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A set of asymptotic equations is derived, describing the dynamics of the flute mode in a magnetized
plasma with cold ions, under a “local” approximation �i.e., near a particular point�. The asymptotic
set is then used to calculate the growth rate of interchange instability in the slab model. It is shown
that, unlike the magnetohydrodynamic ordering, the drift one allows instability to occur for either
sign of the pressure gradient �i.e., for both “bad” and “good” curvature of the magnetic field�. It is
also demonstrated that finite beta gives rise to an extra instability that does not exist in the
small-beta limit. © 2007 American Institute of Physics. �DOI: 10.1063/1.2752815�

I. INTRODUCTION

Historically, interchange �flute� instability has been
mostly studied using the magnetohydrodynamic �MHD�
theory �e.g., Refs. 1–3�. In particular, it was shown that low-
density �small-beta� tokamak plasmas are unstable if

p̄� � −
10p̄

3R
, �1�

where R is the radius of the curvature of the magnetic field,
p̄ is the pressure, and p̄� is its derivative with respect to the
distance to the tokamak’s axis �the bar implies that the cor-
responding quantity represents a steady state�. Note that,
since �1� was obtained through MHD, it is valid only for
disturbances with wavelengths that are much larger than the
Larmor radius ����s�.

Interchange instability has also been investigated using
the drift ordering, which allows for ���s. We shall note
three such papers: Ref. 4 derived the dispersion relation of
linear disturbances in a plasma with cold ions, Ref. 5 exam-
ined the same problem in plasmas with cold ions and small
beta, and Ref. 6 studied the most general setting �arbitrary
ion temperature, arbitrary beta�. For the simplest case cov-
ered in all three papers �cold ions, small beta�, the only ex-
ample of interchange instability found involved long-wave
disturbances, and the instability condition turned out to co-
incide with that of MHD;7 i.e., �1�.

In the present paper, we derive a set of “local” equations
for drift-interchange instability of plasmas with cold ions and
arbitrary beta �Sec. II� and apply it to the so-called slab
model �Sec. III�. The disturbance’s wavelength will not be
assumed large. It will be shown that, even for a small beta,
disturbances with finite wavelengths dramatically expand the
�long-wave� instability region �1�, with finite beta causing
further destabilization.

II. THE GOVERNING EQUATIONS

We shall characterize the plasma by its concentration n
�quasi-neutrality implied�, the respective ion and electron ve-
locities Vi and Ve, the electron pressure pe �its ion counter-
part assumed negligible�, and the ion mass mi �electron iner-
tia neglected�. We shall use the following set of equations:

�n

�t
+ Vi · �n + n� · Vi = 0, �2�

�pe

n
= − e�E + Ve � B� , �3�

mi� �Vi

�t
+ Vi · �Vi� = e�E + Vi � B� , �4�

� �pe

�t
+ Ve · �pe� +

5pe

3
� · Ve

− � · � 5peB

3e	B	2
� �� pe

n
�
 = 0, �5�

where e is the elementary charge. The respective electric and
magnetic fields E and B satisfy

�B

�t
+ � � E = 0 , �6�

� � B = �0en�Vi − Ve� , �7�

� · B = 0, �8�

where �0 is the magnetic permeability of vacuum.
It is convenient to express Ve and E from �7� and �3�,

and substitute into Eqs. �4�–�6�:

nmi� �Vi

�t
+ Vi · �Vi� + ��pe +

	B	2

2�0
� −

B · �B

�0
= 0 , �9�

�pe

�t
+ Vi · �pe +

5pe

3
� · Vi −

1

�0en
��pe −

5pe

3n
�n�

· � � B − � · � 5peB

3e	B	2
� �� pe

n
�
 = 0, �10�
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�B

�t
+ Vi · �B − B · �Vi + B� · Vi +

1

en2 ��n�

� ��pe +
	B	2

2�0
� + � � � 1

�0en
B · �B� = 0 �11�

�in the last equation, we have also taken into account �8��.
The curvature of the magnetic field can be conveniently

described in terms of modified cylindrical coordinates
�x ,y ,��, related to the usual cylindrical coordinates �r ,� ,��
by

x = r − R, y = − �, � = � ,

where R is the distance between the � axis and a reference
point �R−1 is, essentially, the magnetic field’s curvature; see
Fig. 1�. Since we are interested in interchange �flute� insta-
bility, it is sufficient to assume two-dimensional geometry:

n = n�x,y,t�, pe = p�x,y,t� ,

�12�
Vi = u�x,y,t�ex + v�x,y,t�ey, B = B�x,y,t�e�,

where ex, ey, and e� are the unit vectors directed along the
corresponding axes.

We shall use the local approximation, i.e., assume that
the deviations of density, pressure, and magnetic field from

their respective reference values n̄, p̄, and B̄ are small. Next,
introduce the following nondimensional variables:

t̂ = �	it, �x̂, ŷ� =
�x,y�

�s
, �13�

n̂ =
n − n̄

�n̄
, p̂ =

p − p̄

�p̄
, B̂ =

B − B̄

�B̄
, �û, v̂� =

�u,v�
��s	i

,

�14�

where � is a small parameter characterizing the fields’ devia-
tions from their reference values, and

�s =
1

eB̄
� p̄mi

n̄
�1/2

, 	i =
eB̄

mi

are the Larmor radius and cyclotron frequency, respectively.
Observe that � makes the time scale in �13� much larger than
	i

−1; i.e., our asymptotic derivation targets low-frequency
motions.

Upon substitution of �12�–�14� into Eqs. �2� and �9�–
�11�, we obtain �hats omitted�

�� �n

�t
+ u

�n

�x
+ v

�n

�y
� + �1 + �n�� �u

�x
+


u

1 + 
x
+

�v
�y
� = 0,

�15�

��1 + �n�� �u

�t
+ u

�u

�x
+ v

�u

�y
� +

�

�x
�p +

2B + �B2

�
�

+
2
�1 + �B�2

���1 + 
x�
= 0, �16�

��1 + �n�� �v
�t

+ u
�v
�x

+ v
�v
�y
� +

�

�y
�p +

2B + �B2

�
� = 0,

�17�

�2� �p

�t
+ u

�p

�x
+ v

�p

�y
� +

5��1 + �p�
3

� �u

�x
+


u

1 + 
x
+

�v
�y
� −

2�2

��1 + �n��� �p

�x
−

5�1 + �p�
3�1 + �n�

�n

�x

 �B

�y
− � �p

�y
−

5�1 + �p�
3�1 + �n�

�n

�y



�� �B

�x
+


�1 + �B�
��1 + 
x� 
� + � �

�x
+




1 + 
x
�� 5�1 + �p�

3�1 + �B�
�

�y
�1 + �p

1 + �n
�
 −

�

�y
� 5�1 + �p�

3�1 + �B�
�

�x
�1 + �p

1 + �n
�
 = 0, �18�

�� �B

�t
+ u

�B

�x
+ v

�B

�y
� + �1 + �B�� �u

�x
+

�v
�y
� +

�

�1 + �n�2� �n

�x

�

�y
�p +

2B + �B2

�
� −

�n

�y

�

�x
�p +

2B + �B2

�
�


+
�

�y
� 2
�1 + �B�2

���1 + 
x��1 + �n�
 = 0, �19�

FIG. 1. The relationship between the usual cylindrical coordinates �r ,� ,��
and the modified ones �x ,y ,��. The latter are associated with a reference
point located at a distance R from the � axis �R−1 is, essentially, the magnetic
field’s curvature�. The dashed-dotted curve shows the magnetic field line
passing through the reference point.
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where


 =
�s

R
, � =

2�0p̄

B̄2

are, respectively, the nondimensional curvature of the mag-
netic field and the ratio of the material pressure to the mag-
netic one.

For tokamaks, 
 can be safely assumed small. �, in turn,
is small for conventional tokamaks �see Refs. 8 and 9� and
order-one for spherical ones �see Refs. 9 and 10�. Thus, for
generality, we assume ��1.

As a starting point of our derivation, observe that, in the
limit ��
�1, the zeroth orders of Eqs. �15�, �18�, and �19�,
all yield

�u

�x
+

�v
�y

= 0. �20�

Thus, to obtain as many asymptotic equations as we have
unknowns, one generally needs to delve into higher orders—
or, alternatively, combine the original equations in such a
way that their zeroth orders cancel. The latter is easier in the
present case, as it can be done by simply considering

3

5��1 + �p�
�18� −

1

1 + �n
�15�,

1

1 + �B
�19�

−
1

1 + �n
�15� .

Keeping the leading orders only, we then obtain

3

5
� �p

�t
+ u

�p

�x
+ v

�p

�y
� −

�n

�t
− u

�n

�x
− v

�n

�y
−

2

�
��3

5

�p

�x
−

�n

�x
� �B

�y
− �3

5

�p

�y
−

�n

�y
�� �B

�x
+




�
�
 +




�

��p − n�
�y

+
��p − B�

�x

��p − n�
�y

−
��p − B�

�y

��p − n�
�x

= 0, �21�

�B

�t
+ u

�B

�x
+ v

�B

�y
−

�n

�t
− u

�n

�x
−




�
u − v

�n

�y
+

�n

�x

�

�y
�p +

2B

�
� −

�n

�y

�

�x
�p +

2B

�
� +

2


��

��2B − n�
�y

= 0. �22�

Observe also that, to zeroth order, �16� and �17� can be re-
duced to a single equation

p +
2B

�
+

2
x

��
= const �23�

�which implies an assumption that, at infinity, the pressure
and magnetic field do not depend on t�. To recover another
equation, we should bring the small terms in �16� and �17� up
to the leading order, which can be achieved by deriving the
vorticity equation through

��16�
�y

−
��17�

�x
.

Keeping the leading order only, we then obtain

�

�y
� �u

�t
+ u

�u

�x
+ v

�u

�y
� +

4


��

�B

�y

−
�

�x
� �v

�t
+ u

�v
�x

+ v
�v
�y
� = 0. �24�

The asymptotic set �20�–�24� can be simplified. Firstly, ob-
serve that �20� enables one to introduce a streamfunction �,
such that

u = −
��

�y
, v =

��

�x
�25�

�� can also be interpreted as the nondimensional electric
potential; thus, �25� essentially represents the E�B drift�.
Secondly, �23� can be used to eliminate B:

B = const −

x

�
−

�p

2
. �26�

Thirdly, � has already played out its role as an indicator of
small terms and can now be eliminated by setting

� = 1. �27�

Substitution of �25�–�27� into �21�, �22�, and �24� yields

� �

�t
−

��

�y

�

�x
+

��

�x

�

�y
��3p

5
− n� −

�

2
� �p

�x

�n

�y
−

�p

�y

�n

�x
�

+ 2

��p − n�

�y
= 0, �28�

� �

�t
−

��

�y

�

�x
+

��

�x

�

�y
���p

2
+ n� + 2


��p − ��
�y

= 0, �29�

� �

�t
−

��

�y

�

�x
+

��

�x

�

�y
�� �2�

�x2 +
�2�

�y2� + 2

�p

�y
= 0. �30�

For �=0, set �28�–�30� is equivalent to Eqs. �6�–�8� of
Ref. 5.
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III. THE SLAB MODEL

In this section, we apply �28�–�30� to the so-called slab
model, where x is identified with the radial direction and y,
the poloidal one. The slab geometry also implies that the
tokamak’s cross section is close to axial symmetry, so the
steady state is independent of y.

Mathematically, the slab model corresponds to the sub-
stitution

n = n̄�x + ñ�x,y,t�, p = p̄�x + p̃�x,y,t�, � = �̃�x,y,t� ,

�31�

where n̄� and p̄� are the �steady� gradients of concentration
and pressure, and the “tilded” variables describe a small dis-
turbance superposed on the steady state. Substituting �31�
into �28�–�30� and omitting nonlinear terms, we obtain

�

�t
�3p̃

5
− ñ� −

��̃

�y
�3p̄�

5
− n̄�� −

�

2
�p̄�

� ñ

�y
−

� p̃

�y
n̄��

+ 2

��p̃ − ñ�

�y
= 0, �32�

�

�t
��p̃

2
+ ñ� −

��̃

�y
��p̄�

2
+ n̄�� + 2


��p̃ − �̃�
�y

= 0, �33�

�

�t
� �2�̃

�x2 +
�2�̃

�y2� + 2

� p̃

�y
= 0. �34�

We shall consider harmonic disturbances, i.e., solutions of
the form

ñ�x,y,t� = n0ei�ky−	t�, p̃�x,y,t� = p0ei�ky−	t�,

�35�
�̃�x,y,t� = �0ei�ky−	t�,

where 	 and k are the frequency and poloidal wavenumber
of the disturbance, respectively �it can be shown that the
fastest instability occurs for purely poloidal disturbances, so
the x-wavenumber was assumed to be zero�. Substitution of
�35� into �32�–�34� yields

�3p0

5
− n0� + �3P̄�

5
− N̄��k�0 +

�k

2
�P̄�n0 − N̄�p0�

− k�p0 − n0� = 0, �36�

��p0

2
+ n0� + ��P̄�

2
+ N̄��k�0 − k�p0 − �0� = 0, �37�

k�0 + p0 = 0, �38�

where

 =
	

2

, N̄� =

n̄�

2

, P̄� =

p̄�

2

.

Eliminating n0, p0, and �0 from �36�–�38�, we obtain

�3

5
+

�

2
�3 − k�2 + �1 + N̄� +

�P̄�

2
��

2

2

− �1 + �3

5
+

�

2
�P̄� − k2�1 +

�P̄�

2
�


+ k�1 +
�P̄�

2
��1 + N̄� +

�P̄�

2
� = 0. �39�

This equation �dispersion relation� determines  and, thus,
the stability properties of the flute mode: if, for some k, there
are solutions with Im �0, the plasma is unstable.

A. The MHD limit

The MHD ordering corresponds to the long-wave limit
and the assumption =O�1� as k→0. Applying these to
�39�, we obtain

�3

5
+

�

2
�2 − �1 + �3

5
+

�

2
�P̄�
 = 0.

One can see that instability occurs when

P̄� � −
1

3

5
+

�

2

, �40�

which is the nondimensional equivalent of the classical result
of Refs. 1 and 2.

B. The case of small beta

For �=0, Eq. �39� has been examined in the long-wave
limit in Ref. 5. It was shown that instability occurs if

P̄� � −
5

3
, �41�

which is the small-� equivalent of �40� �and the nondimen-
sional equivalent of �1��. It turns out, however, that there are
cases where long-wave disturbances are stable, but instability
still occurs at medium wavelengths �k�1�.

In order to consider arbitrary k, rewrite �39��=0 in the
form

3�

5
C3 − 2�C2 − �1 +

3P̄�

5
− ��C + N̄� + 1 = 0, �42�

where

C =


k
, � = k2. �43�

The main characteristics of any instability are the marginally
stable wavenumbers; i.e., the values of k separating stable
and unstable regions in the k-space. In what follows, we shall
develop a tool for finding them.

Equation �42�, just like any other cubic equation, can be
represented in the form
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��C − a�2 + b��C − d� = 0,

where a, b, and d are real functions of � �and also of P̄�, N̄��.
The potentially unstable solution is, then,

C = a��� + b��� . �44�

Observe that, for a marginally stable �MS� value �MS, b���
must change sign; hence, its Taylor expansion is, generally,

b → � db

d�
�

�=�MS

�� − �MS� +
1

2
� d2b

d�2�
�=�MS

�� − �MS�2

+ ¯ as � → �MS. �45�

Note that �44� and �45� imply

dC

d�
→ � as � → �MS.

This condition can be used as a means of locating the MS

values of � and, eventually, the MS values of P̄� and N̄�.
Indeed, differentiating the dispersion relation �42� with

respect to �, one can obtain

dC

d�
=

−
3

5
C3 + 2C2 − C

9�

5
C2 − 4�C − 1 −

3

5
P̄� + �

. �46�

Hence, C may have infinite derivative only if

9�

5
C2 − 4�C − 1 −

3

5
P̄� + � = 0. �47�

Next, consider a pair of MS values, ��MS1 ,�MS2�, describing

an instability interval in the � axis. When P̄� and N̄� ap-
proach their MS values, the instability interval shrinks and
vanishes; i.e., �MS1 and �MS2 merge and disappear. Hence,
dC /d� must become regular, which is possible only if the
numerator of �46� vanishes at the same point where the de-
nominator does, which yields

− 3
5C3 + 2C2 − C = 0. �48�

Finally, the definition of � �see �43�� implies

� � 0. �49�

Now, eliminating � and C from �42� and �47�–�49� one can

obtain the following curves on the �P̄� , N̄�� plane:

1 + N̄� = 0, 1 +
3P̄�

5
� 0, �50�

1 + N̄� =
5 + 10

3
�1 +

3P̄�

5
�, 1 +

3P̄�

5
� 0, �51�

1 + N̄� =
5 − 10

3
�1 +

3P̄�

5
�, 1 +

3P̄�

5
� 0. �52�

One should keep in mind, however, that some of these solu-
tions correspond to vanishing of one of several instability
regions and, thus, are not MS curves. To eliminate these, we
carried out “numerical sampling”; i.e., computed C��� from

FIG. 2. The marginal stability curve on the �P̄� , N̄�� plane, for �=0. The

nondimensional gradients P̄�, N̄� of the pressure and concentration are given
by �56�. The parameter values to the left from the dotted line are unstable in
the long-wave limit. The dispersion curves corresponding to the “numbered”
point are shown in Fig. 3.

FIG. 3. The growth rate Im  vs the poloidal wavenumber k, for �=0. The
numbers of curves correspond to the numbers of the points marked in Fig. 2.
Observe that curve 1 is the only one with long-wave �k→0� instability.
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�42� for particular points on both sides of curves �50�–�52�. It
turned out that �52� is not a MS curve, as it separates cases
with one instability region and those with two. Sampling also
helped us to determine which sides of the MS curves �50�
and �51� correspond to instability, and the results are shown
in Fig. 2.

Note also that, in addition to a merger of two MS
�-values, stabilization may occur if the instability region
“exits” through the zero or infinity. To detect such cases, �42�
was examined as �→0 and �→�. The former limit yields

P̄�=−5/3, but sampling shows that this condition separates
cases where the instability interval is adjacent to, or detached
from, zero �see Fig. 3; this figure also illustrates the fact that,
for MS values of k, dC /dk=��. Finally, it can be readily
shown that �42� has no unstable solutions as �→�.

Thus, the instability region on the �P̄� , N̄�� plane is

P̄� � −
5

3
,

or P̄� � −
5

3
, N̄� � − 1,

or P̄� � −
5

3
, N̄� � − 1 +

5 + 10

3
�1 +

3P̄�

5
� ,

�53�

which is considerably wider than what is predicted by the
long-wave condition �41� �see Fig. 2�. Interestingly, instabil-
ity can even occur if the pressure gradient is positive �i.e., the
magnetic field’s curvature is “good”�.

C. The case of finite beta

For ��0, the instability condition involving small/
medium MS wavenumbers is

P̄� � −
5

3 +
5�

2

,

or P̄� � −
5

3 +
5�

2

, N̄� � − 1 −
�P̄�

2
,

or P̄� � −
5

3 +
5�

2

, N̄� � − 1 −
�P̄�

2
+

5 + 10

3
�1 +

3P̄�

5
+

�P̄�

2
� ,

�54�

which is similar to its zero-� counterpart �53�. It turns out,
however, that finite � can destabilize large wavenumbers.

Indeed, assuming =O�k� as k→�, one can reduce Eq.
�39� to

�3

5
+

�

2
�2 − k�2 + �1 + N̄� +

�P̄�

2
��

2



+ k2�1 +
�P̄�

2
� = 0 as k → � . �55�

Hence, the plasma is unstable if

�2 + �1 + N̄� +
�P̄�

2
��

2

2

� 4�3

5
+

�

2
��1 +

�P̄�

2
� .

�56�

As a result, the instability region on the �P̄� , N̄�� plane no-

ticeably expands, especially for positive P̄� �see Fig. 4�.
Furthermore, since �55� and �56� imply that Im →� as

k→�, the new instability causes an “ultraviolet catastro-
phe”; i.e., mathematically, disturbances explode �develop
singularity� in a finite time. Physically, this effect ought to be
restricted by dissipation �not included in the present work�.

Still, one can qualitatively conclude that finite � is a strong
destabilizing influence, which is also confirmed by Fig. 5.

To put the instability conditions �54�, �56� in a physical

context, we relate the nondimensional gradients P̄�, N̄� to
their dimensional counterparts, p̄�, n̄�:

P̄� =
Rp̄�

2p̄
, N̄� =

Rn̄�

2n̄
, �57�

where p̄ and n̄ are the dimensional pressure and concentra-
tion, respectively, and R is the radius of the magnetic field’s
curvature. Now, estimating p̄�� p̄ /r and n̄�� n̄ /r, where r is

the minor radius of the tokamak, one can see that P̄� and N̄�
range from zero to values comparable to the tokamak’s as-
pect ratio.

IV. COMPARISON WITH PREVIOUS WORK

In order to understand why the full extent of drift-
interchange instability has not been spotted earlier, note that
it was examined mainly for long-wave disturbances,5,6 which
are considerably less unstable. There was also a lot of work
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�e.g., Refs. 1–3� under the MHD ordering—which, however,
does not describe short ���s� wavelengths where “our” in-
stability takes place.

Finally, Ref. 4 dealt with a model similar to ours, under
an additional assumption of large aspect ratio,

r

R
� 1. �58�

Unlike this work, however, Ref. 4 did not require

�s
2

rR
� 1 �59�

�which condition is implied by our ordering, �12�–�14��.
Accordingly, the �58� limit of our dispersion relation �39�
coincides with the �59� limit of Eq. �54� of Ref. 4. The two
relations, however, were examined differently: we examined
ours in the general form and found instabilities, whereas
Hassam and Lee4 investigated theirs for certain limits, none
of which happened to be unstable �except for the long-wave

limit and a relatively narrow range ��r /R�1, N̄� / P̄��1�.
Finally, Ref. 4 found a low-frequency instability, given

by their formula �52�. To understand why this instability is
not present in our analysis, observe that an a posteriori check
of �52� for compliance with the underlying assumption �that
the frequency is indeed low� requires �s

2 /rR�1, which is the
opposite to condition �59� implied in the present paper.

V. SUMMARY AND CONCLUDING REMARKS

Thus, we have derived asymptotic set �28�–�30� describ-
ing drift-interchange instability of magnetized plasma with
cold ions, under a “local” approximation �i.e., near a particu-
lar point�. Using the set, we obtained instability criteria �54�,
�56�. It turned out that, even for a small beta, instability may
occur for either sign of the pressure gradient �i.e., for both
“bad” and “good” curvatures of the magnetic field�. Finite
beta, in turn, gives rise to an extra instability �described by
�56��. This new instability is particularly strong, as, spec-
trally, it stretches to infinitely short waves and, thus, can
cause an ultraviolet catastrophe.

Finally, note that we have used the asymptotic set
�28�–�30� only to examine linear stability, but it can also be
employed for modeling nonlinear phenomena, such as turbu-
lence, transport barriers, etc.
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FIG. 4. Marginal stability curves on the �P̄� , N̄�� plane. The nondimensional

gradients P̄�, N̄� of the pressure and concentration are given by �56�. The
curves are marked with the corresponding values of �.

FIG. 5. The growth rate Im  vs the poloidal wavenumber k, for P̄�=4,

N̄�=−3. The curves are marked with the corresponding values of �. Note
that, for �=0.4, the instability region stretches to infinity �k→��.

082101-7 A drift model of interchange instability Phys. Plasmas 14, 082101 �2007�

Downloaded 05 Oct 2007 to 193.1.100.105. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


