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Impact of a shearless flow and cylindricity on interchange instability
in magnetized plasma
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The stability of magnetically confined plasmas is sometimes examined using the so-called “slab”
model, where the toroidal geometry of the problem is approximated locally by the Cartesian one. In
the present paper, asmore accurated cylindrical approximation is considered and shown to yield
results which are qualitatively different from those of the slab model. In particular, if the slab model
is applied to the outboard region of the tokamakswhere the gradient of the plasma’s density and that
of the magnetic field are of the same signd, disturbances remain unstable at all times. In the
cylindrical model, on the other hand, theE3B flow carries disturbances around the cylinder and
they alternate between the unstable and stable regions. Naturally, this reduces the growth rate of
instability and makes it dependent on the angular velocity of the flow. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1886830g
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I. INTRODUCTION

Interchange instability plays a crucial role in the dyna
ics of plasma in the outboard region of a tokamak, where
gradient of the plasma density and that of the magnetic
are of opposite signs. The simplest way to examine
based on the so-called “slab model”se.g., Refs 1–3d, where
the toroidal geometry of a tokamak is approximated by
Cartesian one. Then, choosing the region with the maxim
density gradient and describing it locally by the slab mo
one could expect to reliably calculate the instability’s gro
rate.

It should be noted, however, that the slab model has
shortcomings. First, the toroidal geometry of the “real” pr
lem implies that theE3B flow does not allow the distu
bances to remain in the unstablesoutboardd region
indefinitely—instead, they alternate between the stable
unstable regions4 ssee Fig. 1d. This effect should noticeab
weaken the instability, just as it does for ballooning insta
ties in toroidal plasma.5,6 Second, the joint effect of toroid
geometry and nonuniform magnetic field makes the prob
inhomogeneous in the poloidal direction—which, in tu
makes disturbances with different poloidal wave number
teract.

Clearly, the above effects are not described by the
tesian slab model and, to examine them, one could as
the full toroidal geometrysas has been done in numero
other cases where the Cartesian geometry is insufficie
see, for example, Refs. 5–8d. In the present case, howev
we can use the simpler cylindrical approximation. Inde
since the aspect ratio of real tokamaks is largesi.e., the ra
dius of the tokamak torus is much larger than the radius o
cross sectiond, we can approximate the torus by a cylind

In the following section of this paper, we shall formul
a cylindrical model of interchange instability and, in Sec.
examine the structure of steadyE3B flows swhich can be
assumed almost axisymmetric, perturbed by weakly inho
geneous magnetic fieldd. In Sec. IV, we shall consider th

simplest particular case, where theE3B flow, to leading
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order, corresponds to solid-body rotation. Assuming tha
inhomogeneity of the magnetic field is weak, we shall de
a set of linear ordinary differential equationssODEsd de-
scribing the stability of such steady states. Finally, in Se
we shall consider examples where this set can be s
analytically, and compare the results to those of the
model.

II. THE GOVERNING EQUATIONS

Consider pressure driven interchange motion in a m
netized plasma. Neglecting temperature fluctuationsswhich
will be briefly discussed in Sec. VId, we shall characteriz
the plasma by the potentialf* and ion concentrationn* sthe
dimensional variables are marked with asterisksd. The corre
sponding nondimensional variables are

f =
e

Tf* , n =
n*

N − 1,

wheree is the elementary charge, andN andT are the mea
concentration and temperature, respectively. The nondi
sional magnetic field, in turn, is given by

B =
B*

B ,

whereB is the characteristic value ofuB* u.
Aiming to test the cylindrical approximation of a tor

dal plasma, we consider a cross section of the torusssee Fig
1d and introduce the local Cartesian coordinatessx* ,y* ,z*d,
with thez* axis being perpendicular to the cross section.
corresponding nondimensional coordinates and time
given by

sx,y,zd =
sx* ,y* ,z*d

r
, t = vcit* ,
where

© 2005 American Institute of Physics4-1
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r =
sT/mid1/2

vci
, vci =

eB
mi

,

andmi is the mass of ions.
In what follows, we shall assume that the aspect rat

the tokamak is large, i.e., radiusR of the torus “filled” by
plasma is much larger than the radiusa of its cross
section—in which case the torus can be approximated
cylinder. Accordingly, within the cross section chosen,
magnetic field can be approximated by a constant value
a weak linear dependence onx, i.e.,

B = s1 − «xdz, s1d

wherez is the unit vector directed along thez axis and« is a
small parameter characterizing the decay of the mag
field with distance from the center of the torussin terms of
the dimensional parameters,

« = −
rB8

B ,

whereB8 is the characteristic gradient of the magnetic fi
at the cross-section chosend.

We shall also use the flute-mode approximation, i.e.
sume that f and n do not depend on the toroid
coordinate—in terms of cylindrical variables, this means
f andn are independent ofz. Assuming also thatn is small
si.e., n* is close to its mean valueNd, we shall describe th
plasma’s dynamics by the following equationsse.g., Ref. 3d:

]n

]t
+ hf,nj + Ksn − fd = 0,

s2d
]¹2f

]t
+ hf,¹2fj + Ksnd = 0,

where

¹2f =
]2f

]x2 +
]2f

]y2 , hf,nj =
]f

]x

]n

]y
−

]f

]y

]n

]x
,

FIG. 1. Formulation of the problem:sad toroidal model,sbd slab model, an
scd cylindrical model.
and the curvature operatorK is given by
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K = − = ·
B 3 =

B2 .

Equationss2d describe coupling of the potential energy of
pressure field to the plasma’s kinetic energy, due the c
ture of the magnetic field—which gives rise to intercha
instability.

Given in Eq.s1d, the curvature operator can be redu
to

K = «
]

]y
+ Os«2d, s3d

with « playing the role of the nondimensional curvaturB
drift.

Having in mind the cylindrical geometry of the proble
we shall rewrite Eqs.s2d and s3d in terms of polar coord
natessr ,ud,

r
]n

]t
+

]f

]r

]n

]u
−

]f

]u

]n

]r
+ «FS ]f

]r
−

]n

]r
Dr sinu

+ S ]f

]u
−

]n

]u
DcosuG = 0, s4d

r
]¹2f

]t
+

]f

]r

]¹2f

]u
−

]f

]u

]¹2f

]r

− «S ]n

]r
r sinu +

]n

]u
cosuD = 0, s5d

where

¹2f =
1

r

]

]r
Sr

]f

]r
D +

1

r2

]2f

]u2 .

Equationss4d and s5d should be supplemented by the us
regularity conditions at the origin,

]f

]u
= 0,

]n

]u
= 0 at r = 0, s6d

and a condition at the plasma’s boundary. Following Re
ssee also Ref. 10d, we shall neglect the effect of the scra
off layer and impose the wall boundary condition,

]f

]u
= 0 at r = a, s7d

where it should be recalled thata is the nondimensional r
dius of the torus’s cross section.

III. STEADY STATES

Assume that the solution does not depend on time,

nsr,u,td = Nsr,ud, fsr,u,td = Fsr,ud,

in which case Eqs.s4d and s5d yield

]F

]r

]N

]u
−

]F

]u

]N

]r
+ «FS ]F

]r
−

]N

]r
Dr sinu

+ S ]F
−

]NDcosuG = 0, s8d

]u ]u
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]F

]r

]¹2F

]u
−

]F

]u

]¹2F

]r
− «S ]N

]r
r sinu +

]N

]u
cosuD = 0.

s9d

It can be verified by inspection that Eqs.s8d and s9d are
consistent with the following ansatz:

Nsr,ud = Ns0dsrd + «Ns1dsrdcosu + «2Ns2dsrdcos 2u + ¯ ,

s10d

Fsr,ud = Fs0dsrd + «Fs1dsrdcosu + «2Fs2dsrdcos 2u + ¯ ,

s11d

i.e., to leading order, the density and flow are assumed
symmetric swhich agrees with what is observed in r
tokamaks—see Ref. 11d. Then, substituting Eqs.s10d and
s11d into Eqs.s8d ands9d, one can show thatNs0d andFs0d are
arbitrary, whereasNs1dsrd andFs1dsrd satisfy

−
dFs0d

dr
Ns1d + Fs1ddNs0d

dr
+ rSdFs0d

dr
−

dNs0d

dr
D = 0,

−
dFs0d

dr
F1

r

d

dr
Sr

dFs1d

dr
D −

1

r2Fs1dG
+ Fs1d d

dr
F1

r

d

dr
srVdG − r

dNs0d

dr
= 0.

These equations can be rearranged as follows:

VNs1d − Fs1dN8 = rsV − N8d, s12d

VD1Fs1d − Fs1dD1V = − rN8, s13d

where

V =
dFs0d

dr
, N8 =

dNs0d

dr
s14d

are the swirl velocity of theE3B flow and the density gra
dient respectively, and the operatorD1 is

D1 =
d2

dr2 +
1

r

d

dr
−

1

r2 . s15d

The boundary conditions forNs1dsrd and Fs1dsrd can be ob
tained from the general boundary conditionss6d and s7d,

Ns1d,Fs1d = 0 at r = 0,a. s16d

The boundary-value problem, Eqs.s12d, s13d, and s16d, can
be readily solved, i.e.,Ns1d andFs1d can be related toN8 and
V—in what follows, however, this solution will not b
needed. We shall only consider the following particular c

V = Vr , s17d

which corresponds to solid-body rotation with angular ve
ity V. In this case, Eq.s13d reduces to

D1Fs1d = −
N8

V
. s18d
This identity will be used in the following section.
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IV. DISTURBANCES

In what follows, we shall derive an eigenvalue prob
describing the stability of steady states with respect to s
disturbances. We shall confine ourselves to particular
s17d which corresponds to solid-body rotation, with the d
sity gradientN8srd still remaining arbitrary. Then, the orig
nal two-dimensionals2Dd problem will be reduced to
smuch simplerd 1D one. Overall, the model based on so
body rotation allows one to explore the most robust fea
of cylindrical plasma configurations, whereas more gen
models will be briefly discussed in Sec. VI.

Note also that, even for cases17d, the algebra involved
so cumbersome that nonmathematically minded rea
might prefer to jump to the beginning of Sec. IV B, wh
the asymptotic results are summarized.

A. The linearized stability problem

To examine the stability of a steady statesN,Fd with
respect to small disturbances, we seek a solution in the

nsr,u,td = Nsr,ud + ñsr,u,td,
s19d

fsx,y,td = Fsr,ud + f̃sr,u,td,

where the tilded variables represent the disturbance. S
tuting Eq.s19d into Eqs.s4d ands5d and linearizing the latte
we assume that the disturbance depends in time har
cally,

ñsr,u,td = ñ̃sr,ude−ivt, f̃sr,u,td = f̃̃sr,ude−ivt

and obtainsdouble tildes omittedd

− ivrn +
]F

]r

]n

]u
+

]f

]r

]N

]u
−

]F

]u

]n

]r
−

]f

]u

]N

]r

+ «FS ]f

]r
−

]n

]r
Dr sinu + S ]f

]u
−

]n

]u
DcosuG = 0,

s20d

− ivr¹2f +
]F

]r

]¹2f

]u
+

]f

]r

]¹2F

]u
−

]F

]u

]¹2f

]r

−
]f

]u

]¹2F

]r
− «S ]n

]r
r sinu +

]n

]u
cosuD = 0. s21d

Equationss20d ands21d and boundary conditionss6d ands7d
form an eigenvalue problem, wherev is an eigenvalue an
sn,fd are the eigenfunctions. If Imv.0, the disturbance
unstable.

Assuming that« is a small parameter, we seek a solu

in the form
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n = ns0d + «ns1d + ¯ , f = fs0d + «fs1d + ¯ ,

v = vs0d + «vs1d + ¯ .

Recall also that the steady statesN,Fd is given by expres
sions s10d and s11d. Then, to leading order, Eqs.s20d and
s21d yield

− ivs0drns0d + V
]ns0d

]u
− N8

]fs0d

]u
= 0, s22d

− ivs0dr¹2fs0d + V
]¹2fs0d

]u
−

]fs0d

]u

d

dr
F1

r

d

dr
srVdG = 0,

s23d

whereV andN8 are defined by Eq.s14d. In what follows, we
shall confine ourselves to particular cases17d. Then, the las
term in Eq. s23d vanishes, and Eqs.s22d and s23d can be
readily solved—assuming that the solution is periodic iu,
we obtain

fs0dsr,ud = 0, ns0dsr,ud = n0
s0dsrdeiku,

vs0d = kV, s24d

where the integerk is the poloidal wave number andn0
s0dsrd is

an undetermined function describing the radial structur
the disturbance. Thus, the leading-order frequency turne
to be realsstabled—in fact, expressions24d shows that, to
leading order, the disturbance is carried around the cyl
by the flow.

In the next order, Eqs.s20d, s21d, s10d, s11d, and s17d
yield

VrS− ik +
]

]u
Dns1d − N8

]fs1d

]u
= ivs1dr n0

s0deiku

− FsFs1d − rd
dn0

s0d

dr
sinu + SdFs1d

dr
− 1Dn0

s0dik cosuGeiku,

s25d

VrS− ik +
]

]u
D¹2fs1d = Fdn0

s0d

dr
r sinu + n0

s0dik cosuGeiku.

s26d

We seek a solution in the form

fs1d = f+1
s1dsrdeisk+1du + f0

s1dsrdeiku + f−1
s1dsrdeisk−1du,

ns1d = n+1
s1dsrdeisk+1du + n0

s1dsrdeiku + n−1
s1dsrdeisk−1du,

where f±1,0
s1d srd and n±1,0

s1d srd are undetermined function
Then, Eqs.s25d and s26d yield

− vs1dn0
s0d −

1

r
N8kf0

s1d = 0, s27d

Vn+1
s1d −

1

r
N8sk + 1df+1

s1d +
1

2
Fk

r
SdFs1d

dr
− 1Dn0

s0d

− S1
Fs1d − 1Ddn0

s0dG = 0, s28d

r dr
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− Vn−1
s1d −

1

r
N8sk − 1df−1

s1d +
1

2
Fk

r
SdFs1d

dr
− 1Dn0

s0d

+ S1

r
Fs1d − 1Ddn0

s0d

dr
G = 0, s29d

VDk+1f+1
s1d +

1

2
Sdn0

s0d

dr
−

k

r
n0

s0dD = 0, s30d

− VDk−1f−1
s1d −

1

2
Sdn0

s0d

dr
+

k

r
n0

s0dD = 0, s31d

where the operatorDk is given by

Dk =
d2

dr2 +
1

r

d

dr
−

k2

r2

ffor k=1, this definition coincides with that ofD1—see Eq
s15dg.

In the next order, we shall need only the equation fof,
which can be written in the form

VrS− ik +
]

]u
D¹2fs2d = A0e

iku + A+1e
isk+1du + A−1e

isk−1du

+ A+2e
isk+2du + A−2e

isk−2du, s32d

where

A0 = − ivs1dDkf0
s1d

+
i

2
SFs1ddDk+1f+1

s1d

dr
−

df+1
s1d

dr
D1Fs1d − r

dn+1
s1d

dr
D

+
isk + 1d

2
SdFs1d

dr
Dk+1f−1

s1d −
dD1Fs1d

dr
f+1

s1d − n+1
s1dD

−
i

2
SFs1ddDk−1f−1

s1d

dr
−

df−1
s1d

dr
D1Fs1d − r

dn−1
s1d

dr
D

+
isk − 1d

2
SdFs1d

dr
Dk−1f−1

s1d −
dD1Fs1d

dr
f−1

s1d − n−1
s1dD

s33d

and the expressions forA±1 and A±2 will not be needed
Obviously, Eq.s32d has a solution periodic inu only if the
“resonant” termsthe one involvingeikud vanishes, i.e.,

A0 = 0. s34d

Equationss27d–s31d ands34d form a closed set of ODEs f
n0

s0d , n±1
s1d , f0

s1d , f±1
s1d.

Observe that some of our equations involvesas a coef
ficientd the correctionFs1d to the steady state, for which w
have no explicit expression. It turns out, however, thatFs1d

can be eliminated.
To do so, use identitys18d to rearrange Eqs.s33d and
s34d in the form
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− 2vs1dVrDkf0
s1d + kSFs1d

r
+

dFs1d

dr
DSdn0

s0d

dr
−

1

r
n0

s0dD
+ N8Sdf+1

s1d

dr
−

df−1
s1d

dr
D +

dN8

dr
fsk + 1df+1

s1d

+ sk − 1df−1
s1dg − Vr

d

dr
sn+1

s1d − n−1
s1dd

− Vfksn+1
s1d + n−1

s1dd + n+1
s1d − n−1

s1dg = 0. s35d

Then, use Eqs.s27d–s29d to eliminaten0
s0d , n±1

s1d from Eqs.
s30d, s31d, and s35d. Taking into account, where necess
Eqs.s18d, we obtain a closed set forf0

s1d , f±1
s1d:

2Vvs1d

k

r2

N8
Dkf0

s1d −
2kN8

2Vvs1df0
s1d + r

d

dr
sf+1

s1d + f−1
s1dd

+ sk + 1df+1
s1d − sk − 1df−1

s1d = 0, s36d

2Vvs1d

k
Dk+1f+1

s1d −
d

dr
SN8f0

s1d

r
D +

k

r2N8f0
s1d = 0, s37d

2Vvs1d

k
Dk−1f−1

s1d −
d

dr
SN8f0

s1d

r
D −

k

r2N8f0
s1d = 0. s38d

Note that Eqs.s36d–s38d involve only the leading-order p
rameters of the steady statesN8 andVd—i.e., Fs1d has bee
eliminated.

The boundary conditions forf0
s1d and f±1

s1d follow from
the original boundary conditionss6d and s7d,

f0
s1d,f±1

s1d = 0 at r = 0,a. s39d

The asymptotic eigenvalue problem, Eqs.s36d–s39d, involves
functions of a single variable and is, therefore, much sim
than the two-dimensional original problem, Eqs.s20d, s21d,
s6d, ands7d.

B. Summary of the asymptotic results

Thus, we have examined a problem, Eqs.s20d and s21d
and s6d, s7d, which describes the stability of a steady s
with potential Fsr ,ud and densityNsr ,ud with respect to
linear harmonic disturbances. Since the inhomogeneity o
magnetic field is weak, the functionsFsr ,ud andNsr ,ud are
almost axisymmetric,

Fsr,ud = Fs0dsrd + Os«d, Nsr,ud = Ns0dsrd + Os«d,

and we have also assumed that, to leading order, the p
rotates as a solid,

Fs0d =
1

2
Vr2,

whereV is the angular frequency.
In this case, the density variation induced by the dis

bance has the form

ñsu,r,td = n0
s0dsrdeiku−ivt + Os«d, s40d

wherev andk are the frequency and poloidal wave numb
and n0

s0dsrd describes the disturbance’s radial structure;

frequency of the disturbance is given by

Downloaded 05 Jul 2005 to 129.2.106.16. Redistribution subject to AIP lic
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v = Vk + «vs1d + Os«2d s41d

si.e., if Im vs1d.0, the disturbance is unstabled; the
disturbance-induced variation of the potential is

f̃su,r,td = «ff+1
s1dsrdeisk+1du + f0

s1dsrdeiku + f−1
s1d

3srdeisk−1duge−ivt + Os«2d, s42d

where f0
s1d is related to the disturbance-induced den

variations by

n0
s0dsrd = −

k

vs1dr
f0

s1dsrd. s43d

Finally, the functionsf0srd , f±1srd and the first-order fre
quency vs1d satisfy eigenvalue problem, Eqs.s36d–s39d,
where

N8srd =
dNs0d

dr

is the steady state’s density gradient.
Thus, the eigenvalue of problems36d–s39d determine

the stability properties of the steady statefthrough formula
s41dg, and the eigenfunctions determine the spatial stru
of the disturbancefthrough formulass40d, s42d, ands43dg.

Before we proceed, rewrite Eqs.s36d–s39d in terms of
new variables,

f+1 = cf+1
s1d, f−1 = cf−1

s1d, f0 =
N8

r
f0

s1d, s44d

where

c =
2Vvs1d

k
. s45d

Substitution of Eq.s44d into Eqs.s36d–s38d yields

c2r

N8
DkS rf0

N8
D − 2f0 +

d

dr
sf+1 + f−1d +

k + 1

r
f+1

−
k − 1

r
f−1 = 0, s46d

rDk+1f+1 = r
df0

dr
− kf0, s47d

rDk−1f−1 = r
df0

dr
+ kf0, s48d

f0,f±1 = 0 at r = 0,a. s49d

V. EXAMPLES

First of all, observe thatvs1d does not appear in problem
s46d–s49d by itself, but only in combination withV fsee Eq
s45dg—hence, the growth rate, Imvs1d, is a reciprocal of th
angular velocityV of the srotationald E3B flow. It should
be emphasized that weakening of interchange instability

to a nonsheared flow isnot described by the slab model.

ense or copyright, see http://pop.aip.org/pop/copyright.jsp
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Note also that, in addition to the main harmonicf0,
problemss46d–s49d involve the sideband harmonicsf±1. To
find out how these effect the stability, consider

E
0

a

frf0
*s46d − f+1s47d* − f−1s48d*gdr,

where the asterisk denotes complex conjugate. After stra
forward algebra involving integration by parts and the us
boundary conditionss49d, we obtain

c2E
0

a FrU d

dr
S rf0

N8
DU2

+
k2

r
U rf0

N8
U2Gdr

=E
0

aH− 2r uf0u2 + rSUdf+1

dr
U2

+ Udf−1

dr
U2D

+
1

r
fsk + 1d2uf+1u2 + sk − 1d2uf−1u2gJdr.

This identity shows that the contribution of the main h
monicf0 to c2 is negativesdestabilizingd, whereasf±1 act in
the oppositesstabilizingd manner. It remains to be seen, ho
ever, whether the sideband harmonics can stabilize
plasma completely.

Before examining this question, rewrite Eqs.s46d–s49d
in a more convenient form. Observe that Eq.s46d can be
rearranged as

c2r

N8
DkS rf0

N8
D + 2x = 0, s50d

where

2x =
df+1

dr
+

df−1

dr
+

k + 1

r
f+1 −

k − 1

r
f−1 − 2f0. s51d

Then, it can be verified by inspection that

Dkx = 0. s52d

In what follows, it is convenient to treatx as an additiona
unknown—thus, we shall need two boundary conditions
it. In order to find the one atr =0, observe that Eq.s52d
implies

x = const1r
k + const2r

−k.

Hence, to guarantee thatx is finite, we can simply requir
that

x = 0 at r = 0. s53d

To derive a condition at the boundary of the plasma, in t
we shall usex’s definition s51d and the boundary conditio
s49d for the other variables—which yields

2x =
df+1

dr
+

df−1

dr
at r = a. s54d

From now on, our eigenvalue problem will consist of E
s47d, s48d, s50d, ands52d and boundary conditionss49d, s53d,

and s54d.
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A. An example: Parabolic density profile

Consider a particular case, where the leading-order
sity Ns0d depends onr parabolically—in terms ofN8, this
corresponds to

N8srd = N9r , s55d

whereN9 is a constant. Then, eigenvalue problem, Eqs.s47d,
s48d, s50d, s52d, s49d, s53d, and s54d, can be solved exact
and yields the following expressions for the eigenfunctio

x = Ark, f0 =
AN92rksa2 − r2d

2sk + 1dc2 ,

f+1 = −
AN92rk+1sr2 − a2d
4sk + 1dsk + 2dc2 , f−1 = −

AN92rk−1sr2 − a2d2

8sk + 1dc2 ,

s56d

whereA is a constant of integration. The eigenvalue, in t
is

c2 = −
sN9ad2

4sk + 2dsk + 1d
,

which, after we take into account Eq.s45d, yields the follow-
ing nondimensional growth rate:

Im v < « Im vs1d =
«k

4Îsk + 2dsk + 1d
UN9a

V
U . s57d

This formula is illustrated in Fig. 2sad—one can see that t
growth rate increases withk, i.e., towards the short-wave e
of the spectrum.

B. An example: Short disturbances „large k…

As suggested by the previous example, much of
growth occurs at small wavelengths. Therefore, it is inte
ing to examine thesk→`d limit of eigenvalue problem
Eqs.s47d, s48d, s50d, s52d, s49d, s53d, ands54d.

To do so, solve Eq.s52d for x,

x = Ark, s58d

whereA is a constant of integration, and introduce new v
ables,f̂0, f̂±1, ĉ, such that

f0 = krkf̂0, f+1 = rk+1f̂+1, f−1 = krk−1f̂−1, s59d

c = k−1ĉ. s60d

Then, substituting Eqs.s58d–s60d into problems, Eqs.s47d,
s48d, s50d, s49d, s53d, and s54d and keeping leading-ord
terms only, we obtain

2ĉ2r

N8

d

dr
S rf̂0

N8
D + 2Ar = 0, 2

df̂+1

dr
=

df̂0

dr
,

s61d
df̂−1

dr
= r2f̂0.
rkf̂0,r
k+1f̂+1,r

k−1f̂−1 → 0 asr → 0, s62d

ense or copyright, see http://pop.aip.org/pop/copyright.jsp
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f̂0 = f̂+1 = f̂−1 = 0, 2A = a
df̂+1

dr
+

1

a

df̂−1

dr
at r = a.

s63d

The simplified eigenvalue problem, Eqs.s61d and s63d, can
be readily solved for arbitraryN8srd, resulting in

ĉ2 = −
1

4
N8sad.

Backtracking substitutionss45d and s60d, we obtain the fol
lowing expression for the nondimensional growth rate:

Im v < « Im vs1d =
«

4
UN8sad

V
U; s64d

interestingly, it is fully determined by the boundary value
the density gradientN8srd. It should also be mentioned th
Eq. s64d agrees with thek→` limit of formula s57d obtained
for the parabolicNs0dsrd.

In order to compare the cylindrical and slab models,
that the slab-model equivalent of formulas64d is

Im v < Î«Nmax8 , s65d

whereNmax8 is the maximum density gradient. There are
differences between Eqs.s64d and s65d. First, the latter i
independent ofV ssimply because the slab model is not
fected by shearless flowsd. Second, Eq.s64d scales with«,
whereas Eq.s65d scales with«1/2—i.e., the latter is muc
larger than the former. The difference in orders is a resu
averaging over stable/unstable regions which has been
ried out when obtaining Eq.s64d.

Finally, note that the applicability of formulas64d is lim-

FIG. 2. The nondimensional growth rate Imvs1d vs poloidal wave numberk s
density profiles55d; sbd the narrow annulus modelsd is the ratio of the ha
ited by dissipationswhich affects small scalesd.
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C. An example: A narrow annulus

Assume that the plasma is confined to an annulus fo
by two concentric cylinders of radiia±Da. Such configura
tion is the closest cylindrical analog of the slab model
will allow one to make a more meaningful comparison w
it.

In this case, both boundary conditions should be o
no-flow type,

f0,f±1 = 0, 2x =
df+1

dr
+

df−1

dr
at r = as1 ± dd, s66d

where

d =
Da

a
.

Then, to make thescylindricald annulus as similar as possi
to a “slab,” we assume the former to be narrow, i.e.,

d ! 1.

We shall also assume that the density gradientN8 does no
change much across the annulus, i.e., simply put

N8srd = N8 = const.

To take advantage of the smallness ofd, introduce the fol
lowing scaled variables:

r̂ =
r − a

ad
, f̂0 = f0, x̂ = x, f̂±1 =

f±

ad
,

k̂ = dk, ĉ =
c

d
.

Observe that the scaling ofk impliesk,d−1—which, in fact,

otted line shows the limiting growth rate ask→`d. sad The case of parabol
dth and radius of the annulusd.
the d
includesk!d−1 andk@d−1 as limiting cases.

ense or copyright, see http://pop.aip.org/pop/copyright.jsp
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Rewriting problems, Eqs.s47d, s48d, s50d, s52d, ands66d,
in terms of the new variables and keeping the leading-o
terms only, we obtain

ĉ2

N82Sd2f̂0

dr̂2 − k2f̂0D + 2x = 0,
d2x̂

dr̂2 − k2x̂ = 0, s67d

d2f̂+1

dr̂2 − k2f̂+1 =
df̂0

dr̂
− kf̂0,

s68d
d2f̂−1

dr̂2 − k2f̂−1 =
df̂0

dr̂
+ kf̂0,

f̂0,f̂±1 = 0, 2x̂ =
df̂+1

dr̂
+

df̂−1

dr̂
at r̂ = ± 1. s69d

Observe that Eqs.s67d and s68d are linear ODEs with con
stant coefficients—hence, they can be readily solved.
resulting dispersion relation is a biquadratic equation fĉ
with two unstable and two stable solutions. The coeffici
of this equation are extremely bulky, and we shall not pre
them here—instead, its solutionsgrowth rate versus poloid
wave numberd is plotted in Fig. 2sbd. One can see that, unli
the previous cases, the most unstable disturbance has a
wavelengthsit is comparable to the width of the annulusd.

Finally, when comparing the slab model with cylindri
annulus, observe that the former has infinitely many mo
whereas the latter has only two modessone of these has od
and the other one even, spatial structured. In addition, the
growth rate of instability in a cylindrical annulus decrea
with the angular velocityV sas mentioned befored, whereas
the slab model simply does not involveV, or any other pa
rameter analogous to it. A similar effect has been observ
Ref. 12: shearless flows weaken the instability of ion t
perature gradient modes in toroidal and helical config
tions, but not in the slab one.

VI. CONCLUDING REMARKS

Thus, we have examined the effect of cylindricity
interchange instability in a magnetized plasma. Assum
that the flow is close to axisymmetric, we calculated
instability’s parameters and compared them to those c
lated through the so-called slabsCartesiand model.

First, if the latter is applied to the outboard region of
tokamakswhere the gradient of the plasma’s density and
of the magnetic field are of the same signd, disturbances re
main unstable at all times. In the cylindrical model, on
other hand, theE3B flow carries disturbances around
cylinder, and they alternate between the unstable and s
regions. Naturally, this effect weakens the instability,
also makes its growth rate scale withV−1, whereV is the
angular velocity of theE3B flow. Second, in the cylindrica
model, the main harmonicswith a poloidal wave numberkd
interacts with the sideband wavesswith poloidal wave num
bersk±1d, and this interaction is also of stabilizing nature
however, in all cases considered, plasma would not be

completelystable.
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Note also that all results of this paper are based
particular case of theE3B flow, such that, to leading orde
the plasma rotates as a solid. This example allows on
explore the most robust features of cylindrical plasma
figurations, but it will need to be generalized before a c
parison with real plasmas could be made. Such gener
tion, however, is not straightforward—mainly because
inhomogeneity of the magnetic fieldswhich causes the inte
change instabilityd is weak. To illustrate the mathemati
implications of this fact, consider anE3B flow of a “gen-
eral” profileVsrd and observe that the leading-order equa
s23d coincides with a similar equation in 2D hydrodynam
Then, generally, it has eitherunstable solutions, or no solu-
tionsat all—as a result, interchange instability is either m
weaker than the leading-order hydrodynamic instability
simply does not exist. In fact, exchange instability ex
only if the leading-order equations23d has aneutrally stable
solutionswhich would become unstable in next orders, w
the magnetic field be taken into accountd—this is what hap
pens in the case of rotation as a solid examined here.

Apart from this particular case, there seems to be
two instances, where the leading-order problem may
neutrally stable solutions.

s1d Assume that the profile of anE3B flow is almos
linear, but with a small correction,

Vsrd = Vr + «2Vs2dsrd.

Then, the leading-order problem should remain as in
paper, whereasVs2dsrd will appear in a modified version
the asymptotic equationss46d–s48d. In other words, eve
small deviation from rotation as a solid may affect stron
the stability of plasma.

s2d Another less obvious example arises in cases w
Vsrd has a maximum. As shown for similar problems,13,14

extrema of the velocity profile can capture disturbancessboth
stable and unstabled. Note also that local maxima of the
dial electric filedsand, consequently, those of the polo
motiond have indeed been observed experimentallyssee Ref
15d.

Finally, the present results can be extended to inc
temperature variations. It should be noted, however, tha
equation governing temperature is very much similar to
governing density, and we expect that the temperature e
will not change the results too much.
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