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ABSTRACT

It is argued that the van der Waals force exerted by the liquid and vapor/air on the molecules escaping from one phase into the other strongly
affects the characteristics of evaporation. This is shown using two distinct descriptions of the van der Waals force: the Vlasov and diffuse-
interface models, each of which is applied to two distinct settings: a liquid evaporating into its vapor and a liquid evaporating into air (in all
cases, the vapor-to-liquid density ratio is small). For the former setting, the results are consistent with the Hertz–Knudsen law (HKL), but the
evaporation/condensation probability is very small (in the classical HKL, it is order one). For the latter setting, the dependence of the evapo-
ration rate on the difference between the saturated vapor pressure and its actual value is shown to be nonlinear (whereas the classical HKL
predicts a linear dependence). The difference between the two settings indicates that the van der Waals force exerted by the air strongly affects
evaporation (contrary to the general assumption that the ambient gas is unimportant). Finally, the diffuse-interface model is shown to be
inapplicable in a narrow region at the outskirts of the interface—as a result, it noticeably underestimates the evaporative flux by comparison
with the (more accurate) Vlasov model.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192771

NOMENCATURE

DIM Diffuse-interface model
HKL Hertz–Knudsen law

LJ Lennard–Jones (potential)
vdW van der Waals (force, layer)
VM Vlasov model

I. INTRODUCTION

Evaporation is fundamental to numerous environmental, biologi-
cal, and industrial processes, and the Hertz–Knudsen law (HKL) is our
primary tool for modeling it. This paper argues that the HKL needs to
be modified by taking into account the effect of the van der Waals
force on the evaporative flux.

In its original formulation,1,2 the HKL was based on an assump-
tion that the flux of molecules escaping from a liquid into vapor does
not depend on the vapor pressure—hence, this flux can be calculated
as if the vapor were saturated. Calculating also the flux in the opposite
direction (which does depend on the actual vapor pressure), one can
show that the net evaporative flux is

E ¼
ffiffiffiffiffiffiffi
RT
2p

r
qðv:satÞ � qðvÞ
� �

; (1)

where qðv:satÞ is the saturated vapor density, qðvÞ is the actual density, R
is the specific gas constant, and T is the temperature (assumed, for
simplicity, to be the same in the liquid and vapor).

Expression (1) does not involve a single adjustable parameter and,
thus, is unlikely to be accurate for all liquids under all conditions. To
make it more adaptable, one can assume that some of the escaping mole-
cules bounce back, as do those traveling in the opposite direction. It can
be argued3 that a molecule’s probability of evaporation equals that of
condensation, resulting in the following modification of expression (1):

E ¼ h

ffiffiffiffiffiffiffi
RT
2p

r
qðv:satÞ � qðvÞ
� �

; (2)

where the evaporation/condensation probability h (called also “mass
adjustment coefficient”) depends on T. The amended version of the
HKL still disagrees with some of the available experiments, and those
disagree with each other: for, say, water, the measured values of h vary
between 0.01 and 1 for the same temperature.4,5 There are also several
theoretical models (e.g., Refs. 6–8), but the discord in the experimental
results makes it difficult to choose the most accurate theory.
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The present paper is motivated by an observation that none of the
existing models of evaporation accounts for the van der Waals (vdW)
force. Yet, it is clearly important: it holds the liquid/vapor interface together
(by balancing the pressure gradient due to the density variation)—hence,
should affect the molecules passing through the interface.

It can also be argued that the vdW force makes evaporation of a
liquid into its vapor different from evaporation into air. To understand
why, note that the vdW force exerted by the bulk of the liquid pulls the
escaping molecules back and, thus, impedes evaporation—while the
vapor and air pull them forward and, thus, encourage evaporation. Since
under normal conditions the vapor and air densities differ by orders of
magnitude, the former exerts a much stronger vdW force than the latter.
As a result, evaporation into air should occur much faster than that into
vapor—and this is one of the two main conclusions of the present work.

The other one is less intuitive, but still has important physical
implications. As shown for evaporation into air, the vdW force makes
the dependence of the flux E on the density difference ðqðv:satÞ � qðvÞÞ
nonlinear, whereas the HKL predicts that E � ðqðv:satÞ � qðvÞÞ [see Eq.
(2)]. The two results can be reconciled only if the evaporation/conden-
sation probability h in Eq. (2) depends on qðvÞ. Such a dependence
could explain the above-mentioned discord in the measurements of h
for the same liquid at the same temperature.

The present paper employs two different descriptions of the vdW
force: the Vlasov model and the diffuse-interface model. The former has
been used before to study interfaces,9 contact lines, and liquid films10–12—
but not evaporation; the latter has been applied to evaporation,13–15 but its
connection to the HKL has not been properly explored.

The two models of the vdW force will be used in conjunction
with the isothermal Navier–Stokes equations. This simple framework
is sufficient for demonstrating the importance of long-range intermo-
lecular forces for evaporation in principle, and this is the aim of the
present paper.

In what follows, Secs. II and III examine evaporation of a liquid into
its vapor, Secs. IV and V examine evaporation into air, and Sec. VI explains
why the (alleged) shortcomings of the HKL have not been so far observed
by the experimentalists and researchers working onmolecular dynamics.

Since the material presented in this paper is associated with a
number of bulky specialized terms, several abbreviations will be used.
For future reference, they are listed in Nomenclature.

II. EVAPORATION OF A LIQUID INTO ITS VAPOR:
THE FORMULATION
A. Thermodynamics

A model of phase transitions should account for the fluid’s ther-
modynamic properties. These are described in this subsection, in a
brief but self-consistent manner.

Following,16 one can fully characterize a fluid by setting the
dependence of its specific (per unit mass) internal energy e and
entropy s on the density q and temperature T. The functions eðq;TÞ
and sðq;TÞ are not arbitrary, but are constrained by the so-called
Gibbs fundamental relation, which can be written in the form

@e
@T

¼ T
@s
@T

; (3)

(the equivalence of this equality to the traditional form of the Gibbs
relation is demonstrated in Appendix A of Ref. 17).

Given eðq;TÞ and sðq;TÞ, one can find the pressure pðq;TÞ and
chemical potential Gðq;TÞ via the formulas

p ¼ q2
@e
@q

� T
@s
@q

� �
; (4)

G ¼ @ qeð Þ
@q

� T
@ qsð Þ
@q

: (5)

Equations (4) and (5) imply that

1
q
@p
@q

¼ @G
@q

; (6)

which is the only thermodynamic identity needed in this paper.
An example of pðq;TÞ (often referred to as the equation of state)

is shown in Fig. 1. We observe that the dependence of p on q is non-
monotonic: the states between the origin and local maximum are
vapor and those between the local minimum and infinity, liquid. The
states between the minimum and maximum (those with @p=@q < 0)
are unstable. To understand why, observe that, in this case, a spatially
localized density increase causes a pressure decrease—the resulting
pressure gradient generates an inward flow—which causes a further
density increase—hence, instability.

The saturated vapor density qðv:satÞ and the matching liquid den-
sity qðl:satÞ, for a given temperature T, satisfy the so-called Maxwell
construction—i.e.,

pðqðv:satÞ;TÞ ¼ pðqðl:satÞ;TÞ; (7)

Gðqðv:satÞ;TÞ ¼ Gðqðl:satÞ;TÞ: (8)

Conditions (7) and (8) guarantee that the interface separating the
vapor and liquid is in mechanical and thermodynamic equilibrium,
respectively.

FIG. 1. The pressure p vs density q for the Enskog–Vlasov equation of state (10)
for water at T ¼ 352 �C. The region where the vapor density does not have a
match in the liquid region is shaded (it exists only if T is sufficiently high, so that the
local minimum of the curve p vs q is above the horizontal axis).
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Due to nonmonotonicity of p, the solution of Eqs. (7) and (8) is
not unique. To make it such, we require that the vapor and liquid are
both stable

@pðq;TÞ
@q

> 0 for q ¼ qðl:satÞ; qðv:satÞ:

The general results reported in this paper are illustrated using the so-
called Enskog–Vlasov fluid model, according to which

e ¼ cT � aq; s ¼ c lnT � R lnq� RHðqÞ; (9)

where c is the specific heat capacity of the fluid under consideration.
The first term in e and the first two in s correspond to ideal gas.

The term involving a describes the contribution of the vdW force to
the internal energy, and the function HðqÞ is the non-ideal contribu-
tion to the entropy. Both a andHðqÞ should be fixed by fitting the flu-
id’s equation of state to its empiric shape;17 in the present paper, the
values corresponding to water will be used (see Subsection 1 of
Appendix A). The Enskog–Vlasov fluid model is sufficiently accurate
(as shown in Secs. 8.1–2 of Ref. 17), plus it is consistent with the
Vlasov description of the van derWaals force used in this paper.

Substituting the Enskog–Vlasov expressions (9) into Eqs. (4) and
(5), one obtains

p ¼ T Rqþ q2
dHðqÞ
dq

� �
� aq2; (10)

G ¼ T R ln qþ q
dHðqÞ
dq

þHðqÞ
� �

� 2aqþ � � � ; (11)

where � � � hides the terms in the chemical potential depending only on
T (they cancel out from identity (6) the Maxwell construction, and all
the equations to come).

In the low-density limit, expressions (10) and (11) yield

p � RTq; G � RT lnq as q ! 0: (12)

These asymptotics describe an ideal gas and, thus, are not specific to
the Enskog–Vlasov fluid model.

The first term in expression (10) will be referred to as the thermal
pressure; denoting it by p̂, one obtains

p̂ ¼ pþ aq2: (13)

A similar equality inter-relates the thermal and full chemical potentials

Ĝ ¼ Gþ 2aq: (14)

Equations (13), (14), and (6) imply that

1
q
@p̂
@q

¼ @Ĝ
@q

: (15)

Finally, the low-density asymptotics of the thermal chemical potential
coincides with that of the full chemical potential

Ĝ � RT ln q as q ! 0; (16)

whereas the asymptotic of p̂ will not be needed.

B. The low-temperature limit

Assume that the nondimensional temperature Tnd is small

Tnd ¼ RT
aq

� 1: (17)

This restriction typically applies to all common liquids under normal
conditions; for water between 0 and 100�C, for example, one obtains

0:065�Tnd � 0:082:

The assumption Tnd � 1 implies that the vapor-to-liquid density ratio
is also small—or, to be precise, the smallness of Tnd makes
qðv:satÞ=qðl:satÞ exponentially small (as shown in Ref. 18 for the generic
van der Waals equation of state, but is also true generally). For water
between 0 and 100 �C, for example, one can use the online calculator19

to obtain

4:9� 10�6 �
qðv:satÞ

qðl:satÞ
� 6:2� 10�4:

The assumption qðv:satÞ=qðl:satÞ � 1 underlies all results of this paper.

C. The van der Waals force

Consider a compressible fluid characterized by its density field
qðr; tÞ, where r is the position vector and t, the time. Introduce also
the molecular massm, so that q=m is the number density.

Let the potential of the van de Waals force exerted at a point r by
a molecule located at a point r0 be m2Uðr� r0Þ, where the factor m2 is
introduced for convenience. If the fluid is isotropic, then

UðrÞ ¼ UðrÞ;
where r ¼ jrj. Without loss of generality, one can assume that

U ! 0 as r ! 1:

Strictly speaking, UðrÞ should be determined by examining quantum
interaction of the fluid’s molecules. In practice, however, microscopic
characteristics like UðrÞ are determined by calculating the correspond-
ing macroscopic parameters of the fluid and fitting them to their
empiric values.

Let the fluid occupy the whole space, so that the volumetric den-
sity of the collective force, induced by all the molecules at a point r, is

Fðr; tÞ ¼ qðr; tÞ
m

r
ð
qðr0; tÞ
m

m2Uðr� r0Þ d3r0; (18)

where the integral in Eq. (18) is to be evaluated over the whole space
(the same is implied in all further integrals with omitted limits).
Expression (18) will be referred to as the Vlasov model, which is how
the collective field approach is called in plasma physics.20

If q depends only on the vertical coordinate z (i.e., physically, the
liquid/vapor interface is flat and horizontal), the integral in Eq. (18)
can be rewritten in cylindrical coordinates ðr?; b; z0Þ and reduced to

Fðz; tÞ ¼ qðz; tÞ @

@z

ð
qðz0; tÞWðz � z0Þ dz0; (19)

where

WðzÞ ¼ 2p
ð1
0
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ z2

q� �
r?dr?: (20)

The diffuse-interface model (DIM) is based on the assumption that the
spatial scale of WðzÞ [inherited from the original intermolecular
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potential UðrÞ] is much shorter than that of the density field. Then,
the integral on the right-hand side of Eq. (19) can be simplified by
changing z0 ! z � z0, expanding qðz � z0; tÞ in powers of z0, and
truncating the expansion after the first three terms. The integral
involving z0Wðz0Þ vanishes (becauseWðz0Þ ¼ Wð�z0Þ due to isotropy),
and one obtains21,22

F ¼ q
@

@z
2aqþ K

@2q
@z2

� �
; (21)

where the factor 2 is introduced for convenience, and

a ¼ 1
2

ð
WðzÞ dz; (22)

K ¼ 1
2

ð
WðzÞ z2dz (23)

will be referred to as the van der Waals parameter and Korteweg
parameter, respectively. The former is the same as its namesake a in
the Enskog–Vlasov fluid model (9)–(11)—hence, its value for a partic-
ular fluid can be deduced by fitting the Enskog–Vlasov equation of
state to its empiric counterpart (for water, this is done in Subsection 1
of Appendix A). The value of the Korteweg parameter K, in turn, can
be deduced from the fluid’s capillary properties (for water, see
Subsection 2 of Appendix A).

Even though a and K were introduced as parameters of the
DIM, they can be viewed as global characteristics of the general
Vlasov potential UðrÞ. Furthermore, since they are integral charac-
teristics of UðrÞ, they are more important than its actual shape. In
particular, Eqs. (22) and (23) suggest that the spatial scale of the
vdW force is

lF ¼
ffiffiffiffi
K
a

r
; (24)

which is one of the crucial characteristics in interfacial dynamics.
In the present paper, the following example of the Vlasov poten-

tial is used:

UðrÞ ¼ B 1� r2

D2

� �
þ C 1� r4

D4

� �� �
HðD� rÞ; (25)

where HðD� rÞ is the Heaviside step function, and B, C, and D are
adjustable constants. Substituting Eq. (25) into Eq. (20), one obtains

WðzÞ ¼ pD2 1� z2

D2

� �2

� B
2
þ C

3
2þ z2

D2

� �� �
HðD2 � z2Þ: (26)

To adapt WðzÞ to the fluid under consideration, one should express B
and C through the van der Waals and Korteweg parameters, a and K.
Substituting expression (26) into (22) and (23) and solving for B and
C, one obtains

B ¼ 105 7D2a� 45Kð Þ
16pD5 ; (27)

C ¼ � 945 D2a� 7Kð Þ
32pD5 : (28)

With a and K deduced from empiric data, the undetermined parame-
terD can be viewed as the one describing the shape ofUðrÞ. In particu-
lar, UðrÞ is monotonic only if

ffiffiffiffiffi
45
7

r
lF � D � 3lF : (29)

If D is outside this range, the vdW force (which is � rU) is repulsive
for some r—whereas physically, it should be attractive. Thus, D should
better be chosen from range (29).

One might also argue that the vdW force should not involve a
small-r component: the short-range part of the intermolecular interac-
tion is responsible for collisions and supposed to be accounted for by
the viscosity term (in hydrodynamics) or collision integral (in kinetic
theory)—not the Vlasov term. With this in mind, one should make
rU near r¼ 0 as small as possible; in terms of expression (25), this
corresponds to B¼ 0, so that (27) yields

D ¼
ffiffiffiffiffi
45
7

r
lF : (30)

Evidently, this value is included in range (29) as its left-hand end
point.

Since particular case (30) satisfies all the criteria, it will be used in
the remainder of this paper.

The following comments are in order:

• Even if one chooses a different D from range (29), the fluid’s
macroscopic properties remain virtually the same. In particular,
when a and K are fixed while D varies through the whole range
(29), the corresponding change of the surface tension c is approx-
imately 0.1% (this calculation was carried out using the Enskog–
Vlasov equation of state with the parameters of water at 25 �C;
see also Subsection 2 of Appendix A for the dependence of c on
the equation of state, a, and K).

• The choice of the formula for UðrÞ appears to also be unimportant:
an exponential alternative to Eq. (25) was tested, and the dependence
of c on the temperature was found to be virtually the same.

Note that the diffuse-interface model corresponds to the limit
D ! 0 and, thus, is not included in interval (29). Another problem
with the derivation of the DIM via expansion (21) has been noted in
Ref. 11: for some intermolecular potentials, the higher-order terms
omitted from Eq. (21) involve divergent integrals. For potential (25),
this problem does not arise—but the mere possibility of a divergence
may indicate “a qualitative difference between the solutions of the
exact and truncated equations.”11

All this does not mean that the DIM should be discarded; it has
been used for more than a century by hundreds of researchers—and
deserves to be examined at face value. This is what is done in the pre-
sent paper, and the results obtained are tested against those of the
more general Vlasov model.

D. Governing equations

Evaporation of common liquids at normal conditions is a slow
process—hence, the slow-flow approximation can be used, which
amounts to the following equations:

@q
@t

þ @ qwð Þ
@z

¼ 0; (31)

@p̂
@z

¼ @

@z
l
@w
@z

� �
þ F; (32)
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where w(z, t) is the vertical velocity, p̂ is the thermal pressure, and l is
the effective viscosity related to the shear and bulk viscosities by

l ¼ 4
3
ls þ lb: (33)

The non-thermal part of the pressure comes from the van der Waals
force: in the DIM, this can be shown explicitly [by substituting expres-
sion (21) for F into the momentum equation (32) and incorporating
the term � a into the pressure term]. In the general Vlasov model,
however, the non-thermal pressure has to remain “hidden” inside the
force term.

The viscosity lðq;TÞ should be treated as a known function.
Recall also that, according to both experiment19 and kinetic theory,23

the ideal-gas limit of l is finite, i.e.,

lðq;TÞ � l0ðTÞ as q ! 0:

As shown in Refs. 13–15 for the DIM, evaporation of common liquids
under normal conditions is not sensitive to the finite-q range of the
viscosity function lðq;TÞ; its only important characteristic is the low-
density limit l0. The same is true for the Vlasov model (more details
given below)—thus, when illustrating the general results, the simplest
(density-independent) approximation of the viscosity will be used,
lðq;TÞ ¼ l0ðTÞ. For specific computations, one still needs the depen-
dence of l0 on T—in this paper, that of water is used (see Subsection 3
of Appendix A).

E. Boundary conditions

Consider a flat horizontal interface separating a liquid and its
vapor (the former is located below the latter). Mathematically, this cor-
responds to

q ! qðlÞ as z ! �1; (34)

q ! qðvÞ as z ! þ1; (35)

where qðvÞ and qðlÞ are the vapor and liquid densities, respectively, and
the z axis is directed upwards. Note that qðvÞ is a given parameter
(determined by the relative humidity), whereas qðlÞ is to be found.

If the vapor is undersaturated (qðvÞ < qðv:satÞ), evaporation gives
rise to a flow—such that

w ! 0 as z ! �1; (36)

@w
@z

! 0 as z ! þ1; (37)

i.e., physically, the liquid far below the interface is at rest, and the vapor
flow far above the interface is stress-free.

Equations (19), (31), and (32) and conditions (34)–(37) form a
boundary-value problem to be solved.

F. The isobaricity condition

Under the DIM, one can readily show that Eq. (32) and boundary
conditions (34)–(37) imply that the pressure values far above and far
below the interface are equal, i.e.,

pðqðlÞ;TÞ ¼ pðqðvÞ;TÞ: (38)

For the Vlasov model, this result holds too, but is a little harder to
prove (see the Appendix B).

Equality (38) will be referred to as the isobaricity condition; it
allows one to calculate the density qðlÞ of the evaporating liquid with-
out solving the governing equations. To do so, we recall that the vapor
density qðvÞ is a known parameter, and treat (38) as an equation
for qðlÞ.

The isobaricity condition has another important implication: if
the temperature is sufficiently high and/or the vapor density qðvÞ is suf-
ficiently low, Eq. (38) does not have a solution for qðlÞ—see an illustra-
tion in Fig. 1. In such cases, the liquid below the interface cannot be
homogeneous; it was conjectured in Ref. 14 that it boils, but perhaps
this phenomenon should be called cavitation.

Either way, this effect will not be discussed in further detail
(because it typically occurs at a temperature much higher than “nor-
mal”). One should only remember that solutions describing steady
evaporation may cease to exist when the temperature exceeds a certain
threshold.

III. EVAPORATION OF A LIQUID INTO ITS VAPOR:
THE SOLUTION

Assume that evaporation is steady—hence, the liquid/vapor inter-
face recedes at a constant velocity equal to �E=qðlÞ, where E is the
evaporation rate and qðlÞ is the liquid density. Thus, seek a solution of
the form

q ¼ qðznewÞ; w ¼ wðznewÞ;
where

znew ¼ z þ E

qðlÞ
t:

In terms of the new variable, the density equation (31) becomes (the
subscript new omitted)

E
qðlÞ

@q
@z

þ @ qwð Þ
@z

¼ 0:

Integrating this equation and fixing the constant via boundary condi-
tions (34) and (36), one obtains

w ¼ E
1
q
� 1

qðlÞ

� �
: (39)

Coincidently, this expression satisfies the second boundary condition
for w (37).

Next, rewrite the momentum equation (32) in terms of znew, omit
new, use (39) and (19) to eliminate w and F, then use identity (15) to
express p̂ through Ĝ, and eventually obtain

d
dz

Ĝðq;TÞ �
ð
qðz0ÞWðz � z0Þ dz0

� �
¼ � E

q
d
dz

lðq;TÞ
q2

dq
dz

� �
:

(40)

This equation and boundary condition (34) and (35) are invariant with
respect to an arbitrary shift z ! z þ const—hence, they do not fully fix
the solution qðzÞ. An extra boundary condition is needed—say,

q ¼ 1
2

qðl:satÞ þ qðv:satÞ
� �

at z ¼ 0; (41)

where the saturated densities are used to “pin” solutions with different
qðvÞ to the same point of space associated with the equilibrium
solution.
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Finally, the equilibrium solution qðsatÞðzÞ satisfies Eq. (40) with
E¼ 0; integrating it, fixing the constant via boundary condition (35)
with qðvÞ ¼ qðv:satÞ, and recalling equalities (22) and (14), one can write
the resulting equation in the formð

qðsatÞðz0; tÞWðz � z0Þ dz0 ¼ ĜðqðsatÞ;TÞ � Gðqðv:satÞ;TÞ: (42)

A. The diffuse-interface model

The DIM equation for steady evaporation can be obtained simi-
larly to its Vlasov counterpart, Eq. (40)—one only needs to represent
the vdW force by the differential expression (21) instead of its integral
counterpart (19). Eventually, one obtains

d
dz

Gðq;TÞ � K
d2q
dz2

� �
¼ � E

q
d
dz

lðq;TÞ
q2

dq
dz

� �
: (43)

Boundary-value problem (34), (35), (41), and (43) was solved numeri-
cally using the function BVP5C of MATLAB. A typical solution is
shown, together with the equilibrium solution, in the upper panel
(labeled “DIM”) of Fig. 2. The following features should be observed:

• Within the interface, the equilibrium and non-equilibrium solu-
tions are indistinguishable.

• The two curves split when passing through a narrow region just
outside the interface (to be referred to as the van der Waals layer)
and remain constant after that.

These observations help one to examine the problem asymptoti-
cally in the low-temperature limit. Two asymptotic zones can be iden-
tified: the interface and vdW layer. In the former, the solution is
determined by the balance of the pressure gradient and van der Waals
force, whereas in the latter, viscosity comes into play. Since the inter-
face is, essentially, in equilibrium, it is the vdW layer that determines
the evaporation rate.

The asymptotic solution of boundary-value problem (34) and
(35), (41), and (43) is described in Appendix D and is summarized
here in terms of the temperature T and relative humidity

H ¼ qðvÞ

qðv:satÞ
:

As shown in Appendix D, the evaporation rate is

E ¼ �EDðTÞ ~EDðHÞ; (44)

where

�EDðTÞ ¼ K1=2qðv:satÞ5=2 RTð Þ1=2
l0

(45)

is of the same dimension as E, whereas ~EDðHÞ is nondimensional [and
determined by boundary-value problem (D15)–(D17)].

The exact and asymptotic solutions, both found numerically, are
illustrated in the upper panels (labeled “DIM”) of Fig. 3. The following
features should be observed:

• Panel DIM(a) shows that the asymptotic solution becomes inap-
plicable near the point where the exact solution ceases to exist.
This comes as no surprise, as this temperature is fairly close to
the critical point – hence, qðv:satÞ=qðl:satÞ is not small there.

• Panel DIM(b) shows that the exact curves for different T collapse,
or nearly collapse, onto the same asymptotic curve. This is a
result of the “separation” of T and H in expression (44).

• The solid curves in panel DIM(b) are not extended to small H
because the exact solution is difficult to compute in this region.
The difficulty is caused by the smallness of the vapor density, so
that the last term in Eq. (43) becomes nearly singular.

• The asymptotic curve in panel DIM(b) is close to a straight line
(although it is not one exactly).

As shown in Appendix D, the spatial scale of the vdW layer, lL,
and that of the vdW force, lF [given by Eq. (24)], are such that

lL
lF
¼ T�1=2

nd

qðv:satÞ

qðl:satÞ

 !1=2

; (46)

FIG. 2. The equilibrium interface (marked with “¼”) and non-equilibrium interface
with H¼ 0.5 (marked with “�”); in both cases, T ¼ 50 �C. The results in panels
labeled by “DIM” and “VM” are computed using the diffuse-interface and Vlasov
models, respectively, with the parameters of water (also implied in all further
figures).
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where Tnd is the nondimensional temperature defined by Eq. (17).
Recalling that, for common liquids under normal conditions, Tnd is
small, whereas qðv:satÞ=qðl:satÞ is exponentially small, one concludes that
lL � lF . This is the opposite of what the DIM is applicable to.

This observation motivated the author of the present paper to
reexamine the problem using the Vlasov model (whose applicability
does not require that the flow’s spatial scale be large).

B. The Vlasov model

The Vlasov equation (40) is much harder to solve numerically
than its DIM counterpart (43) the former is of an integrodifferential
kind, for which there are no ready-made tools in MATLAB or similar
packages. The only numerical algorithm the author of this paper has
come up with (see the Appendix C) does not perform well for small H

and/or T, and often requires manual fine-tuning of the computational
parameters.

A typical solution of Eq. (40) subject to conditions (34) and (35)
and (41) is shown in the lower panel (labeled “VM”) of Fig. 2. The
interfacial region is evidently close to equilibrium, whereas evaporation
occurs in the vdW layer—just like it does under the DIM. The two
models are still different, however: the width of the vdW layer in the
Vlasov model is comparable to that of the interface, not smaller. This
is visible in the lower panel of Fig. 2, but can also be deduced from Eq.
(40) directly.

To do so, we observe that the main contribution to the integral
term in Eq. (40) comes from the interfacial region (where q is large),
whereas the contribution of the vdW layer (small q) is negligible.
Recalling also that the former region is in equilibrium, one can approx-
imate Eq. (40) by

FIG. 3. The evaporation rate E computed via the diffuse-interface and Vlasov models, scaled by �ED [see Eq. (45)] and �EV [see Eq. (52)], respectively, is presented in the upper
and lower panels, respectively. (a) E vs the temperature T, for two values of the relative humidity H; (b) E vs H, for two values of T. The solid line shows the numerical solution
of the exact equations, and the dotted line shows the asymptotic results obtained for the limit qðv:satÞ=qðl:satÞ ! 0. The temperature in the two left-hand panels ranges from the
triple point of water, T 	 0 �C, to its critical point, T 	 374 �C. The regions where the solution does not exist are shaded (their widths depend on H).
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d
dz

Ĝðq;TÞ �
ð
qðsatÞðz0ÞWðz � z0Þ dz0

� �
¼ � E

q
d
dz

lðq;TÞ
q2

dq
dz

� �
;

(47)

where qðsatÞðzÞ is the equilibrium solution.
This equation can be simplified in two different ways. First,

recall that qðsatÞðzÞ satisfies Eq. (42)—hence, the integral term in Eq.
(47) can be replaced with Gðqðv:satÞ;TÞ � ĜðqðsatÞ;TÞ. Second,
assume that z is inside the vdW layer—hence, qðzÞ is small. This
allows one to replace lðq;TÞ with its low-density limit l0ðTÞ, and
Ĝðq;TÞ and ĜðqðsatÞ;TÞ, with their low-density asymptotics (16).
Eventually, the original integro-differential equation reduces to a dif-
ferential one

RT
1
q
dq
dz

� 1

qðsatÞ
dqðsatÞ

dz

 !
¼ � El0ðTÞ

q
d
dz

1
q2

dq
dz

� �
: (48)

Clearly, the solution qðzÞ has the same spatial scale as
qðsatÞðzÞ—simply because Eq. (48) does not involve other spatial scales.

Equation (48) is to be solved with boundary condition (35)
rewritten in terms of the relative humidity and saturated vapor density

q ! Hqðv:satÞ as z ! 1: (49)

The boundary condition at the other end is unclear, however—and
this is not a technical glitch, but a fundamental issue. It results from
the fact that, in the problem under consideration, the neighboring
asymptotic zones are on the same spatial scale and, thus, cannot be
matched via the van Dyke rule or a similar method.

This difficulty can probably be resolved by changing the variables
ðz; qÞ ! ðq; q ¼ dq=dzÞ, in which case the interface would corre-
spond to q � qðl:satÞ and the vdW layer, to q � qðv:satÞ. This is, essen-
tially, how matching was handled under the DIM (see the Appendix
D)—but, in the Vlasov model, the new variables complicate the inte-
gral representing the vdW force.

In the end, the following workaround was used. A particular
point zm was picked, such that

qðv:satÞ � qðsatÞðzmÞ � qðl:satÞ; (50)

and the vdW layer solutions was “patched” at z ¼ zm to the interfacial
(equilibrium) solution

q ¼ qðsatÞ;
dq
dz

¼ dqðsatÞ

dz
at z ¼ zm: (51)

With qðsatÞðzÞ known (pre-computed), boundary-value problem (48)
and (49) and (51) fully determines the asymptotic solution qðzÞ. Note
that the “patching” has been previously used in other problems, and
the results have been shown to be asymptotically equivalent to those
obtained via matching.24

Boundary-value problems (48) and (49), and (51) were solved
numerically using the function BVP5C of MATLAB. The patching
point zm was chosen such that

qðsatÞðzmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðv:satÞqðl:satÞ

q
;

which automatically satisfies restrictions (50). The computed evapora-
tion rate E can be written in a nondimensional form, relative to

�EV ¼ K1=2qðv:satÞ2RT
a1=2l0

; (52)

in which case E=�EV happens to be order one (provided T is not too
close to the point where the solution ceases to exist).

Typical numerical results are illustrated in the lower panels
(labeled “VM”) of Fig. 3. The following features should be observed:

• The solid curves in panel VM(b) are not extended to small H
because the exact boundary-value problem computes much worse
than its asymptotic counterpart.

• Panel VM(a) of Fig. 3 illustrates that, for mid-range T and H, the
asymptotic approach works well (the asymptotic curves in this
figure are actually drawn for T � 100 �C, but they are indistin-
guishable from the exact solution).

• Panel VM(b) illustrates that the asymptotic and exact solutions
start to diverge near T ¼ 200 �C.

• Observe that the curves corresponding to different T in panel
VM(b) do not collapse onto a single curve [unlike those com-
puted via the DIM and illustrated in panel DIM(b)]. In principle,
this could be a result of choosing the wrong scale �EV—and so
some others were tested, but none worked. One might conclude
that, for the Vlasov model, E depends on T and H in a non-
separable way.

• The curves in panel VM(b) of Fig. 3 look like straight lines (but
are not ones exactly).

Thus, the DIM and VM both predict an almost linear depen-
dence of E on H, which allows one to compare them to the Hertz–
Knudsen law (HKL).

C. DIM and VM vs HKL

Rewrite the Hertz–Knudsen law, given by Eq. (2), in terms of the
relative humidity

E ¼ h

ffiffiffiffiffiffiffi
RT
2p

r
qðv:satÞ 1�Hð Þ:

To compare this expression to the corresponding results of the DIM
and VM, the two latter models should be represented in a similar fash-
ion—say

EðT;HÞ ¼ �EðTÞ 1�Hð Þ: (53)

Once this representation is in place, one can calculate the evaporation/
condensation probability

h ¼
�E

qðv:satÞ

ffiffiffiffiffiffiffi
2p
RT

r
; (54)

as opposed to just inserting it into the HKL and treating as an adjust-
able parameter.

One way to obtain a formula for E of form (53) consists in assum-
ing that H ! 1 (the vapor is almost saturated) and expanding the
DIM or VM solutions in powers of ð1�HÞ. In this expansion, �EðTÞ
is the coefficient of the first term. Alternatively, one can determine
�EðTÞ by curve fitting, but such an approach is less “clean” than the
asymptotics.
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In application to the diffuse-interface model, the expansion in
ð1�HÞ can be found in Ref. 13 and, for the Vlasov model, in
Appendix E of the present paper. Under an additional assumption that
qðv:satÞ=qðl:satÞ � 1, one obtains

�E ¼ KRT
al0

ð
1

qðsatÞ4
dqðsatÞ

dz

� �2

dz

" #�1

: (55)

This expression applies to both DIM and VM, but the resulting �E
depends on which model is used to calculate the profile of the equilib-
rium interface qðsatÞðzÞ.

In application to the Vlasov model, formulas (53) and (55) are
illustrated in Fig. 4. One can see that �E approximates the slope of the
exact curve reasonably accurately.

The dependence of h on T, calculated via formulas (54) and (55),
is illustrated for water in Fig. 5. The following features should be
observed:

• For T < 100 �C, the DIM and VM both predict that h is small (in
contrast to the classical formulation of the HKL, where h¼ 1).

• For T > 250 �C, the DIM and VM both predict that h is large.
This conclusion, however, can be trusted only qualitatively, as
qðv:satÞ=qðl:satÞ is not necessarily small in this range (making the
approximation of viscosity employed for computation of curves
(d) and (v) invalid).
Note that even though the coefficient h in the HKL was initially
interpreted as the probability of a molecule to evaporate or con-
densate, more recent theoretical models (e.g., Ref. 6) argue that,
due to other effects, h can exceed unity. Thus, the present results
are not surprising just because h > 1, but because h 
 1.

• For the most of the temperature range, the DIM noticeably
underpredicts h by comparison with the (more accurate) VM.
This is a result of the former’s failure in the van der Waals layer.

• It is worth mentioning that the slow-flow approximation [used to
reduce the exact momentum equation to Eq. (32)] does not
impose any restrictions on the results. Indeed, let the Reynolds
number be

Re ¼ qðv:satÞ�vlF
l

; (56)

where spatial scale of the interface lF is given by Eq. (24) and the
velocity scale can be expressed through the evaporation rate �EV

of the Vlasov model [given by Eq. (52)]

�v ¼
�EV

qðv:satÞ
: (57)

Estimating expressions (56) and (57) for water, one can show that
Re is consistently small for all T between the triple and critical
points (reaching the maximum at the latter, where Re 	 0:022).

IV. EVAPORATION OF A LIQUID INTO AIR:
THE FORMULATION
A. Thermodynamics

Following Refs. 15 and 17, air will be treated as a single fluid with
its parameters equal to the 79/21 weighted averages of those of nitro-
gen and oxygen. Thus, the problem will be formulated for a two-
component fluid, representing either a liquid with air dissolved in it, or
a mixture of vapor and air.

The thermodynamic state of a multicomponent fluid can be char-
acterized by the temperature T and partial densities qi (i¼ 1 represents
the liquid or its vapor, and i¼ 2 represents the air). Introducing the
specific internal energy eðq1; q2;TÞ and entropy sðq1; q2;TÞ [satisfy-
ing the Gibbs relation (3)], one can define the full pressure and chemi-
cal potentials by

FIG. 4. The evaporation rate E computed via the Vlasov model and scaled by �EV
[given by Eq. (52)] vs H, for different values of T. The solid line shows the numerical
solution of the exact equations (the same as in panel VM(b) of Fig. 3), and the
dashed line shows the asymptotic results obtained for the limit H ! 1.

FIG. 5. The evaporation/condensation probability h vs T. Curves (d) and (v) corre-
spond to the DIM and VM, respectively. The straight line marked (h) corresponds to
h¼ 1, as in the original assumption of Hertz and Knudsen.1,2
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p ¼ q
X
i

qi
@e
@qi

� T
@s
@qi

� �
; (58)

Gi ¼
@ qeð Þ
@qi

� T
@ qsð Þ
@qi

; (59)

where

q ¼ q1 þ q2 (60)

is the full density. It can be readily deduced from Eqs. (58)–(60) that

@p
@qj

¼
X
i

qi
@Gi

@qj
: (61)

This equality is the multicomponent analogue of the pure-fluid iden-
tity (6) and Eqs. (58) and (59) are those of Eqs. (4) and (5).

The multicomponent Maxwell construction, in turn, is

pðqða:satÞ1 ; qða:satÞ2 ;TÞ ¼ pðqðl:satÞ1 ; qðl:satÞ2 ;TÞ; (62)

G1ðqða:satÞ1 ; qða:satÞ2 ;TÞ ¼ G1ðqðl:satÞ1 ; qðl:satÞ2 ;TÞ; (63)

G2ðqða:satÞ1 ; qða:satÞ2 ;TÞ ¼ G2ðqðl:satÞ1 ; qðl:satÞ2 ;TÞ; (64)

where a:sat stands for saturated air. To fix the four unknowns—
qða:satÞ1 ; qða:satÞ2 ; qðl:satÞ1 , and qðl:satÞ2 —the above three equations should
be complimented with the requirement that the saturated air pressure
be equal to its atmospheric value

pðqða:satÞ1 ; qða:satÞ2 ;TÞ ¼ 1 atm: (65)

Next, the multicomponent version of the Enskog–Vlasov fluid model
consists in

e ¼ T
q

X
i

ciqi �
1
q

X
i;j

aijqiqj; (66)

s ¼ lnT
q

X
i

ciqi �
1
q

X
i

Riqi lnqi �Hðq1; q2Þ; (67)

where ci is the specific heat capacity of the ith components, Ri is its spe-
cific gas constant, aij is the van der Waals coefficient describing the
interaction of the ith and jth components, and Hðq1; q2Þ is the non-
ideal part of the entropy. The values of ci and Ri can be found in ther-
modynamics handbooks, and aij and Hðq1; q2Þ should be fitted to the
thermodynamic properties of the multicomponent fluid under consid-
eration (see Subsection 1 of Appendix A).

The thermal pressure and thermal chemical potentials are related
to the full ones by

p̂ ¼ pþ
X
i;j

aijqiqj; Ĝi ¼ Gi þ 2
X
j

aijqj: (68)

Using these expressions and identity (61), one can verify that

@p̂
@qj

¼
X
i

qi
@Ĝi

@qj
: (69)

Finally, the low-density asymptotics of the full and thermal chemical
potentials are both given by the ideal-gas formula

Ĝi � RiT lnqi as q1; q2 ! 0: (70)

This expression applies only if both q1 and q2 are small, so both fluids
can be treated as ideal gases.

B. Governing equations

Let WijðzÞ be the one-dimensional potential of the vdW force
exerted by component i on component j and vice versa (Wij ¼ Wji).
The van der Waals and Korteweg parameters are now matrices, given
by

aij ¼ 1
2

ð
WijðzÞ dz;

Kij ¼ 1
2

ð
WijðzÞ z2dz:

(71)

In what follows, the general results will be illustrated using Wij

described by formulas (26)–(28) and (30) with a and K changed to aij
and Kij (their values for the water–air combination are described in
Subsections 1 and 2 of Appendix A).

The equations governing slow isothermal dynamics of a binary
mixture are

@q1
@t

þ @

@z
q1wþ Jð Þ ¼ 0; (72)

@ q1 þ q2ð Þ
@t

þ @ q1 þ q2ð Þw½ �
@z

¼ 0; (73)

@p̂
@z

¼ @

@z
l
@w
@z

� �
þ
X
i

qiFi; (74)

where w is the velocity of the mixture as a whole,

Fiðz; tÞ ¼ @

@z

X
j

ð
qjðz0; tÞWijðz � z0Þ dz0 (75)

is the vdW force affecting the ith component,

J ¼ �D
@Ĝ1

@z
� F1 � @Ĝ2

@z
þ F2

� �
(76)

is the diffusive flux, and the diffusion coefficient D is a known
function of q1, q2, and T. Observe that J is expressed in terms of
the gradients of the chemical potentials, not densities: these two
representations are mathematically equivalent, but the former is
more convenient in the problem at hand (as well as some others,
e.g., Refs. 16 and 25).

To establish the correspondence between D and the standard dif-
fusivity D, which appears in Fick’s law, one needs to adapt the
diffusive-flux expression (76) to the ideal-gas limit: set Fi¼ 0 (no vdW
force) and replace Ĝi with its small-density asymptotics (70). One
should also assume that the density of air exceeds that of vapor
(q2 
 q1), but their gradients are comparable (@q2=@z � @q1=@z).
Eventually, one obtains, to leading order,

J ¼ �D
TR1

q1|fflffl{zfflffl}
D

@q1
@z

:

Comparing this equality to the standard formulation of Fick’s law, one
can see that
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D ¼ q1
R1T

D: (77)

This formula applies only in the low-density limit, which is sufficient
for the calculations below.

Using identity (69), one can rewrite the momentum equation
(74) in the form

X
i

qi
@Ĝi

@z
� Fi

� �
¼ @

@z
l
@w
@z

� �
: (78)

C. Boundary conditions

The solution of the governing equations should satisfy

qi ! qðlÞi as z ! �1; (79)

qi ! qðaÞi as z ! þ1; (80)

where qðlÞi and qðaÞi are the partial densities of the i-th component in

the liquid and air, respectively. qðaÞ1 and qðaÞ2 should be treated as given

parameters (reflecting the humidity and air density), whereas qðlÞ1 and

qðlÞ2 are to be calculated together with the full solution. The isobaricity
condition (which holds for the multicomponent equations as well) is
not sufficient to fix them both.

Boundary conditions (79) and (80) should be complimented with the
zero-velocity requirement (36) for the liquid far below the interface, and
the zero-viscous-stress requirement (37) for the air far above the interface.

D. Equilibrium interfaces

At equilibrium, there should be no flow (w¼ 0) and no diffusive
flux (J¼ 0). Substituting expression (75) for F into the momentum
equation (78), one can integrate the latter, fix the constant of integra-
tion via boundary condition (80) with qðaÞi ¼ qða:satÞi , and recall Eqs.
(68) and (71), to obtain

ĜiðqðsatÞ1 ; qðsatÞ2 ;TÞ �
X
j

ð
qðsatÞj ðz0ÞWijðz � z0Þ dz0

¼ Giðqða:satÞ1 ; qða:satÞ2 ;TÞ: (81)

This equation and boundary conditions (79) and (80) with qðlÞi ¼ qðl:satÞi

and qðaÞi ¼ qða:satÞi were solved numerically using the same algorithm as
that for pure fluids. A typical solution is shown in Fig. 6.

The most interesting feature of liquid/air interfaces is the local
maximum of the air density. It also arises under the DIM—see Refs. 15
and 17, where it was argued that it emerges because the vdW force
exerted by the liquid pulls extra air toward the interface. Observe also
that the interfacial width corresponding to the solution depicted in
Fig. 6 is approximately 3–5 Å, which agrees with the computations/
measurements reported in Refs. 26–30.

Since the air density is much smaller than the liquid density, Eq.
(81) can be simplified asymptotically. First, one can neglect the vdW
forces exerted by the air on the liquid, its vapor, and itself. Second, one
can neglect q2 in the expression for G1 and Ĝ1 (but not in G2 and Ĝ2,
which include ln q2). As a result, (81)i¼1 reduces to the equation
describing the equilibrium liquid/vapor interface in a pure fluid (no air
involved), and (81)i¼2 becomes

Ĝ2ðqðsatÞ1 ; qðsatÞ2 ;TÞ �
ð
qðsatÞ1 ðz0ÞW12ðz � z0Þ dz0

¼ G2ðqða:satÞ1 ; qða:satÞ2 ;TÞ: (82)

With qðsatÞ1 ðzÞ computed from the pure-fluid problem, one can use
this equation to find qðsatÞ2 . Most importantly, Eq. (82) is algebraic—
hence, a lot easier to solve numerically than the original integrodiffer-
ential equation (81)i¼2.

For the parameters of water and air at normal conditions, the
asymptotic and exact solutions are virtually indistinguishable (as illus-
trated in Fig. 6).

E. Is diffusion important?

As shown in Ref. 17, the importance of diffusion is characterized
by the following nondimensional parameter:

d ¼ l2
�q2

�l �D
; (83)

where l is the characteristic interfacial width, �q is the characteristic
density scale, and �l is the viscosity scale.

Recall that evaporation of a liquid into its vapor was driven by
the van der Waals layer located just outside the interface. The same
should be expected for evaporation of liquids into air—hence, one
needs to estimate d specifically for the vdW layer.

To do so, one should use the density and viscosity of air: letting,
say, T ¼ 25 �C, one can use Refs. 31 and 32 to obtain

�q ¼ 1:184 kgm�3;

�l ¼ 4
3

1:840� 10�5ð Þ þ 1:75� 10�5ð Þ
� �

kg m�1 s�1

FIG. 6. The equilibrium water/air interface for T ¼ 25 �C. Curves (w) and (a) show
the density of water and air, respectively. The exact and asymptotic solutions are
shown in solid and dotted line, respectively, but they are virtually indistinguishable.
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(the decimal numbers in the latter formula represent the air’s shear
and bulk viscosities). For common fluids at normal conditions, the
interfacial width is comparable to the scale lF of the vdW force. The lat-
ter is given by Eq. (24)—hence,

l ¼
ffiffiffiffiffiffiffi
K11

a11

r
;

where K11 and a11 are the Korteweg and vdW parameters of the liquid.
For water (see the Appendix A), one obtains l 	 1 Å, which qualita-
tively agrees with the spatial scale one can observe in Fig. 6.

The diffusion coefficient �D, in turn, will be estimated via its low-
density asymptotics (77) with

q1 ¼ 0:023 075 kgm�3

(which is the density of saturated water vapor at 25 �C according to
Ref. 19) and

D ¼ 2:49� 10�5m2 s�1

(which is the diffusivity of water vapor in air at 25 �C according to Ref.
33). With these parameter values, expression (83) yields

d 	 8:8� 10�5;

i.e., the effect of diffusion in the vdW layer is weak.
Furthermore, estimates show that diffusion is weak in the inter-

face as well. It is important only at a macroscopic scale, where the dif-
fusive flux matches the evaporative flux emitted by the vdW layer.
This part of the setting, however, is not at issue in the present paper.

To take advantage of the smallness of d, observe that the limit
d ! 0 corresponds to d ! 0—hence, Eq. (76) becomes

@Ĝ1

@z
� F1 � @Ĝ2

@z
þ F2 ¼ 0: (84)

Equations (73) and (74) and (84) and boundary conditions (36) and
(37) and (79) and (80) form a boundary-value problem for the
unknowns q1, q2, and w. The diffusive flux J and Eq. (72) decouple
from the other unknowns and equations, thus, can be omitted.

V. EVAPORATION OF a LIQUID INTO AIR: THE
SOLUTION

Let
qi ¼ qiðznewÞ; w ¼ wðznewÞ;

znew ¼ z þ E

qðlÞ1 þ qðlÞ2
t:

Substituting this ansatz into Eq. (73), taking into account boundary
conditions (36) and (79) and omitting the subscript new, one can
deduce that

w ¼ E
1

qðlÞ1 þ qðlÞ2
� 1
q1 þ q2

 !
:

Substituting this expression into Eqs. (78) and (84), one obtains

q1
@G1

@z
� F1

� �
þ q2

@G2

@z
� F2

� �
¼ E

@

@z
l

q1 þ q2ð Þ2
@ q1 þ q2ð Þ

@z

" #
;

@G1

@z
� F1

� �
� @G2

@z
� F2

� �
¼ 0:

These equations can be viewed as a linear set for the expressions in
parentheses on their left-hand sides; solving this set and recalling
expressions (75) for Fi, one obtains

@

@z
Ĝi �

ðX
j

Wijðz � z0Þqjðz0; tÞdz0
" #

¼ � E
q1 þ q2

@

@z
l

q1 þ q2ð Þ2
@ q1 þ q2ð Þ

@z

" #
: (85)

Since the air density is much smaller than the liquid density, this equa-
tion can be simplified the same way the equilibrium problem was: Eq.
(85)i¼1 can be replaced with its pure-fluid equilibrium version, and in

Eq. (85)i¼2, one can set q1 ¼ qðsatÞ1 and replace Ĝi with its low-density
asymptotic (70).

Equation (85) and its asymptotic version were solved numeri-
cally, and typical results are illustrated in Fig. 7 together with the corre-
sponding results obtained via the DIM in Ref. 15. The following
features are to be observed:

• The dependence of the evaporation rate on the relative humidity
is strongly nonlinear (unlike that for evaporation of a pure liquid
into its vapor).

• The DIM noticeably underestimates the evaporation rate (simi-
larly to the case of pure liquids).

It is instructive to compare the absolute value of E for the two
kinds of evaporation. Using in both cases the Vlasov model, one
obtains for water at T ¼ 25 �C andH¼ 0.5,

E 	 2:0� 10�5kgm�2 s�1 liquid ! vaporð Þ;
E 	 8:7� 10þ1kgm�2 s�1 liquid ! airÞ:ð

The huge difference between the two kinds of evaporation is due to the
fact that, at 25�C, air is much denser than water vapor—as a result, the
former exerts on the evaporating molecules a much stronger vdW

FIG. 7. The evaporation rate E vs H, for T ¼ 25 �C. The solid line shows the
numerical solution of the exact equations and the dotted line, the asymptotic result
for the limit qða:satÞ2 � qðl:satÞ1 . Curves (v) and (d) are computed using the DIM and
VM, respectively.
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force than the latter. This force pulls the molecules forward—hence,
helps evaporation. The back-pulling force exerted by the liquid is the
same in both cases, plus it is countered by the pressure gradient. Thus,
the net force exerted in the liquid/air system is much more conducive
for evaporation than that in the liquid/vapor system.

Note that Eq. (85) is much more difficult to solve numerically
than its pure-fluid counterpart, for both DIM and VM. The difficulty
is probably caused by the presence of two small parameters: the vapor-
to-air and vapor-to-liquid density ratios, whereas the pure-fluid prob-
lem involves only the latter. As a result, it was impossible to extend the
curves in Fig. 7 to H� 0:5. For equilibrium interfaces, the difficulties
are not as severe (which was the case with pure fluids as well) and there
are no difficulties whatsoever for the asymptotic version of the DIM
(reduced to an algebraic equation in Ref. 15).

VI. HOW CAN THE NEW EFFECT BE OBSERVED/
SIMULATED AND WHY HAS THIS NOT HAPPENED
ALREADY?

It remains to discuss why the shortcomings of the HKL claimed
in the present paper have not been so far noticed by experimental and
molecular-dynamics communities.

A. Experiments

(i) The author of the present paper found several experimental
studies of liquids evaporating into their vapor—but only in a
forced setting, where the vapor is sucked out of the container by
a pump (e.g., Refs. 34 and 35). The low pressure created by the
pump accelerates the evaporation and makes the predictions of
the present paper inapplicable.
More generally, the experimental community do not seem to be
concerned with unforced evaporation into vapor, believing that
it is similar to the unforced evaporation into air—thus, “why
would someone go to significant trouble and expense to do
[such] experiments […] when these can be done in ambient
air?” (a private communication from Janet Elliott, Canada
Research Chair in Thermodynamics).

(ii) As for liquids evaporating into air, the available measurements
of the coefficient h vary between 0.01 and 1 for the same tem-
perature,4,5 indicating a problem in the functional dependence
where this coefficient appears.

In other words, the experimental community do seem to have
noticed the HKL’s second shortcoming claimed in this paper.

With this said, experiments with both kinds of evaporation are
objectively difficult (hence, potentially inaccurate) because the mea-
surements have to be carried out very near the interface, but without
interfering with the evaporative flow.

B. Molecular dynamics

There is a significant body of work where the fluid is approxi-
mated by a large set of particles interacting through a potential /ðrÞ
involving both repulsive and attractive components. This approach,
usually referred to as molecular dynamics, has been applied to evapo-
ration, and recent papers36,37 claim that the HKL holds with an order
one h. In the present paper, on the other hand, such is observed only
for evaporation of a liquid into its vapor, and only at a mid-range T
(see Fig. 5).

Unfortunately, a meaningful comparison between molecular
dynamics and Vlasov model is impossible at this stage.

To understand why, note that the choice of the potential /ðrÞ
fixes all of the fluid’s characteristics, and some of them do not neces-
sarily match the fluid under consideration. The full match can only be
accidental, in fact, as none of the commonly used potentials involves
enough adjustable constants to cover the parameter space of a “real”
fluid. As a result, the region where the HKL does not hold could have
simply been missed.

Indeed, we consider the Lennard–Jones (LJ) potential,

/ðrÞ ¼ 4�
r0
r

� �12

� r0
r

� �6
" #

;

used in Ref. 36 with r0 ¼ 3:41 Å and � ¼ 10:3meV, to approximate
argon. The triple and critical temperatures corresponding to this/ðrÞ are38

Ttr 	 79 K; Tcr 	 158 K;

whereas those of the “real” argon are39

Ttr 	 88 K; Tcr 	 151 K:

Unfortunately, such discrepancies are inevitable, as the LJ potential
allows one to explore only a two-dimensional surface (parameterized
by � and r0) in the problem’s multidimensional parameter space.

Furthermore, Ref. 36 employed a truncated LJ potential (/ ¼ 0
for r > 3:2 r0), and the effect of truncation on the fluid’s properties is
difficult to assess. For example, it can be the reason why liquid/vapor
interfaces were observed in Ref. 36 at a lower temperature
(T ¼ 76:3 K) than both of the above values of Ttr.

The mismatch of capillary characteristics is even larger than that
of the thermodynamic ones: the LJ value of argon’s surface tension—
say, at the triple point—is ctr ¼ 18:6 dyn=cm,38 whereas its “real”
value is ctr ¼ 12:6 dyn=cm.40

Finally, the vapor-to-liquid density ratio corresponding to the
truncated LJ potentials can be very different from that of the real
fluid—and this is the most important mismatch of all.

In the simulations of water evaporating into ambient nitrogen
reported in Ref. 37, this parameter was

qða:satÞ1

qðl:satÞ1

� 2:1� 10�3; (86)

whereas, for real water at, say, 25 �C, the vapor-to-liquid density ratio
is smaller by two orders of magnitude

qðv:satÞ1

qðl:satÞ1

	 2:3� 10�5:

Furthermore, Ref. 37 simulated the case where the vapor and ambient-
gas densities were comparable

qða:satÞ1

qða:satÞ2

� 0:7–0:9;

whereas, in the real atmosphere at 25 �C, this parameter is small

qða:satÞ1

qða:satÞ2

	 1:9� 10�2:
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Since the intermolecular force in the vdW layer crucially depends on
the density and composition of air, the differences in these characteris-
tics explain the disagreement between the present results and those of
Ref. 37.

More generally, to reconcile the Vlasov model and molecular
dynamics, one should

• either use molecular dynamics with a potential /ðrÞ involving
enough adjustable parameters to mimic a common liquid under
normal conditions;

• or apply the Vlasov model to a fluid whose characteristics match
those of the truncated LJ potential.

In the context of the latter approach, note that, for pure water,
condition (86) holds if T� 155 �C—and the corresponding values of h
computed via the Vlasov model are order one (see Fig. 5). One can fur-
ther assume that a small proportion of ambient nitrogen (as in Ref. 37)
should not alter the VM results too strongly.

VII. SUMMARY AND CONCLUDING REMARKS

This work examines the effect of the van derWaals force on evap-
oration. The following conclusions have been drawn:

(i) For evaporation of a liquid into its vapor, the dependence of
the evaporation rate E on the relative humidity H is almost lin-
ear—hence, the Hertz–Knudsen law (HKL) is functionally cor-
rect. Yet, the evaporation/condensation probability h, which
appears as a coefficient in the HKL, is much smaller than unity,
making evaporation much slower than expected.

(ii) For evaporation of a liquid into air, the dependence of E on H is
strongly nonlinear, so the HKL does not seem to apply functionally.
Conclusions (i)–(ii) are illustrated by Figs. 5 and 7,
respectively.
In addition to physical conclusions, a technical one has been
drawn, which might be important for researchers utilizing the
diffuse-interface model:

(iii) The DIM fails in a certain region (the vdW layer) at the out-
skirts of the interface and, as a result, noticeably underesti-
mates the evaporative flux by comparison with the more
accurate Vlasov model.

It should be noted, however, that even though the DIM comes
short in application to evaporation, it remains to be seen whether it
does so in other settings (contact lines, cavitation, etc.). It all depends
on whether the DIM solution involves a short-scale boundary layer
(vdW layer), making it inapplicable. Furthermore, conclusion (iii) does
not apply to a whole class of DIM models—those where the density in
the interfacial region changes gradually, but the vdW force is not
included (e.g., Refs. 41–43).

One should also keep in mind that all conclusions of this work
have been drawn using the hydrodynamic approximation of evapora-
tion, which does not describe kinetic effects—such as, for example, the
temperature jump associated with the Knudsen layer.3,44

To compare the kinetic effects to that of the vdW force, one needs
to switch to a kinetic model—e.g., the Enskog–Vlasov equation.45–55

This is what the author of the present paper initially intended to do,
but such a large increase in the model’s complexity turned out to be
insurmountable in a single stride.

As an alternative to the Enskog–Vlasov kinetic equation, one
might use the multi-moment model derived in Ref. 56. It has a better
chance of yielding a relatively simple expression for the evaporative
flux, suitable for the use in natural, biological, and industrial
applications.
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APPENDIX A: THE PARAMETERS USED IN THE PAPER

This appendix describes how the parameters involved in the
DIM and VM can be determined for a specific fluid. The examples
considered are water and air; the latter is treated as a mixture of
nitrogen and oxygen.

1. The parameters of the Enskog–Vlasov fluid model

The results described in this subsection were originally reported in
Refs. 15 and 17 and are presented here for completeness.

a. The van der Waals parameter of a pure fluid

To determine the vdW parameter a for a pure fluid, observe
that the Enskog–Vlasov expression (9) for the internal energy
eðq;TÞ is linear in q. This allows one to determine a as the slope of
a linear fit to the empiric dependence of cT – e on q, where the
heat capacity c is the same as that in the Enskog–Vlasov (kinetic)
theory—i.e., 3R for water and 5R=2 for nitrogen and oxygen. For
simplicity, the fitting was carried out using only the data on
the critical isobar p ¼ pcr , but the resulting straight line fits the iso-
bars p ¼ pcr=2 and p ¼ 2pcr reasonably well too [see Fig. 9(a) of
Ref. 17].

The values of a determined this way for water, nitrogen, and
oxygen are listed in Table I. It also includes the van der Waals
parameter of air (calculated as the 79/21 weighted average of those
of nitrogen and oxygen, respectively).

b. Thermodynamic properties of a pure fluid

According to the Enskog–Vlasov fluid model (10) and (11), the
properties of a pure fluid are described by its van der Waals
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parameter a (see the previous subsubsection) and the non-ideal part
of the entropy, HðqÞ. The latter should include enough undeter-
mined coefficients to fit the fluid’s empiric equation of state. The
following expression was suggested in Ref. 17:

HðqÞ ¼ �Rqð0Þ ln 1� 0:99
q
qtp

� �
þ R

X4
n¼1

qðnÞ
q
qtp

� �n
; (A1)

where qð0Þ… qð4Þ are undetermined coefficients and qtp is the fluid’s
density at the triple point (qtp is simply a convenient density scale;
the fact that, at the triple point, all three phases are in equilibrium is
irrelevant).

The coefficients qðnÞ were determined by ensuring that the
expressions for pðq;TÞ and Gðq;TÞ corresponding to Eq. (A1)
yield the “correct”—i.e., empiric—values for the critical density,
temperature, and pressure, as well as the liquid and vapor densi-
ties at the triple point (five equations for the five unknown
coefficients).

The values of qðnÞ for water as determined in Ref. 17 are

qð0Þ ¼ 0:071 894; qð1Þ ¼ 1:4139; qð2Þ ¼ 8:1126;

qð3Þ ¼ �8:3669; qð4Þ ¼ 4:0238;

and those for nitrogen and oxygen can be found in Table II of the same
paper. The accuracy with which the resulting equations of state approxi-
mate the empiric ones is illustrated in Fig. 9(c) of Ref. 17.

c. The van der Waals matrix of a binary mixture

When modeling evaporation of water into air, one needs a11
(water–water interaction), a22 (air–air interaction), and a12 (water–
air interaction). The first two can be found in Table I, and a12 can
be deduced from a single measurement of the density of air dis-
solved in water at a certain temperature and pressure.

To do so, consider the equilibrium interface, so that qðl:satÞ2 is
the density of the air dissolved in water. It generally depends on
a12—which can, thus, be fixed by fitting qðl:satÞ2 to its empiric value.
For water at T ¼ 25 �C and p ¼ 1 atm, for example, Ref. 57 yields
qðl:satÞ2 ¼ 0:0227 kgm�3, and this value emerges from the Maxwell
construction (62)–(65) only if

a12 ¼ 208:2 m5 s�2 kg�1:

Note that this value is specific to the Enskog–Vlasov fluid model
used with the Maxwell construction.

2. The Korteweg parameter

A fluid’s thermodynamic properties (discussed above) do not
depend on the chosen model of the vdW force, but the capillary
properties do. As a result, the DIM and VM correspond to different
values of the Korteweg parameter, which will be denoted by KD and
KV, respectively.

a. The Korteweg parameter of a pure fluid

A fluid’s Korteweg parameter can be deduced from a single
measurement of its surface tension—say, at the triple point. For
water, nitrogen, and oxygen, such measurements can be found in
Ref. 58.

Consider a flat equilibrium interface described by its density
profile qðsatÞðzÞ. Then, according to the DIM, the surface tension
is22

cD ¼ KD

ð
dqðsatÞ

dz

� �2

dz: (A2)

In Ref. 17, cD was calculated for water, nitrogen, and oxygen at their
respective triple points and the values of KD were determined, such
that (A2) agrees with the corresponding empiric result. These values
of KD are listed in Table I.

To find KV, one should first derive the Vlasov equivalent of
formula (A2). To do so, consider a static macroscopic drop of radius
R and calculate the pressure difference between the inside and out-
side. One should expect it to be of the form cV=R, where the coeffi-
cient cV is the desired surface tension.

A static (w¼ 0) density distribution qðrÞ is described by the
following reduction of the momentum equation:

rp̂ðq;TÞ ¼ qr
ð
qðr0ÞUðjr� r0jÞ d3r0: (A3)

TABLE I. The parameters of H2O; N2; O2, and air: R is the specific gas constant, a is the van der Waals parameter, and KD and KV are the values of the Korteweg parameter
according to the DIM and VM, respectively. The parameters of air are calculated as the 79/21 weighted averages of the corresponding parameters of nitrogen and oxygen,
respectively.

Fluid R ðm2 s�2 K�1Þ a ðm5 s�2 kg�1Þ KD ðm7 s�2 kg�1Þ KV ðm7s�2 kg�1Þ
H2O 461.52 2112.1 1:8781� 10�17 2:2906� 10�17

N2 296.81 222.2 1:5078� 10�17 1:6998� 10�17

O2 259.84 172.7 0:8459� 10�17 1:0203� 10�17

air 289.05 211.8 1:3688� 10�17 1:5571� 10�17

TABLE II. The nondiagonal Korteweg parameter K12 of water/nitrogen, water/oxygen,
and water/air interfaces. ðK12ÞD and ðK12ÞV are calculated according the DIM and
VM, respectively.

Interface K12D ðm7s�2kg�1Þ K12V ðm7s�2kg�1Þ
H2O/N2 0:6816� 10�17 1:8548� 10�17

H2O/O2 0:6126� 10�17 1:1863� 10�17

H2O/air 0:6671� 10�17 1:7144� 10�17
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Write the integral on the right-hand side of Eq. (A3) in spherical
coordinates ðr0; b; aÞ and let the azimuthal angle a be measured
from the direction of r. Then, for a spherically symmetric q, the
integrand does not depend on the polar angle b, and one can reduce
(A3) to

dp̂ðq;TÞ
dr

¼ q
d
dr

ð1
0
qðr0ÞXðr; r0Þ r02dr0; (A4)

where

Xðr; r0Þ ¼ 2p
ðp
0
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos a

p� �
sin a da: (A5)

Since the intermolecular potential UðrÞ decays as r ! 1, one can
show that the function Xðr; r0Þ decays as jr � r0j ! 1. One can
also verify (see the Appendix F) that relationship (81) between U
and a implies thatð1

r
Xðr; r0Þ r02dr0 ! �a as r ! 1: (A6)

Impose the following boundary conditions:

qðrÞ ! q1 as r ! 1;

dq
dr

! 0 at r ¼ 0:
(A7)

Assuming that qðrÞ describes a spherical drop, introduce the liquid
density at its center,

q0 ¼ qð0Þ; (A8)

and define the drop’s radius R by, say,

qðRÞ ¼ 1
2

q0 þ q1ð Þ:

Next, pick R0 and R1 such that R0 < R < R1 and integrate Eq.
(A4) from R0 to R1, which yields

pðqðR1Þ;TÞ � pðqðR0Þ;TÞ ¼ I1 þ I2 þ I3; (A9)

where

I1 ¼
ðR1

R0

ð1
R1

qðrÞ qðr0Þ @Xðr; r
0Þ

@r
r02dr0dr;

I2 ¼
ðR1

R0

ðR1

R0

qðrÞ qðr0Þ @Xðr; r
0Þ

@r
r02dr0dr;

I3 ¼
ðR1

R0

ðR0

0
qðrÞqðr0Þ @Xðr; r

0Þ
@r

r02dr0dr:

For a macroscopic drop—such that R is much larger than the inter-
facial width l—these integrals can be simplified.

Let R� R0 and R1 � R be much larger than l. Given boundary
condition (A7), one can in I1 set qðrÞ 	 qðr0Þ 	 q1 and obtain

I1 	 q21

ð1
R1

XðR1; r0Þ � XðR0; r
0Þ
 �

r02dr0:

Since r0 2 ðR1;1Þ, the second term in the square brackets is negli-
gible, after which the integral can be estimated via property (A6),

I1 	 �aq21: (A10)

In a similar fashion, one obtains

I3 	 aq20: (A11)

Before calculating I2, one should symmetrize it with respect to r and
r0, which yields, after straightforward algebra,

I2 ¼ p
ðR1

R0

ðR1

R0

qðrÞqðr0Þ
ðp
0

dUðnÞ
dn

� �
n¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þr02�2rr0 cos a
p

� r þ r0ð Þrr0 � r3 þ r03ð Þcos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos a

p sin a da dr0dr:

The main contribution to this triple integral comes from the region

r; r0 ! 1; jr � r1j ¼ Oð1Þ; a ! 0;

where the solution qðrÞ can be approximated by that for a flat equi-
librium interface with its “midpoint” pinned to r¼R,

qðrÞ 	 qðsatÞðr � RÞ:
Now, take the limit

R0 ! �1; R1 ! þ1;

expand I2 in 1=R, and omit the terms � 1=R2 and smaller.
Changing the variable of integration from a to r? ¼ ffiffiffiffiffiffi

rr1
p

a, one
obtains (after straightforward algebra, involving integration by
parts)

I2 	 cV
R
; (A12)

where

cV ¼
ð ð

qðsatÞðzÞ qðsatÞðz0Þ vðz � z0Þ dz0dz; (A13)

vðzÞ ¼ pz2UðzÞ � p
ð1
0
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2?

q� �
r?dr?: (A14)

To ascertain that cV is the surface tension of the Vlasov model, one
should substitute expressions (A10)–(A12) into Eq. (A9) and use
(13) to express p̂ through p. The resulting equality shows that the
(full) pressure difference between the inside and outside of the drop
is indeed cV=R.

Applying expressions (A13) and (A14) [with U given by Eqs.
(25), (27) and (28), and (30)] to water, nitrogen, and oxygen, and
making sure that the results match the empiric ones from Ref. 58,
one obtains the values of KV listed in Table I.

b. The Korteweg matrix of a binary mixture

When modeling evaporation of water into air, one needs K11

(water–water interaction), K22 (air–air interaction), and K12 (water–
air interaction). The first two coefficients are listed in Table I, and
K12 is discussed below.

In principle, K12 could be determined by comparing the char-
acteristics of water/air and water/water–vapor interfaces, but the
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difference between the two at normal conditions is too small to be
reliably measured. Alternatively, K12 can be deduced from the sur-
face tension of the water/air interface at high pressure, and in Ref.
15, this was done for the DIM, using the empiric results of Ref. 59.
Unfortunately, the measurements reported in Ref. 59 are scarce
(only six points) and a bit noisy—thus, the accuracy of the resulting
value of K12 was difficult to assess.

For the present work, the coefficient K12 was derived from the
properties of water/nitrogen and water/oxygen interfaces, both at
high pressure, reported in Ref. 60. The following procedure was
used.

Let a flat equilibrium interface in a multicomponent fluid be
characterized by qðsatÞi ðzÞ—say, computed using the Vlasov model.
Then, the multicomponent analogue of the Vlasov expression (A13)
for the surface tension is

cV ¼
X
i;j

ð ð
qðsatÞi ðzÞ qðsatÞj ðz0Þ vijðz � z0Þ dz0dz; (A15)

where vijðzÞ is given by Eq. (A14) with U replaced with Uij. The
coefficient K12 can be determined by fitting the above theoretical
expression to the empiric dependence of c on p.

An example of such a fit is presented in Fig. 8. One can see
that the slope of the theoretical curve is close to that of the empiric
one, but the two are separated by a gap. This is because the mea-
surements of Ref. 60 were carried out at 25 �C—whereas, in the pre-
sent paper, the Vlasov model is tuned to yield the correct surface
tension of pure water at 0 �C. In principle, the gap could be elimi-
nated by retuning the model for 25 �C, but that would only margin-
ally improve the overall accuracy—hence, is not worth
implementing.

The same procedure was also carried out for the DIM, in which
case expression (A15) should be replaced with

cD ¼
X
i;j

KijD

ð
dqðsatÞi

dz

dqðsatÞj

dz
dz:

The calculated values of K12D and K12V are listed in Table II.

3. The viscosity function lðq;TÞ
When modeling evaporation of water into air, one needs the

shear and bulk viscosities, ls and lb, of both air and water vapor.
The characteristics of liquid water are asymptotically unimpor-
tant—as shown in the present work and Ref. 15 for the VM and
DIM, respectively (in both cases, provided the liquid’s density
exceeds those of vapor and air).

In the present work, ls and lb of air are calculated using the
empiric formulas of Ref. 32; and ls of water vapor, using the
IAPWS formulas.61

As for lb of water vapor, there seems to be only one source for
it—Ref. 62. In this paper, the results are presented in graphical
form, for the interval 58�C�T� 651�C. The author of the present
work digitized them and extrapolated to T ¼ 0�C. It is worth men-
tioning here that, at normal conditions, the density of vapor is
much smaller than that of air, making the characteristics of the for-
mer asymptotically unimportant.

Finally, the effective viscosity l of the mixture of air and vapor
was calculated using the mixture rule proposed in Ref. 63,

l ¼ l1
q1
m1

� �2

þ l1 þ l2ð Þ q1
m1

q2
m2

þ l2
q2
m2

� �2

;

where the subscripts 1 and 2 correspond to the vapor and air,
respectively.

APPENDIX B: THE ISOBARICITY CONDITION

To prove the isobaricity condition (38) for the Vlasov model,
substitute expression (19) for the vdW force into the momentum
equation (32) take into account that

dWðz � z0Þ
dz

¼ � dWðz � z0Þ
dz0

and write it in the form

@

@z
p̂ðq;TÞ � lðq;TÞ @w

@z

� �
¼ �q

ð
qðz0; tÞ dWðz � z0Þ

dz0
dz0:

Integrating this equation from �Z to Z (where Z> 0 is a large but
finite distance), taking the limit Z ! 1, and recalling boundary
conditions (34) and (35), one obtains

p̂ðqðvÞ;TÞ � p̂ðqðlÞ;TÞ ¼ �I; (B1)

where

I ¼ lim
Z!1

ðZ
�Z

qðzÞ
ð1
�1

qðz0Þ dWðz � z0Þ
dz0

dz0dz: (B2)

One might be tempted to take the limit Z ! 1 and then convert I
from a repeated to double integral; the latter would have symmetric
limits but antisymmetric integrand—hence, I¼ 0.

FIG. 8. The surface tension of water/nitrogen interface vs the pressure. The solid
curve shows the empiric results of Ref. 60, and the dashed curve is computed using
the Vlasov model.
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Such a calculation would be incorrect, however: the limit
Z ! 1 should not be taken before the conversion of I to double
integration, as this is not the order in which these operations appear
in Eq. (B2). Furthermore, changing the order of integration is not
generally allowed in improper integrals.

Instead, rearranged I in the form

I ¼ I1 þ I2 þ I3; (B3)

where

I1 ¼ lim
Z!1

ðZ
�Z

qðzÞ
ðþ1

Z
qðz0Þ dWðz � z0Þ

dz0
dz0dz;

I2 ¼ lim
Z!1

ðZ
�Z

qðzÞ
ðZ
�Z

qðz0Þ dWðz � z0Þ
dz0

dz0dz;

I3 ¼ lim
Z!1

ðZ
�Z

qðzÞ
ð�Z

�1
qðz0Þ dWðz � z0Þ

dz0
dz0dz:

The region of integration in I2 is finite—hence, I2 can be safely con-
verted to double integration (with symmetric limits and antisym-
metric integrand)—hence, I2 ¼ 0.

To evaluate I1, observe that

z < Z < z0

and keep in mind that z and z0 cannot be wide apart—otherwise the
contribution of such a pair to the integral would be negligible, because

dWðz � z0Þ
dz

! 0 as jz � z0j ! 1:

This means that, as Z ! 1, both qðzÞ and qðz0Þ in I1 can be
replaced with qðvÞ, and recalling definition (22) of a, one obtains
I2 ¼ aqðvÞ2.

Similarly, one obtains I3 ¼ �aqðlÞ2, after which Eqs. (B1) and
(B3), and relationship (13) between p and p̂ yield the isobaricity
condition (38) as required.

APPENDIX C: THE NUMERICAL METHOD

When solving equation Eq. (40), the unknown qðzÞ was discre-
tized on a uniform mesh. Outside the computational region, qðzÞ
was equated to either qðlÞ or qðvÞ, according to boundary conditions
(34) and (35).

The integral in Eq. (40) was evaluated using the method of rec-
tangles. To improve its accuracy, the mesh was chosen so that the
endpoints of the integration interval are nodes—this choice, plus
the fact that WðzÞ vanishes at the endpoints, and does so with zero
derivative, reduces the error of the method of rectangles to
Oðstep4Þ, which is the same as that of Simpson’s rule.

The resulting set of nonlinear algebraic equations was solved
using the function FSOLVE of MATLAB.

It has turned out, however, that the above algorithm does not
work for Eq. (40) in its original form: the iterations just would not
converge for all solutions except the equilibrium one (where E¼ 0).
This suggested that the problem was caused by the derivative term
on the right-hand side of Eq. (40), where E appears as a coefficient.
Various finite-difference approximations of this term were tested,
but none worked.

Eventually, it was established by trial and error that the pro-
posed algorithm works only if Eq. (40) is first integrated with
respect to z from �1 to z00, and then, boundary condition (34) is
used to obtain

Ĝðqðz00Þ;TÞ �
ð
qðz0ÞWðz00 � z0Þ dz0 � GðqðlÞ;TÞ

¼ �
ðz00
�1

E
qðzÞ

d
dz

lðqðzÞ;TÞ
q2

dqðzÞ
dz

� �
dz: (C1)

The integral on the right-hand side of this equation was evaluated
using Simpson’s rule [to make the error of the computation consistent
with that of the integral on the left-hand side of Eq. (C1)].

APPENDIX D: EVAPORATION OF A LIQUID INTO ITS
VAPOR: THE T ! 0 LIMIT OF THE DIM

Evaporation of a pure fluid under the diffuse-interface approxi-
mation has been examined in Refs. 14 and 15 using a certain short-
cut. In what follows, this shortcut will be reformulated in terms of
the standard matched asymptotics, allowing one to estimate the spa-
tial scale of the flow.

The problem will be nondimensionalized using the spatial scale
lF of the vdW force given by Eq. (24), and the following velocity
scale:

�w ¼ �plF
�l

;

where �p and �l are the pressure and viscosity scales, respectively.
Physically, the above choice of �w corresponds to the most general
regime where the pressure gradient, viscous stress, and vdW force
are of the same order.15,17

Let the density scale �q be that of liquid and set

�p ¼ a�q2;

which reflects the non-ideal part of the pressure [i.e., the second
term in the Enskog–Vlasov equation of state (10)].

Define the following nondimensional variables:

znd ¼ z
lF
; qnd ¼

q
�q
; End ¼ E

�q�w
;

lnd ¼
l
�l
; Tnd ¼ RT

a�q
;

pnd ¼ p
a�q2 ; Gnd ¼ G

a�q
:

Nondimensionalizing Eq. (43) and omitting the subscript nd, one
obtains

d
dz

Gðq;TÞ � d2q
dz2

� �
¼ � E

q
d
dz

lðq;TÞ
q2

dq
dz

� �
: (D1)

whereas the nondimensional versions of the boundary conditions
(34) and (35) look the same as before. One also needs the
nondimensional form of the low-density asymptotics (12) of p
and G,
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p � Tq; G � T lnq as q ! 0: (D2)

The numerics suggest that the problem involves two asymptotic
zones: the interfacial region and van der Waals layer; the former is
near equilibrium and the latter, out of equilibrium.

1. The interfacial region

Since the interfacial region is near equilibrium, boundary con-
dition (34) can be rewritten in the form

q ! qðl:satÞ as z ! �1; (D3)

and one can also omit from Eq. (D1) the term involving E.
Integrating the resulting equation and fixing the constant of integra-
tion via (D3), one obtains

Gðq;TÞ � d2q
dz2

¼ Gðqðl:satÞ;TÞ: (D4)

Next, multiply (D4) by dq=dz, and integrate again. The integral
involving G can be evaluated using the equality

@ qG� pð Þ
@q

¼ G;

[which follows from identity (6)], and then, condition (D3) can be
used to fix the constant of integration. Eventually, one obtains

1
2

dq
dz

� �2

¼ q Gðq;TÞ � Gðqðl:satÞ;TÞ
h i

� pðq;TÞ þ pðqðl:satÞ;TÞ:

Recalling the Maxwell construction (7) and (8), one can replace in
this equality

Gðqðl:satÞ;TÞ ! Gðqðv:satÞ;TÞ; pðqðl:satÞ;TÞ ! pðqðv:satÞ;TÞ;
and then, use the low-density asymptotics (D2) to obtain

1
2
q2 � Tq ln

q

qðv:satÞ
þ qðv:satÞ

q
� 1

 !
as q; qðv:satÞ ! 0; (D5)

where

q ¼ dq
dn

: (D6)

Asymptotics (D5) and (D6) will be used to match the interfacial
region to the vdW layer.

2. The vdW layer

In the vdW layer, q is small, so one can replace p and G with
their low-density expressions (D2). One can also assume

l ! 1 as q ! 0; (D7)

which implies that the scale �l used for nondimensionalization is
that of the low-density vapor, i.e., �l ¼ l0.

Thus, in the vdW layer, Eq. (D1) becomes

T
q
dq
dz

� d2q
dz2

¼ � E
q
d
dz

1
q2

dq
dz

� �
: (D8)

This equation is to be solved with boundary condition (35).

To simplify Eq. (D8), multiply it by q, integrate, use (35) to fix
the constant of integration, and change the variables
ðz; qÞ ! ðq; qÞ, where q is given by Eq. (D6). The resulting equation
can be written in the form

d
dq

q2

2q

� �
¼ T

1
q
� qðvÞ

q2

 !
þ E
q4

q; (D9)

whereas boundary condition (35) becomes

q ¼ 0 at q ¼ qðvÞ: (D10)

One can readily verify that the solution of Eq. (D9) admits the fol-
lowing asymptotics:

q2

2
� qT ln qþ Cð Þ þ TqðvÞ as q ! 1; (D11)

where C is an undetermined constant. It can be fixed by matching
the inner solution (D11) to asymptotics (D5) of the outer solution.

3. Matching

The applicability region of the outer (interfacial) solution and
that of the inner (vdW layer) solution overlap if

qðv:satÞ � q � qðl:satÞ:

In this region, Eq. (D5) (the inner expansion of the outer solution)
should match Eq. (D11) (the outer expansion of the inner solution),
which yields

C ¼ �1� ln qðv:satÞ: (D12)

Boundary-value problem (D9)–(D12) determines the function qðqÞ
and, more importantly, the dependence of the evaporation rate E on
the temperature T and the relative humidity H ¼ qðvÞ=qðv:satÞ.

T and H can actually be separated by representing E in the
form

E ¼ T1=2qðv:satÞ5=2 ~EDðHÞ: (D13)

To find the function ~EðHÞ, substitute expression (D13) into
boundary-value problem (D9)–(D12) and carry out the following
change of variables:

q ¼ qðv:satÞ~q; q ¼ Tqðv:satÞ
� �1=2

~q; (D14)

which yields

d
dq̂

~q2

2~q

 !
¼ 1

~q
� H

~q2 þ
~ED

~q4 ~q; (D15)

~q ¼ 0 at ~q ¼ H; (D16)

~q2

2
� ~q ln ~q � 1ð Þ þH as ~q ! 1: (D17)

Evidently, Eq. (D15) and boundary conditions (D16) and (D17) involve
neither T nor qðv:satÞ—hence, ~ED depends only on H, as required.

To find the spatial scale of the vdW layer, recall that, nondi-
mensionally, it equals the ratio of the scales of q and q in scaling

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 032105 (2024); doi: 10.1063/5.0192771 36, 032105-19

VC Author(s) 2024

 04 M
arch 2024 21:16:12

pubs.aip.org/aip/phf


(D14). Recalling also that the spatial variable has been nondimen-
sionalized on lF, one recovers estimate (46).

Equations (44) and (45) of the main body of the paper can be
recovered by re-dimensionalizing expression (D13).

APPENDIX E: EVAPORATION OF A LIQUID INTO ITS
VAPOR: THE H ! 1 LIMIT OF THE VLASOV MODEL

Let

e ¼ 1�H: (E1)

When expanding boundary-value problems (34) and (35) and
(40) in e, one can show that the leading order is described by
the equilibrium solution qðsatÞðzÞ, and the first-order solution
exists subject to a certain orthogonality condition, which deter-
mines E.

The calculation outlined above is straightforward but cumber-
some. One can by-pass it by deriving the orthogonality condition
directly from the exact boundary-value problem. It should satisfy
two requirements:

(i) If expanded in e, the zeroth order of this condition should
cancel out.

(ii) The first order should not involve the (unknown) density
qðlÞ of the liquid, so that E is the only unknown.

This shortcut was used in Ref. 13 for the DIM—and it can be
used, in exactly the same form, for the Vlasov model.

Consider the following combination of Eq. (40) and isobaricity
condition (38): ð

40ð Þdz þ 1

qðlÞ
� 38ð Þ:

After straightforward algebra [involving integration by parts of the
right-hand side of Eq. (40) and use of boundary conditions (34) and
(35)], one obtains

ĜðqðvÞ;TÞ � qðvÞ
ð
Wðz � z0Þ dz0 � ĜðqðlÞ;TÞ

þ qðlÞ
ð
Wðz � z0Þ dz0 � pðqðvÞ;TÞ � pðqðlÞ;TÞ

qðlÞ

¼ �E
ð
lðq;TÞ

q4
dq
dz

� �2

dz:

Recalling Eqs. (22) and (14), one can express the thermal chemical
potential Ĝ through its full counterpart G to obtain

GðqðvÞ;TÞ � GðqðlÞ;TÞ � pðqðvÞ;TÞ � pðqðlÞ;TÞ
qðlÞ

¼ �E
ð
lðq;TÞ

q4
dq
dz

� �2

dz: (E2)

This (exact) equality can be simplified asymptotically using the fact
that the vapor is nearly saturated

qðvÞ ¼ 1� eð Þqðv:satÞ;
and the solution is close to equilibrium, i.e.,

q ¼ qðsatÞðzÞ þ OðeÞ; E ¼ OðeÞ; qðlÞ ¼ qðl:satÞ þ OðeÞ:
Expanding Eq. (E2) in e, using the Maxwell construction (7) and (8)
to ascertain that the zeroth order cancels out, and using identity (6)
to simplify the first order, one obtains

e
qðv:satÞ

qðl:satÞ
� 1

 !
@pðq;TÞ

@q

� �
q¼qðv:satÞ

þ Oðe2Þ

¼ �EA ¼
ð
lðqðsatÞ;TÞ

qðsatÞ4
dqðsatÞ

dz

� �2

dz þOðe2Þ: (E3)

This is the desired condition, which determines E through the char-
acteristics of the saturated interface and e (the deviation of the rela-
tive humidity from unity).

To simplify Eq. (E3), assume that qðl:satÞ 
 qðv:satÞ—so that the
low-density asymptotics (D2) holds for p. Observe also that the larg-
est contribution to the integral on the right-hand side of Eq. (E3)
comes from the region where qðsatÞðzÞ is small—hence, in this
region, l can be replaced with its low-density approximation (D7).

Taking advantage of all these approximations, omitting the Oðe2Þ
terms, and recalling definition (E1) of e, one can rewrite (E3) in the form

E ¼ T
A

1�Hð Þ; (E4)

where

A ¼
ð

1

qðsatÞ4
dqðsatÞ

dz

� �2

dz: (E5)

The coefficient A has arisen before in Refs. 13–15, 18, and 64 where
evaporation has been examined using the DIM. The present results
suggest that A arises in all hydrodynamic models involving evapora-
tion and vdW force.

Equation (55) of the main body of the paper can be recovered
by re-dimensionalizing expression (E5).

APPENDIX F: PROOF OF PROPERTY (A6)

Note that Eqs. (20) and (22) imply that

2p
ð1
0

ð1
0
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2?

q� �
r?dr?dz ¼ a: (F1)

Next, consider definition (A5) of Xðr; r0Þ in the limit

r; r0 ! 1; r � r1 ¼ Oð1Þ (F2)

and observe that the largest contribution to the integral on the
right-hand side of (F1) comes from the region a ! 0. Expanding,
thus, the integrand of (A5) in a and introducing r? ¼ ffiffiffiffiffi

rr0
p

a, on
obtains

Xðr; r0Þ rr0 � 2p
ð1
0
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � r0ð Þ2 þ r2?

q� �
r?dr?:

Under the limit (F2), one can replace in the above expression rr0

with r02. Integrating the resulting equality with respect to r0 from r
to 1, changing the variable of integration on the right-hand side
from r0 to z ¼ r0 � r, and recalling Eq. (F1), one obtains property
(A6) as required.
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