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The stability of magnetically confined plasmas is sometimes examined using the so-called “slab”
model, where the toroidal geometry of the problem is approximated locally by the Cartesian one. In
the present paper, @ore accuratecylindrical approximation is considered and shown to yield
results which are qualitatively different from those of the slab model. In particular, if the slab model

is applied to the outboard region of the tokantakere the gradient of the plasma’s density and that

of the magnetic field are of the same sigdisturbances remain unstable at all times. In the
cylindrical model, on the other hand, tlex B flow carries disturbances around the cylinder and
they alternate between the unstable and stable regions. Naturally, this reduces the growth rate of
instability and makes it dependent on the angular velocity of the flo20@ American Institute

of Physics[DOI: 10.1063/1.1886830

[. INTRODUCTION order, corresponds to solid-body rotation. Assuming that the
Interchange instability plays a crucial role in the dynam_mhomogenelty of the magnetic field is weak, we shall derive

ics of plasma in the outboard region of a tokamak, where th& Set of linear ordinary differential equatiot®DE9 de-

gradient of the plasma density and that of the magnetic ﬁel&cribing the stability of such steady states. Finally, in Sec. V,

are of opposite signs. The simplest way to examine it jve shall consider examples where this set can be solved

based on the so-called “slab modét.g., Refs 1-B where analytically, and compare the results to those of the slab
the toroidal geometry of a tokamak is approximated by thc—mOdel'
Cartesian one. Then, choosing the region with the maximum
density gradient and describing it locally by the slab model,
one could expect to reliably calculate the instability’s growthll. THE GOVERNING EQUATIONS
rate.

It should be noted, however, that the slab model has two ~Consider pressure driven interchange motion in a mag-
shortcomings. First, the toroidal geometry of the “real” prob-netized plasma. Neglecting temperature fluctuatiowisich
lem implies that theE x B flow does not allow the distur- will be briefly discussed in Sec. Ylwe shall characterize
bances to remain in the unstabléoutboard region the pIa;ma by the potentigh and ion.concentration* (the
indefinitely—instead, they alternate between the stable angimensional variables are marked with astefisk$ie corre-
unstable regioffs(see Fig. 1 This effect should noticeably SPonding nondimensional variables are
weaken the instability, just as it does for ballooning instabili- e -
ties in toroidal plasma&® Second, the joint effect of toroidal ¢= ¢, n="5-1
geometry and nonuniform magnetic field makes the problem
inhomogeneous in the poIoidaI direction—which, in turn, wheree is the elementary Charge’ andand7 are the mean
makes disturbances with different poIoidaI wave numbers inconcentration and temperature, respectively. The nondimen-

teract. sional magnetic field, in turn, is given by
Clearly, the above effects are not described by the Car-

tesian slab model and, to examine them, one could assume g _ B.
the full toroidal geometryas has been done in numerous B’
other cases where the Cartesian geometry is insufficient—

see, for example, Refs. 5)-8n the present case, however, WhereB is the characten?tlg ‘_’alllje G| . _
we can use the simpler cylindrical approximation. Indeed, AIMing to test the cylindrical approximation of a toroi-

since the aspect ratio of real tokamaks is lafige., the ra- 92 pljgma,(\j/ve coEsu?er a: cross section og;he tsae Fig.
dius of the tokamak torus is much larger than the radius of it @nd introduce the local Cartesian coordinatesy.,z),

cross section we can approximate the torus by a cylinder. with the z. axis being perpendicular to the cross section. The
In the following section of this paper, we shall formulate ~

corresponding nondimensional coordinates and time are
a cylindrical model of interchange instability and, in Sec. 1, 91Ven by

examine the structure of steadyx B flows (which can be (X, Y, Z:)

assumed almost axisymmetric, perturbed by weakly inhomo- xy2)=—""", t=ois,
geneous magnetic fieldin Sec. IV, we shall consider the P

simplest particular case, where tlEexXB flow, to leading  where
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Equationq2) describe coupling of the potential energy of the
pressure field to the plasma’s kinetic energy, due the curva-
ture of the magnetic field—which gives rise to interchange
instability.

Given in Eq.(1), the curvature operator can be reduced

Stable region ' Unstable region

to

J
K=e——+0(e?), (3)

© ay
with & playing the role of the nondimensional curvatie-
drift.

Having in mind the cylindrical geometry of the problem,
we shall rewrite Eqs(2) and (3) in terms of polar coordi-
nates(r, 6),

FIG. 1. Formulation of the problenta) toroidal model(b) slab model, and
(c) cylindrical model.

an dodain  Jddain J an
E*fze‘fﬁz W’ a)fs'”"
(77mi)1’2 B r r r r
pP=" " W= dp In
Wi m (—d)——)cosa] 0, (4)
a0 90

andm; is the mass of ions.
In what fo_IIows, we shall assume that the as_pect ratio of IV2h  apaVih A aV2e
the tokamak is large, i.e., radid® of the torus “filled” by + -

plasma is much larger than the radias of its cross at or 06 99 or

section—in which case the torus can be approximated by a an . an
cylinder. Accordingly, within the cross section chosen, the _8<§r sing+ (9_9‘3059) =0, ()
magnetic field can be approximated by a constant value and
a weak linear dependence ani.e., where
B=(1-ex)z, (1) Vgt ( ¢> 17¢
Trar\ o) r2ae

wherez is the unit vector directed along tlzeaxis ande is a
small parameter characterizing the decay of the magnetiEquations(4) and (5) should be supplemented by the usual
field with distance from the center of the tor(is terms of  regularity conditions at the origin,

the dimensional parameters, ¢ on

, —=0, —=0 atr=0, 6
pB 90 90 ©

B’

e=—
and a condition at the plasma’s boundary. Following Ref. 9
where ' is the characteristic gradient of the magnetic field(see also Ref. JQwe shall neglect the effect of the scrape-

at the cross-section chogen off layer and impose the wall boundary condition,
We shall also use the flute-mode approximation, i.e., as- Py
sume that¢ and n do not depend on the toroidal —=0 atr=a, (7)

coordinate—in terms of cylindrical variables, this means that 96

¢ andn are independent of. Assuming also that is small  where it should be recalled thatis the nondimensional ra-
(i.e., n« is close to its mean valu&/), we shall describe the djus of the torus’s cross section.

plasma’s dynamics by the following equatiofesg., Ref. 3:

M b +K(n- ) =0 lll. STEADY STATES
t 1 1
@) Assume that the solution does not depend on time,
V2¢> V2 +K(n) = n(r, 6, =N(r,0), (r,6,t)=d(r,6),
in which case Eqs4) and(5) yield
where d0IN 90N {(@_ﬂ)rsm
V2= Pb P {¢ n}_a_d)@_a_qs@ ar a6 36 or a9
a2y VT Gy Ty ax 9D IN
L +|—-—|cosh|=0, (8)
and the curvature operatéris given by a6 90
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aD V2D 9D JV>D N AN
— -— —gl—rsind+—cosh|=0.
ar 00 00 or ar 0

(9

It can be verified by inspection that Eq8) and (9) are
consistent with the following ansatz:

N(r, 6 = NO(r) + eNPY(r)cos o+ e2N@(r)cos B+ -+,
(10)

O(r,0) = PO(r) + e®D(r)cosf + 20 (r)cos B+ - -,
(1)
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IV. DISTURBANCES

In what follows, we shall derive an eigenvalue problem
describing the stability of steady states with respect to small
disturbances. We shall confine ourselves to particular case
(17) which corresponds to solid-body rotation, with the den-
sity gradientN’(r) still remaining arbitrary. Then, the origi-
nal two-dimensional(2D) problem will be reduced to a
(much simpler 1D one. Overall, the model based on solid-
body rotation allows one to explore the most robust features
of cylindrical plasma configurations, whereas more general
models will be briefly discussed in Sec. VI.

Note also that, even for cagg?), the algebra involved is

i.e., to leading order, the density and flow are assumed axSC cumbersome that nonmathematically minded readers
symmetric (which agrees with what is observed in real Might prefer to jump to the beginning of Sec. IV B, where

tokamaks—see Ref. 11Then, substituting Eqs(10) and
(12) into Egs.(8) and(9), one can show tha® and®© are
arbitrary, wheread\(r) and ®™(r) satisfy

(0 (0) (0 (0)
_diN(l).Fq)(l)dN +r<d(I) —dN ):
dr dr dr dr '
(0 (1)
_do {lﬂ(rdq’ ) _ lq)(l)}
dr [rdr\ dr r?
d{1d dN©
+oW—| == v]— =0.
dr[ r dr(r | dr
These equations can be rearranged as follows:
VN - DN’ =r(V-N'), (12)
VA, &Y - dDAV=-1N’, (13)
where
do© dN©
V= , N'= 14
dr dr (14

are the swirl velocity of thé= X B flow and the density gra-
dient respectively, and the operatby is

> 1d 1
[ + _—— = .
dr® rdr r?
The boundary conditions faX¥(r) and ®(r) can be ob-
tained from the general boundary conditidés and (7),

NY dP=0 atr=0,a. (16)

The boundary-value problem, Eq4.2), (13), and(16), can
be readily solved, i.eN® and®® can be related td’ and

A= (15

V—in what follows, however, this solution will not be
needed. We shall only consider the following particular case:

V=0r, (17)

the asymptotic results are summarized.

A. The linearized stability problem

To examine the stability of a steady stdfe, ®) with
respect to small disturbances, we seek a solution in the form

n(r,6,t) = N(r, 6) +1(r, 6,1),
(19
B(x,y,t) = D(r,0) + $(r, 6,1),
where the tilded variables represent the disturbance. Substi-
tuting Eq.(19) into Egs.(4) and(5) and linearizing the latter,

we assume that the disturbance depends in time harmoni-
cally,

T, 0,0) =F(r, )&, B(r.0,0) = (r, )&t

and obtain(double tildes omitted

. dabon dpIN oJdon JpIN
—jorn+ ——+ L — - ——
ar 90 dr 960 96 Ir 90 or
J an Jd an
+a{<—¢——>rsin0+(—¢——)cosa}:0,
ar - or 00 06
(20)
aD IV%p  IpIVD 9P gV?
~iwrV¢+— ¢, 22 A
ar 96 ar 96 00 or
¢ VD an an
-— —¢g|l —rsinf+-—cosh|=0. (21)
00 or ar d0

which Corresponds to SOlid'bOdy rotation with angular VelOC'Equationqzo) and (21) and boundary Conditior(ﬁ) and (7)

ity €). In this case, Eq(13) reduces to

!

N
A0 = - = 18
! Q (189

This identity will be used in the following section.

form an eigenvalue problem, wheeagis an eigenvalue and
(n, ¢) are the eigenfunctions. If Im@>0, the disturbance is
unstable.

Assuming that is a small parameter, we seek a solution
in the form
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dop®

-1|n
dr ) 0

¢:¢(0)+8¢(1)+ e

=n© @4 ...
n=n?+en" +
° ' —Qn(l)——N (k- 1)¢(1>+2[|:(

0=09+ 0+ -

1 dny)
Recall also that the steady stdfe,®) is given by expres- + <Fq)(l) - 1)d_n(r)} =0, (29
sions (10) and (11). Then, to leading order, Eq$20) and
(21) yield
(0) (0) d k
10 Om© + v Pl g (22) Odadll + 2( 30 —ng°)> -0 (30
90 a0 rr
iV?® 949d|1d d
0240 —| == =
Tl T T e ar rdr( V)| ~0A 1¢(1)_§( B T (0)>:O’ 3D
(23

i where the operatal, is given by
whereV andN’ are defined by Eq14). In what follows, we

shall confine ourselves to particular cd4&). Then, the last ? 1d K
term in Eq.(23) vanishes, and Eqg22) and (23) can be A=——=+-—->
readily solved—assuming that the solution is periodidjn drt rdr v
we obtain _ [for k=1, this definition coincides with that af,—see Eq.
#9(r,0)=0, nO(r, 0 =nP(r)e*’, (15)].
In the next order, we shall need only the equationdor
0¥ =kQ, (24 which can be written in the form

where the integek is the poloidal wave number am{ao)(r) is
an undetermined function describing the radial structure of

Qr(_ ik + £>V2¢(Z) = A0+ A, kD04 A DO
the disturbance. Thus, the leading-order frequency turned out a0

to be real(stablg—in fact, expressior(24) shows that, to +A,,@ K204 A k20 (3
leading order, the disturbance is carried around the cylinder
by the flow. where
In the next order, Eqs(20), (21), (10), (11), and (17)
yield ) Ayg=- iw(l)Akd)él)
d d ) .
Qr(—ik+—)n(1)—N’ LApVIS nOglk? i q)(l)dAk+1¢(+11) ¢(1) Ao — dn(¥
a0 a0 + > dr 1 r—— ar
dnf? dp® 4 - @
- (@Y -r)—Lsing+ - 1|nYik cose |€X°, i(k+1)(do (1)_dA1‘I’ W _ @
dr dr + > dr Ayrr0-7 d +1 g
(25 .
_|_<q)(1)dAk_1¢(1 dey) Ao, o dn(_ll))
dn 2 dr dr dr
Qr ( ik +— )V2¢(1) —2 1 sin g+ nik cosg [k’ _ .
dr i(k—-1)(dpW dA,®
o A el - g @
(26) 2 dr <Pt g TP
We seek a solution in the form (33

¢ = PR+ ¢ (e + ¢ (e,

n(l) - n(l)(r)ei(k+l)0+ ngl)(r)eike_l_ n(_l]?(r)ei(k—l)ﬁl

@

where ¢+10(r) and n,; ,(r) are undetermined functions.

Then, Eqs(25) and (26) yield

- oWny - —N ks =0 (27)
1, 1| k( dp®

\Qng,l]?—FN (k+ l)¢£r]£+§|:F(T—l nE)O)
1 dn

and the expressions fok,; and A,, will not be needed.
Obviously, Eq.(32) has a solution periodic i only if the
“resonant” term(the one involvinge®?) vanishes, i.e.,

Ay=0. (34)

Equations(27)—(31) and(34) form a closed set of ODEs for
N9, n®, g0 g
+1°

Observe that some of our equations involas a coef-
ficient) the correction®® to the steady state, for which we
have no explicit expression. It turns out, however, &Y
can be eliminated.

To do so, use identity18) to rearrange Eqs33) and
(34) in the form
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&) &) 0) - &) 2
- 20" QrAgedg 1) 4 k( q)r _d(D )( i ln(0)> ®=0k+e0™ +0(e9) (4D

0
dr drr (ie., if Imw®>0, the disturbance is unstahlethe
disturbance-induced variation of the potential is

$(0,r,1) = e[ H (N D0+ gD (r)gk? + &)

+ (k- 1] - o (n(l) ~n®) X (r)d«Doeriot + O(£?), (42)
(1)

N N,(dqﬁfﬁ _d¢ly

dN’ B
dr dr ) [(k+ D

where ¢’ is related to the disturbance-induced density
- Q[k(n{ +n%) + n(l) n31=0. (35  variations by
Then, use Eqs(27)—(29) to eliminateny’, n{!) from Egs. 0 o
(30), (31), and(35). Taking into account, Where necessary, "o (") :_m% (r). (43
Egs.(18), we obtain a closed set fo;r(l)
20 (1) 2 KN/ d Finally, the functionse(r), ¢.1(r) and the first-order fre-
w A e ( D + oY) quency o'V satisfy eigenvalue problem, Eq$36)—39),
K “ o * ! where
+ (k+ 1)¢<” (k= 1>¢>1> = (36) dN(O)
N'(r)=——
200W N’
" Ay - dr( ;ﬁ ) N'¢g” =0, (37) s the steady state’s density gradient.
Thus, the eigenvalue of proble36)—(39) determines
206 (N ¢<1)) K the stability properties of. the steady _st@ﬂerough f_ormulas
A i— N’ ¢ = (398 (41)], and the eigenfunctions determine the spatial structure
K dri r of the disturbancéthrough formulag40), (42), and (43)].
Note that Eqs(36)—(38) involve only the leading-order pa- Before we proceed, rewrite Eq&36)—(39) in terms of
rameters of the steady stafd’ andQ)—i.e., ®V has been new variables,
eliminated.
The boundary conditions fog” and 4.5 follow from bu=cdl, di=cd, do=—o, (44)
the original boundary condition®) and (7),
W gh=0 atr=o0a. (39  Where
1
The asymptotic eigenvalue problem, E6)—(39), involves c= 200! )_ (45)
functions of a single variable and is, therefore, much simpler k

than the two-dimensional original problem, E@20), (21), Substitution of Eq(44) into Egs.(36)—(38) yields
(6), and(7).

d k+1
_Ak< r¢0) 2¢p + a(¢+1 +¢ )+ %¢+1

B. Summary of the asymptotic results N’
Thus, we have examined a problem, E@)) and (21) _ k- 1¢ -0 (46)
and (6), (7), which describes the stability of a steady state o
with potential ®(r,6) and densityN(r, ) with respect to
linear harmonic disturbances. Since the inhomogeneity of the d¢
magnetic field is weak, the functioms(r, 6) andN(r, 6) are FAerper =1~ = = Kebo, (47)
almost axisymmetric,
= PO =N©O d
O(r,0) =P (r) +O(e), N(r,0) =N-(r) +O(e), rA-1p-=r1 d¢ + Kkebo, (49
and we have also assumed that, to leading order, the plasma
tat lid
rotates as a solid, bobui=0 atr=0a. (49)
o0 =10
2 L
where() is the angular frequency. V. EXAMPLES
In this case, the density variation induced by the distur-
bance has the form First of all, observe thab® does not appear in problems

ik 6—i ot (46)—(49) by itself, but only in combination witlf) [see Eq.
(6.1, =ng’(n)e +0e), (40 (45)]—hence, the growth rate, Im™?, is a reciprocal of the
wherew andk are the frequency and poloidal wave numbers,angular velocityQ) of the (rotationa) E X B flow. It should

and n (r) describes the disturbance’s radial structure; thebe emphasized that weakening of interchange instability due
frequency of the disturbance is given by to a nonsheared flow isot described by the slab model.
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Note also that, in addition to the main harmonig, A. An example: Parabolic density profile
problems(46)—(49) involve the sideband harmonies,.;. To

. o . Consider a particular case, where the leading-order den-
find out how these effect the stability, consider P d

sity N© depends o parabolically—in terms ofN’, this
corresponds to

f 1 5(46) ~ (A7) = 9,49 T, N'(D)=N'T, o9

hereN” is a constant. Then, eigenvalue problem, E4g),
48), (50), (52), (49), (53), and(54), can be solved exactly
and vyields the following expressions for the eigenfunctions:

_ AN//Zrk(aZ _ r2)

where the asterisk denotes complex conjugate. After straight-
forward algebra involving integration by parts and the use o
boundary condition$49), we obtain

a 2 12 2 = ArK -2 "« 7
sz |:T‘E<L¢O) k_ L% ]dr X ™ 0 2(k+1)C2 !
0 dr\ N’ N’
AN"Z k+l/p2 _ 52 AN”Z k=1/p2 _ 52)2
— : 2 d¢+l d¢—l ? ¢+1:_Lag), 1=~ r za) )
= &bl +rl | dr 4(k+ 1) (k+2)c 8(k+ 1)c
0
(56)
“[(k+ 1) ¢pq*+ (k- 1)2|¢—1|2]}df- whereA is a constant of integration. The eigenvalue, in turn,
is
This identity shows that the contribution of the main har- (N"a)?
monic ¢, to c* is negative(destabilizing, whereasp,; act in c —4(k+ Dk+ D)’

the oppositdstabilizing manner. It remains to be seen, how-
ever, whether the sideband harmonics can stabilize th@nhich, after we take into account E@5), yields the follow-

plasma completely. ing nondimensional growth rate:
Before examining this question, rewrite Eq46)—(49) .
in a more convenient form. Observe that E46) can be Imw=¢lm w(1>:8—k—‘ N'a (57)
rearranged as A(k+2)(k+1)
cr F o This formula is illustrated in Fig. @—one can see that the
—Ak< ) +2x=0 (50)  growth rate increases with i.e., towards the short-wave end

of the spectrum.
where

2y= désy  ddy K+ 1¢+1‘ k- 1¢_1_ 2¢o. (51) B-Anexample: Short disturbances  (large k)

dr dr ' As suggested by the previous example, much of the

Then, it can be verified by inspection that growth occurs at small wavelengths. Therefore, it is interest-
ing to examine thgk— ) limit of eigenvalue problems,
Ax=0. (52 Eqs.(47), (48), (50), (52), (49), (53), and(54).

. . . To do so, solve Eq(52) for y,
In what follows, it is convenient to tregt as an additional *52) X
unknown—thus, we shall need two boundary conditions for x=Ark, (58)
::ﬁrl)?iezrder to find the one at=0, observe that Eq52) whereA is a constant of integration, and introduce new vari-

ables, ¢y, ¢.q, & such that

do=kr'by,  pi =11y, P =k g, (59

x = consirk+ conspr
Hence, to guarantee thgtis finite, we can simply require A
that c=k¢. (60)

x=0 atr=0. (53  Then, substituting Eqg58)—60) into problems, E_qs(4ﬂ,
(49), (50), (49), (53, and (54) and keeping leading-order
To derive a condition at the boundary of the plasma, in turnferms only, we obtain

we shall usey’s definition (51) and the boundary conditions - -
(49) for the other variables—which yields (r¢0> +2Ar=0, ¢ _ ddo
N' dr dr  dr’
2x= L - (54) (62)
dr dr do_y -
=r d)
From now on, our eigenvalue problem will consist of Egs. dr o

(47), (48), (50), and(52) and boundary condition@9), (53), . . .
and (54). Ko, ¥ 2epq, 1" 1 — 0 asr —0, (62
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FIG. 2. The nondimensional growth rate " vs poloidal wave numbék (the dotted line shows the limiting growth ratelas: «). (a) The case of parabolic
density profile(55); (b) the narrow annulus modéb is the ratio of the half-width and radius of the annulus

A~ oA - d;b 1d€2'7 C. An example: A narrow annulus
o= bi1=¢_1=0, 2A=a——F+-—72 atr=a. _ _
dr a dr Assume that the plasma is confined to an annulus formed
63) by two concentric cylinders of rada+Aa. Such configura-

tion is the closest cylindrical analog of the slab model and
The simplified eigenvalue problem, Eq§1) and (63), can yviII allow one to make a more meaningful comparison with

be readily solved for arbitrar{’(r), resulting in It. _ N
In this case, both boundary conditions should be of the
1 no-flow type,
== N yP
depy,  de
$0:¢:1=0, 2)(=$1+il atr=a(l+¢), (66)
Backtracking substitution&5) and (60), we obtain the fol- dr dr
lowing expression for the nondimensional growth rate: where
N'(a
Imou%slmcu(l):E @ : (64) 5:A—a.
Q a

interestingly, it is fully determined by the boundary value of Then, to make thécylindrical) annulus as similar as possible
the density gradien’(r). It should also be mentioned that t0 @ “slab,” we assume the former to be narrow, i.e.,
Eq. (64) agrees with thé&— o limit of formula (57) obtained S<1
for the paraboliadN©)(r). '

In order to compare the cylindrical and slab models, notéNVe shall also assume that the density gradiéhtoes not
that the slab-model equivalent of formuléd) is change much across the annulus, i.e., simply put

Im o~ \er,naX’ (65) N’(r) =N’ = const.
. _ _ _ To take advantage of the smallness&fintroduce the fol-
whereNmax is the maximum density grad!ent. There are.two|owing scaled variables:
differences between Eq$64) and (65). First, the latter is

independent of) (simply because the slab model is not af- Lo r-a -~ ~_ A P
fected by shearless flowsSecond, Eq(64) scales withe, M="as Po= o XZXo P as’
whereas Eq(65) scales withsY?>—i.e., the latter is much

larger than the former. The difference in orders is a result of . c

averaging over stable/unstable regions which has been car- k=ok, € S
ried out when obtaining Eq64).

Finally, note that the applicability of formul@4) is lim-  Observe that the scaling &fimpliesk~ 5 1—which, in fact,
ited by dissipationwhich affects small scalgs includesk< 5 andk> 57! as limiting cases.
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Rewriting problems, Eqg47), (48), (50), (52), and(66), Note also that all results of this paper are based on a
in terms of the new variables and keeping the leading-ordeparticular case of th& X B flow, such that, to leading order,
terms only, we obtain the plasma rotates as a solid. This example allows one to

Py . explore the most robust features of cylindrical plasma con-

L(MJ - K2 ) +2y=0 X _ K2y =0 (67)  figurations, but it will need to be generalized before a com-

N'2\ df? 0 ©odi? ’ parison with real plasmas could be made. Such generaliza-

tion, however, is not straightforwvard—mainly because the
., = diso e inhomogeneity of the magnetic fie{dhich causes the inter-
di2 bi1 = dr b0, change instability is weak. To illustrate the mathematical
implications of this fact, consider a8 x B flow of a “gen-

. - (68) eral” profile V(r) and observe that the leading-order equation

&y _ kng - debo + kfj) (23) coincides with a similar equation in 2D hydrodynamics.
df? T g o Then, generally, it has eith@mstable solutionsor no solu-

tionsat all—as a result, interchange instability is either much

A~ . dfml d[ls_l . weaker than the leading-order hydrodynamic instability, or

$0,¢:1=0, 2x= o o atr=+1. (69 simply does not exist. In fact, exchange instability exists

only if the leading-order equatiof23) has aneutrally stable
Observe that Eq967) and (68) are linear ODEs with con-  solution(which would become unstable in next orders, were
stant coefficients—hence, they can be readily solved. Thene magnetic field be taken into accousthis is what hap-
resulting dispersion relation is a biquadratic equationdor pens in the case of rotation as a solid examined here.
with two unstable and two stable solutions. The coefficients  Apart from this particular case, there seems to be only
of this equation are extremely bulky, and we shall not preseniwo instances, where the leading-order problem may have
them here—instead, its solutiggrowth rate versus poloidal neutrally stable solutions.
wave numberis plotted in Fig. 2b). One can see that, unlike (1) Assume that the profile of a& X B flow is almost
the previous cases, the most unstable disturbance has a finitgear, but with a small correction,
wavelength(it is comparable to the width of the annulus

Finally, when comparing the slab model with cylindrical

annulus, observe that the former has infinitely many modes, V() = Qr +e?V@(r).
whereas the latter has only two modese of these has odd,
and the other one even, spatial structule addition, the
growth rate of instability in a cylindrical annulus decrease

with the angular velocity) (as mentioned befoyewhereas the asymptotic equation&6)—(48). In other words, even

the slab model simply does not invol¢&, or any other pa-  gma)| deviation from rotation as a solid may affect strongly
rameter analogous to it. A similar effect has been observed i, stability of plasma.

Ref. 12: shearless flows weaken the instability of ion tem- (2) Another less obvious example arises in cases where
perature gradient modes in toroidal and helical configurav(r) has a maximum. As shown for similar probleig?

tions, but not in the slab one. extrema of the velocity profile can capture disturbar(besh
stable and unstableNote also that local maxima of the ra-

VI. CONCLUDING REMARKS dial electric filed(and, consequently, those of the poloidal
motion) have indeed been observed experimentage Ref.

Thus, we have examined the effect of cylindricity on 15).

interchange instability in a magnetized plasma. Assuming Finally, the present results can be extended to include

that the flow is close to axisymmetric, we calculated thetemperature variations. It should be noted, however, that the

instability’s parameters and compared them to those calcuequation governing temperature is very much similar to that

lated through the so-called slé&Bartesian model. governing density, and we expect that the temperature effects

First, if the latter is applied to the outboard region of thewill not change the results too much.

tokamak(where the gradient of the plasma’s density and that

of the magnetic field are of the same sigdisturbances re- ;A. B. Hassam, Phys. Plasmd 3882(1999.

main unstable at all times. In the cylindrical model, on the 3\'3/- ‘,(IV TI?”%' Ff\le"' Mgd' Phydszz' JlO? (FZZOOQ' Bhvs. PladBE0TS

other hand, thee X B flow carries disturbances around the 2'00alf n. 3 Nyeander, and J. Juul Rasmussen, Phys. Plad

cylinder, and they alternate between the unstable and stabl&nother mechanism connecting the stable and unstable regions is based on

regions. Naturally, this effect weakens the instability, and the motion_ of particles ak_)ng th(_e magnetic fielq Iimm@ich_are helices on

also makes s growth rate scale Wl where() Is the %25 % The mechensy il ol be eanied v 1 pever

angular velocity of thée X B flow. Second, in the cylindrical s | “viller, . L. Waelbroeck, A. B. Hassam, and R. E. Waltz, Phys.

model, the main harmonigwith a poloidal wave numbek) Plasmas2, 3676(1995.

interacts with the sideband wavésith poloidal wave num- 7J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London, Ser. A

bersk+ 1),_and this interactipn is also of stabilizing nature— 856V5\/_1C(§§:3r" 3. B. Taylor, and H. R. Wilson, Phys. Rev. L@@, 1803

however, in all cases considered, plasma would not become;gg3.

completelystable. °D. C. Montgomery, Phys. Plasmag 4785 (2000.

Then, the leading-order problem should remain as in this
Spaper, wherea¥?(r) will appear in a modified version of
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