃x = 0,

2ṽy − p̃ − p̄y h̃ − ūy h̃x = 0

}
at y = h̄. (17)
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FIG. 3. Examples of SSWs for γ = 0, q = 0.58, and various values of α.
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FIG. 4. An example of an overturning SSWs for γ = 0, q = 0.3,
α = 50◦. The “snapshots” are labeled by the corresponding values of
the time t .

Equations (14)–(17) admit a solution of the form

ũ = û(y) e−kx, ṽ = v̂(y) e−kx,

p̃ = p̂(y) e−kx, h̃ = ĥe−kx,
(18)

where k may be complex, in which case Rek and Imk

represent the decay rate and wave number of the oscillations,
respectively. Substitution of (18) into (14)–(17) yields a
boundary-value problem for û, v̂, p̂, and ĥ,

−kp̂ = k2û + ûyy, p̂y = k2v̂ + v̂yy, (19)

−kû + v̂y = 0, (20)

û = 0, v̂ = 0 at y = 0, (21)

−k
(
1 − 1

2 ĥ2
)
ĥ − v̂ = 0,

ûy + ĥ − kv̂ = 0,

2v̂y − p̂ + ĥ cot α = 0

⎫⎪⎬
⎪⎭ at y = h̄. (22)
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FIG. 5. Examples of SSWs affected by surface tension for γ = 1,
q = 0.58, and α = 30◦,70◦. The dotted line shows the corresponding
solutions for γ = 0 (i.e., the same as in the right-hand panels
of Fig. 3).

The general solution of Eqs. (19) and (20) can be readily found,

û = k−1 {[k (A1 + A2y) + B2] cos ky

+ [A2 − k (B1 + B2y)] sin ky}, (23)

v̂ = (A1 + A2y) sin ky + (B1 + B2y) cos ky, (24)

p̂ = 2 (A2 sin ky + B2 cos ky), (25)

where A1,2 and B1,2 are constants of integration. Substituting
expressions (23)–(25) into the boundary conditions (21) and
(22) and eliminating A1,2, B1,2, and ĥ, we obtain an equation
for k,

2
(
kh̄

)2 − (
2kh̄ − sin 2kh̄

)
cot α

4
(
kh̄

)2
[(kh̄)2 − cos2 kh̄]

= 1

2
− 1

h̄2
. (26)

The dispersion relation (26) was solved numerically (using the
secant method) for various values of α and h̄, and it turned out
that infinitely many roots exist with positive real parts (negative
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FIG. 6. The parameter range where SSWs have oscillatory structure for γ = 0: (a) on the
(
h̄,α

)
plane; (b) on the (q,α) plane. The ranges

for h(±) in (a) are determined by (12). The dotted line in (b) shows the region of existence of steady SSWs [i.e., corresponds to curve 0
in Fig. 2(b)].
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real parts correspond to meaningless solutions growing as x →
+∞). We shall denote these roots kn (n = 1,2,3, . . .), and
order them in such a way that

Rekn+1 � Rekn. (27)

Then, the solution of the linearized set (14)–(27) is

h̃ = Re
∞∑

n=1

Cne−knx, (28)

where Cn are arbitrary complex constants. Given (27), it
follows from expression (28) that h̃, as well as the full solution
h̄ + h̃, both oscillate as x → +∞ if and only if Imk1 �= 0.

To find the region in the parameter space where Imk1 �= 0, a
method was employed which was used previously in Ref. [13].
The results are shown in Fig. 6: clearly a region exists where
oscillations are present. Figure 6(a) also shows that all of this
region fits into the range for h(+) [determined by (12)], hence
oscillations can only be observed above (to the right from) the
shock. This conclusion agrees with Fig. 3, which indeed shows
that the solution below the shock never oscillates.

The values of k1 computed using Eq. (26) were used to
validate our numerical solution of the full nonlinear equations
(2)–(8). For α = 70◦ and q = 0.58, for example, (26) yields

π (Imk1)−1 ≈ 3.475. (29)

This value is to be compared with the distances between
two successive zeros of the function h(x) − h(+), where h(x)
is the steady solution of (2)–(8) computed for the same
α and q. According to our simulations, these distances
are 2.609, 3.919, 3.249, 3.598, 3.410, 3.511, 3.456, 3.486,
3.470, 3.478, 3.473. . . (this sequence was truncated near the
right-hand boundary of the computational domain, as further
measurements would be unreliable). Clearly the measured
values rapidly converge onto the “theoretical” value (29).

VI. CONCLUDING REMARKS

It remains to discuss what happens when no steady SSW
exists. One can conjecture that in such cases the solution
evolves periodically: after overturning, the film’s surface evens
out—then a new shock forms and overturns—and so on. This
scenario cannot be simulated for the want of a numerical
method capable of describing overturning beyond its initial
stage, so an experiment seems to be the only tool for finding
out if our conjecture is correct. One should keep in mind,
however, that, even if a steady SSW exists for a certain set
of parameters, this does not necessarily mean that it can
be observed in an experiment, as it can be unstable with
respect to three-dimensional disturbances (which we have not
explored yet). In other words, a three-dimensional model of
SSWs should be examined, similar to those considered for
various asymptotic limits in Refs. [14–20]. It would also be
interesting to examine how SSWs are affected by the liquid’s
inertia (preliminary simulations with finite Reynolds number
indicate that it is conducive to overturning).

Our results can also be extended to SSWs with h(−) = 0,
in which case the wave’s front is bounded by a contact line.
One can conjecture that some of such SSWs still overturn
(simply because overturning occurs near the “crest” of the
wave and thus is not likely to be affected by what happens
near the contact line). Then, if the liquid “splashes” onto the
dry plate in front of the wave, the contact line will effectively
“jump” forward. Then a new shock will form and break,
causing another jump. Such dynamics are very different from
the commonly used Tanner law and similar models.

Finally, note that the existence of a shock wave in an
asymptotic model does not guarantee the existence of its
Navier–Stokes counterpart (because the latter overturns). Such
asymptotic solutions are meaningless physically (see examples
discussed in Ref. [11]).
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