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Inertial instability of a liquid film inside a rotating horizontal cylinder
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Department of Mathematics, University of Limerick, Limerick, Ireland
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We examine the dynamics of a thin film of viscous fluid on the inside surface of a cylinder with
horizontal axis, rotating about this axis. The stability of the film has been previously explored using
the leading-order lubrication approximation, under which it was found to be neutrally stable. In the
present paper, we examine how the stability of the film is affected by higher-order corrections, such
as inertiasdescribed by the material derivatives in the Navier–Stokes equationsd, surface tension,
and the hydrostatic pressure gradient. Assuming that these effects are weak, we derive an asymptotic
equation which takes them into account as perturbations. The equation is used to examine the
stability of the steady-state distribution of film around the cylindersrimming flowd with respect to
linear disturbances with harmonic dependence on timesnormal modesd. It is shown that hydrostatic
pressure gradient does not affect those at all, and the effect of surface tension is weak—whereas
inertia always causes instability. The inertial instability, however, can be inhibited by viscosity,
which can make the characteristic time of growth so large that the film would be effectively
stable. ©2005 American Institute of Physics. fDOI: 10.1063/1.1905964g
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I. INTRODUCTION

Rimming flows, where a thin film of liquid is entrain
on the inside of a rotating cylinder, are of considerable p
tical significance. In rotational moulding,1 liquid thermoset
ting plastic is placed inside a mould, which is then rotate
distribute the liquid as uniformly as possible. In the coa
of fluorescent light bulbs,2 a suspension consisting of a co
ing solute and a solvent is placed inside a spinning g
tube. Then, the solvent is evaporated off to leave the co
on the tube.

Most of the theoretical work to date has made use o
so-called lubrication approximation, where the inertia
pressure terms of the Navier–Stokes equations are dom
by viscous effects and gravity. The seminal work has b
carried out in Ref. 3, where a leading-order lubrica
theory was derived. This was further developed in Re
where the lubrication approximation was used to calcu
the steady-state distribution of film around the cylinder.

Note, however, that almost all experimenters5 have com
mented on the occurrence of instability, which disrupts
film and prevents the solute from distributing evenly. Ye
was demonstrated in BPT93 that the leading-order lub
tion model is neutrally stable. As neutral stability is the m
precarious stability possible, an obvious approach is to
tend the lubrication model to a higher order—to see if w
higher-order effects sway the leading-order balance to e
asymptotic stability or instability. Four such attempts h
been made.6

In Ref. 7, several higher-order models, describing
effects of inertia, surface tension, and transversesaxiald vari-
ability were examined analytically. Reference 8, in tu
dealt with a model includingall effects simultaneously—
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given its complexity, it was examined numerically. The m
conclusion of both papers was that the instability is mo
caused by inertia. An alternative source of instability, re
ing from the interaction of hydrostatic pressure and sur
tension, has been suggested in Refs. 9 and 10. Fina
mechanism of instability based solely on the hydros
pressure effect has been put forward in Refs. 11 and 1

In the present paper, we shall reexamine the effe
inertia, with surface tension and hydrostatic pressure
included in the model. We shall confine ourselves to no
modes, i.e., linear disturbances with harmonic depend
on time, which will enable us to examine the problem a
lytically and in detail.

The paper has the following structure. In the follow
section, the problem is formulated mathematically. In
III, we develop an asymptotic method for studying the
bility of the film and test it on a simple particular case, wh
the inertia and hydrostatic pressure are weak and the dy
ics of the film is determined by surface tension. In Sec
we apply our method to the full problem, and thus obta
stability criterion reflecting the balance of thesdestabilizingd
effect of inertia and thesstabilizingd effect of surface tensio
it will also be demonstrated that the hydrostatic pressure
dient does not affect the stability of normal modes. In Se
we shall consider examples based on the parameters of
fluids swater and glycerind. Finally, in Sec. VI, we shall ex
plain the differences between our results and those obt
in Refs. 7–9.

II. FORMULATION

Consider a thin film of incompressible liquid on the
side surface of a cylinder of radiusR, with a horizontal axis
which is rotating about this axis with constant angular ve
ity V ssee Fig. 1d. We shall use polar coordinatessr ,ud, withl:

the origin at the center of the cylinder, so the thicknessh of

© 2005 American Institute of Physics6-1

 license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1905964


l
-
to

ern-
atic
in
l-
atio
omi
-
ord

toti
ning

l
ects
od-
of

xi-
-

ing-
g
sur-
tions
efs.
VI A

d-

r-

052106-2 E. S. Benilov and S. B. G. O’Brien Phys. Fluids 17, 052106 ~2005!
the film depends on the polar angleu and the timet. We shal
also introduce the densityr of the film, its kinematic viscos
ity n, and surface tensiong, and also the acceleration due
gravity g.

From a physical viewpoint, there are five effects gov
ing the film: viscosity, gravity, surface tension, hydrost
pressure, and inertiasdescribed by the material derivatives
the Navier–Stokes equationsd. The only approach to mode
ing these effects developed so far is based on the lubric
approximation, where the first two effects are assumed d
nant and the last two are treated as perturbationssmathemati
cally, surface tension can also be treated as a leading-
effect, but, in all applications, it is weak—see Sec. Vd. Thus,
depending on the parameters involved, various asymp
equations, taking into account some or all of the gover
effects, can be derivedssee, e.g., Refs. 7, 8, and 11d.

In the present paper, we shall use asmost generad
asymptotic equation, which takes into account all five eff
sit is derived in Appendix A and compared to previous m
els in Sec. VId. This equations will be expressed in terms
the following nondimensional variables:

û = u,

s1d
t̂ = Vt,

ĥ =Î gR

nV
S h

R
−

h2

2R2D s2d

fnote that, within the framework of the lubrication appro
mation, the second term ins2d is small—hence,ĥ is, essen
tially, the nondimensional thickness of the filmg. Then, omit-
ting the hats, we can write the governing equationfEq. sA45d

FIG. 1. Film in a rotating cylinder with horizontal axis.
of Appendix Ag in the form
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]h

]t
+

]

]u
Hh −

1

3
h3cosu + aF 2

15
h6]h

]u
scosud2

−
8

315
h7sinucosu −

2

15
h5sinuG

+
1

3
bh3S ]h

]u
+

]3h

]u3D +
1

3
«h3]h

]u
sinuJ = 0, s3d

where

a =
V2R

g
, b =

g

rgR2ÎnV

gR
, « =ÎnV

gR
. s4d

The first two terms in figure brackets describe the lead
order effectssviscosity and gravityd; and the terms involvin
« , a, and b describe hydrostatic pressure, inertia, and
face tension, respectively. We also comment that equa
similar to s3d have been previously used in Ref. 8 and R
9 and 10sfor comparisons with these papers, see Secs.
and VI C, respectivelyd.

For a steady-state solution,

hsu,td = h̄sud,

Eq. s3d yields

h̄ −
1

3
h̄3cosu +

1

3
«h̄3dh̄

du
sinu

+ aF 2

15
h̄6dh̄

du
scosud2 −

8

315
h̄7sinu cosu

−
2

15
h̄5sinuG +

1

3
bh̄3Sdh̄

du
+

d3h̄

du3D = q, s5d

where q is a constant of integrationsphysically, q is the
nondimensional mass fluxd. We shall also impose the perio
icity condition,

h̄su + 2pd = h̄sud. s6d

In what follows, the evolution equations3d will be used
to examine the stability ofh̄ with respect to small distu
bances. Assuming that

hsu,td = h̄sud + h8su,td,

whereh8 describes a disturbance, we substitutehsu ,td into
s3d and omit the nonlinear terms,

]h8

]t
+

]

]u
FCsudh8 + Dsud

]h8

]u
+ BsudS ]h8

]u
+

]3h8

]u3 DG = 0,

s7d

where

Csud = 1 − h̄2cosu + «h̄2dh̄

du
sinu

+ aF4

5
h̄5dh̄

du
scosud2 −

8

45
h̄6sinu cosu

−
2

h̄4sinuG + bh̄2Sdh̄
+

d3h̄
3D , s8d
3 du du
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Dsud =
1

3
«h̄3sinu +

2

15
ah̄6scosud2, Bsud =

1

3
bh̄3. s9d

Physically,C is the propagation speed of disturbances,
coefficient of the second derivative, −sD+Bd, plays the role
of effective diffusivity, whereas the fourth derivative term
Eq. s7d describes dissipative effects due to surface ten
Observe that, for someu, the diffusivity is negative—whic
often causes instability.

In this paper, we shall confine ourselves to harm
disturbances, i.e., solutions of the form

h8su,td = fsudeivt,

for which s7d yields

d

du
FCsudf + Dsud

df

du
+ BsudSdf

du
+

d3f

du3DG − ivf = 0.

s10d

This equation and the condition of periodicity,

fsu + 2pd = fsud, s11d

form an eigenvalue problem forf and v. If Im v.0, the
film is unstable.

III. THE SPECIAL CASE IN WHICH INERTIA AND
PRESSURE ARE NEGLIGIBLE „«=a=0, bÅ0…

In this section, an asymptotic technique for the stab
problem formulated above will be developed and tested
simple particular case, where inertia and the pressure g
ent are negligible, and the stability of the film is determi
by surface tension.13 Later on, the same technique will
applied to the general case.

Substituting«=a=0 into Eq.s5d for the steady state an
s10d for the disturbance, we obtain

h̄ −
1

3
h̄3cosu +

1

3
bh̄3Sdh̄

du
+

d3h̄

du3D = q s12d

and

d

du
FCsudf + BsudSdf

du
+

d3f

du3DG − ivf = 0, s13d

where

Csud = 1 − h̄2cosu + bh̄2Sdh̄

du
+

d3h̄

du3D, Bsud =
1

3
bh̄3.

s14d

In this section, we shall examine Eqs.s12d and s13d. Given
the stabilizing nature of surface tension, it is expected
the film is stable.

A. Steady state

Steady rimming flows with surface tension have b
thoroughly investigated in Ref. 16. Several regimes were
amined, including those with a “pool” of fluid formed at t
bottom of the cylinder or a shock formed on the cylind

side ssee also Refs. 17–19d. Unlike these papers, we shall

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
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t
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confine ourselves to the simplest case, where the flu
distributed continuously and surface tension is a small
turbation.

In this case, Eq.s12d can be solved using a simple p
turbation technique based on the smallness ofb,

h̄ = h̄s0d + bh̄s1d + Osb2d, s15d

where h̄s0d satisfies the leading-order approximation
Eq. s12d,

h̄s0d −
1

3
h̄s0d3cosu = q. s16d

This scubicd equation was examined in Refs. 3 and 4, wh
it was demonstrated that, forq,

2
3, it has a smooth uniqu

solution forh̄s0dsud. Next, substitution ofs15d into s12d yields

h̄s1d = −

1

3
h̄s0d3Sdh̄s0d

du
+

d3h̄s0d

du3 D
1 − h̄s0d2cosu

. s17d

Following this path, we can calculate as many terms o
pansions15d as necessary.

Note that, whenq approaches23 , h̄s0d develops steep gr
dients nearu=0 ssee, for example, Ref. 19d, and the surface
tension term in Eq.s12d may no longer be treated as a p
turbation sbecause it involves high-order derivativesd. As a
result, expansions15d fails in the limit q→ 2

3 , b=const. In
practice, however, even the leading termh̄s0d provides a goo
approximation for up toq=0.65—see Fig. 2, whereh̄s0d is
compared with the numerical solution of the exact equa
s12d sthe numerical technique is described in Appendix Bd.

B. Disturbances

Assumings15d, one can rearranges14d as follows:

C = Cs0d + bCs1d + Osb2d, B = bBs1d + Osb2d,

where

Cs0d = 1 − h̄s0d2cosu, s18d

Cs1d = − 2h̄s0dh̄s1dcosu + h̄s0d2Sdh̄s0d

du
+

d3h̄s0d

du3 D ,

s19d

Bs1dsud =
1

3
h̄s0d3.

Then,s13d becomes

d

du
FCs0df + bCs1df + bBs1dSdf

du
+

d3f

du3DG − ivf = 0.

s20d

Seek a solution ofs20d as a series inb,

s0d s1d 2 s0d s1d 2
f = f + bf + Osb d, v = v + bv + Osb d.
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The leading order yields a first-order ordinary differen
equationsODEd

d

du
sCs0dfs0dd − ivs0dfs0d = 0,

the solution to which is

fs0d =
1

Cs0dsud
expFivs0dE

0

u du8

Cs0dsu8dG . s21d

The periodicity condition requires

vs0d =
2pn

E
0

2p du

Cs0dsud

, s22d

wheren is an integersthe mode numberd. Observe that, t
leading order, Rev=0, i.e., the disturbance is neutra
stable, which agrees with the conclusions of BPT93 and
9 fthe latter paper also presenteds21d and s22dg. Finally, an
example of the leading-order eigenfunctions21d is shown in
Fig. 3.

The next order yields

d

du
sCs0dfs1dd − ivs0dfs1d

= ivs1dfs0d −
d

du
FBs1dSdfs0d

du
+

d3fs0d

du3 D + Cs1dfs0dG . s23d

s1d
This equation has a periodic solution forf if and only if its

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
.

right-hand side is orthogonal to the solutionf+ of the adjoin
problem. Given that we are currently considering a fi
order ODE, the latter is easy to find,

f+ = expF− ivs0dE
0

u du8

Cs0dsu8dG .

In fact, one does not really need to know thatf+ is the
adjoint solution. One can simply multiplys23d with f+ and
integrate fromu=0 to u=2p. After straightforward algebr
sinvolving integration by partsd, fs1d can be eliminated, an
we end up with

ivs1dE
0

2p du

Cs0d −E
0

2p HBs1dFS d3

du3

1

Cs0dD
+

4ivs0d

Cs0d S d2

du2

1

Cs0dD + 3ivs0dS d

du

1

Cs0dD2

− 6vs0d2 1

Cs0d2S d

du

1

Cs0dD − ivs0d3S 1

Cs0dD4

+ S d

du

1

Cs0dD +
ivs0d

Cs0d2G +
Cs1d

Cs0dJ ivs0d

Cs0d du = 0.

Expressingvs1d from this equation and taking the imagin

FIG. 2. Steady-state flow for«=a
=0, b=0.1, and various values of t
nondimensional flux q. Solid line
shows the numerical solution of t
exact equations12d, dotted line show
the leading-order asymptotic soluti
h̄s0d fi.e., that of Eq.s16dg.
part, we obtain
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Im vs1d =

vs0d2E
0

2p Bs1d

Cs0d3H1 −
1

Cs0d2Fvs0d2 + 4Cs0dd
2Cs0d

du2 − 11SdCs0d

du
D2GJdu

E
0

2p du

Cs0d

. s24d

FIG. 3. The leading-order eigenfun
tion fgiven by s21dg for q=0.6,n=5.
Solid line shows the real and ima
nary parts, dashed-dotted line sho
the absolute value.
-

e
na-
dly,

s

l so-

lica
w-

tion
q.
ms

e
s

s
ness

-

This expressionftogether with Eq.s16d for h̄s0d and expres
sionss18d, s19d, ands22d for Cs0d , Bs1d, andvs0dg is the main
result of this section. The sign of Imvs1d determines th
stability—unfortunately, we were unable to determine it a
lytically. It has been computed numerically, and, expecte
Im vs1d turned out to be negative for allq, which mean
asymptotic stability of all steady-state flows.

C. Discussion

Formulas24d has been tested against the numerica
lution of the exact eigenvalue problems11d and s13d sthe
numerical technique is described in Appendix Bd. The results
are shown in Fig. 4. One can see that the region of app
bility of the asymptotic solution rapidly contracts with gro
ing mode number.

To explain the deteriorating accuracy of formulas24d for

higher modes, observe that the mode number is, essentiall

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
-

the number of oscillations per period of the eigenfunc
ssee, for example, Fig. 3d. Then, the capillary term in E
s13d is proportional tobn4, whereas the leading-order ter
are proportional ton. Accordingly, our expansionsbased on
the smallness of the formerd fails for b*n−3. However, this
condition is not very restrictive, as highersnù2d modes ar
less important than the first onesin the following section, thi
question will be discussed in detaild.

Instead of the nondimensional fluxq, it is sometime
more convenient to use the mean nondimensional thick
of the film, defined by

kh̄l =
1

2p
E

0

2p

h̄ du. s25d

An approximate relationship betweenq and kh̄l can be es

y,tablished by solving the leading-order equations16d for a
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given q, then substituting the solutionh̄s0d into s25d. It turns
out that the two parameters are almost equal—see Fig.

D. The small- q limit

It is instructive to examine what happens with our res
asq→0. In this limit, the steady-state equations16d can be
solved using a series in powers ofq2,

h̄s0d = q + s1/3dq3cosu + Osq5d asq → 0. s26d

This simple formula explains two important features of
results obtained. First,s26d shows that, for smallq, h̄sud

becomes flatssee Fig. 2d. Second, it explains the approxi-

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
mate equality of the nondimensional mean thicknesskh̄l and
nondimensional fluxq ssee Fig. 5d. Indeed, substitutings26d
into s25d, we obtain

kh̄l = q + Osq5d asq → 0. s27d

Strictly speaking, this conclusion applies only to sm
q—but Fig. 5 shows thatkh̄l<q for the whole range 0,q
,

2
3 fobserve that, even forq= 2

3, the errors27d can be esti
mated ass 2

3
d5<0.0015g.

Equality s27d also allows one to relateq to the dimen

sional mean thicknesskh̄l, and thus define the small-q limit

FIG. 4. The decay ratesIm vd of
eigenproblem s13d and s11d. The
curves are marked with the mo
number. The solid line shows the n
merical solution ofs13d and s11d, the
dotted line shows the asymptotic so
tion, b Im vs1d, wherevs1d is given by
expressions24d. sad Im v vs b for q
=0.5; sbd Im v vs q for b=0.1.
in physical terms. It follows froms2d that
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kh̄l <Î g

nVR
kh̄l,

which we shall combine withs27d to obtain

q <Î g

nVR
kh̄l if q ! 1. s28d

Hence, the assumption of smallq, or equivalently smallkh̄l,
implies

kh̄l !ÎnVR

g
, s29d

which shows that the small-q limit is a kind of thin-film
approximation.

Using the small-q form of the steady state, we can si
plify formula for Im vs1d. Substitutings26d into expression
s18d ands19d for Cs0d , Bs1d, then substituting those intos24d,
we obtain

Im vs1d < 5 − 3q7 for n = 1

−
1

3
n2sn2 − 1dq3 for n ù 2,6 if q ! 1.

s30d

Observe that the decay rate of the first mode isOsq7d, and
those of higher modes areOsq3d—hence, the former is muc

smaller than the latter. Moreover, even though this conclu-

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
sion formally applies only to smallq, Fig. 4 shows that it i
valid for the whole range 0,q,

2
3. Thus, it is natural t

assume that the first mode is always the first one to suc
to instability, should that appear in the system.

IV. THE GENERAL CASE

A. Steady state

As before, we shall need only the leading-order ste
state, i.e., solutionh̄s0d determined by Eq.s16d. Readers in
terested in further details are referred to the above-ment
papers.16–19

B. Disturbances

Employing the same asymptotic method as in the
«=a=0 spreceding sectiond, we obtain

Im v = « Im v«
s1d + a Im va

s1d + b Im vb
s1d

+ Os«2,a2,b2,«a,«b,abd, s31d

where

Im va
s1d =

vs0d2E
0

2p Ds1d

Cs0d3du

E2p du

Cs0d

, s32d

FIG. 5. The nondimensional me
thickness of the filmfdefined bys25dg
vs nondimensional fluxq, as deter
mined by the leading-order stead
state equations16d si.e., for a=b=«
=0d. The dashed line corresponds
the small-q limit.
0
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Im vb
s1d =

vs0d2E
0

2p Bs1d

Cs0d3H1 −
1

Cs0d2Fvs0d2 + 4Cs0dd
2Cs0d

du2 − 11SdCs0d

du
D2GJdu

E
0

2p du

Cs0d

, s33d
e
ssu
onic
has
e to
d

, do
al-
r,
hich
stion

sta-
Im v«
s1d = 0. s34d

As before,Cs0d , Bs1d, and vs0d are given bys18d, s19d, and
s22d, respectively, and

Ds1d = s2/15dh̄s0d6scosud2.

Not surprisingly,vb
s1d coincides withvs1d calculated in th

preceding section; observe also that the hydrostatic pre
gradient does not contribute to the growth rate of harm
solutionsfsees34dg. This does not, however, mean that it
no influence on the stability of the flow, as it may give ris
nonharmonic growing solutionssas shown in Refs. 11 an

12d.

and

g
—
ute

n
-
.

will

e
small-q limit, we can reduces31d–s34d to

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
re

The other two effects, inertia and surface tension
affect the stability of harmonic solutions. The former is
ways destabilizingfIm va

s1d.0, sees32dg, whereas the latte
as shown in the preceding section, stabilizes the flow. W
of the two effects is stronger? The answer to this que
depends on the parameters involved: for anya andb, there
is a threshold valueq0, such that flows withq,q0 are un-
stable. Indeed, substitutings32d–s34d into s31d and omitting
small terms, one can derive the following condition of in
bility:

fsqd ,
a

b
, s35d
where
fsqd =

E
0

2p Bs1d

Cs0d3H 1

Cs0d2Fvs0d2 + 4Cs0dd
2Cs0d

du2 − 11SdCs0d

du
D2G − 1Jdu

E
0

2p Ds1d

Cs0d3du

. s36d
-

c-
lity,
film

f
rwise
es
Observe thatfsqd depends on the mode numbern only
throughvs0d in its numerator. Recalling thatvs0d grows with
n fsees22dg, we conclude that highersnù2d modes can grow
only if the first mode grows. Thus, the flow is unstable if
only if criterion s35d and s36d is satisfied for thefirst mode.

Outside the small-q limit sconsidered in the followin
sectiond, the functionfsqd has to be computed numerically
or, physically, it would be more convenient to comp
fskh̄ld, wherekh̄l is the mean nondimensional thicknessfre-
call that kh̄l is related toq by formula s25dg. This has bee
done, and the instability region on thesa /b ,kh̄ld plane, de
termined by criterions35d and s36d, is shown see Fig. 6
Observe that, counterintuitively, thinner filmsswith small
kh̄ld are more unstable than thicker films—this question
be discussed in the following section.

C. The small- q limit

If q is small, criterions35d and s36d can be simplified
asymptotically. Puttingn=1 sfirst moded and assuming th
Im vs1d <
1

15
aq6 − 3bq7 if q ! 1. s37d

Then, instability exists if and only if

45q ø
a

b
if q ! 1, s38d

where the 45q is the small-q limit of fsqd.
It is instructive to rewrite the small-q criterion s38d in

dimensional form. Making use of formulas28d and expres
sionss4d for a andb, we obtain

kh̄l ,
rV2R4

45g
if kh̄l !ÎnVR

g
s39d

fkeep in mind that this criterion holds subject to thesdimen-
sionald thin-film condition s29dg. Thus, increasing the velo
ity of rotation or the cylinder’s radius strengthens instabi
whereas increasing surface tension or thickness of the
weakens it. On the other hand,s39d is independent o
n—hence, a change in viscosity cannot stabilize an othe
unstable film or vice versasnote that this conclusion appli
only to the small-q limit d.
Condition s39d can also be written in the form
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B . 1,

where

B =
rV2R4

45gkh̄l
s40d

is a nondimensional parameter characterizing the rel
strengths of inertia and surface tension. Note that,
though s39d was derived for smallq, B should retain it
physical meaning for the general case as well.

The small-q limit also allows us to understand why thi
films are more unstable than thin onesssee the end of th
preceding sectiond. Observe that the contribution of surfa
tension to the growth ratefformula s37dg is proportional to
q7, whereas that of inertia is proportional toq6. Hence, we
conclude that thesstabilizingd effect of surface tension d
pends on the film’s thickness more strongly than thesdesta
bilizingd effect of inertia—which explains the stabilization

¯
the film with growingkhl.

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
V. EXAMPLES

In this section, we shall apply criterions35d and s36d to
“real” fluids, such as, for example, water, for which

n = 1.753 10−6 m2/s, g = 0.0728 N/m,

s41d
r = 1.03 103 kg/m3

sthese parameters correspond to 20 °Cd. In order to increas
the effect of surface tension and thus improve the chanc
stability, we shall consider a relatively small cylinder,

R= 1.5 cm. s42d

The so-called volume fraction will be fixed at 1%, i.e.,

2kh̄l
R

= 0.01, s43d

and the spin rate will be fixed at 1.5 revolutions per, i.e

V = 2p 3 1.5 s−1. s44d

Using our asymptotic method to calculate the growth
Im vs1d for parameterss41d–s44d, we obtain the following

FIG. 6. The stability of the film on th
sa /b ,kh̄ld plane.a and b are nondi
mensional parameters characteriz
inertia and surface tensionfa /b
=sgR/nVd1/2sV2R3r /gdg , kh̄l is the
nondimensional thickness of the fi
skh̄l<sg/nVRd1/2khld. The dashe
line corresponds to the small-q sthin
filmd limit; the shaded area corr
sponds toqù

2
3skh̄l*0.707d where no

continuous solutions exist for th
leading-order steady-state equa
s16d.
dimensionale-folding time:

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



ed b
,
ry
cal-

e

rial
,

t
t of
ting

-

ting
vis-
ich

ote
n

of

ws

s

rtial

ing
s ob

ents
le,”

n of
vari-
eter-

qua-
on. It
and

oach
.
g

o-
other

le, a
e to

ob-

y of
en-
in

x-
er
e-

dif-

of
im-

052106-10 E. S. Benilov and S. B. G. O’Brien Phys. Fluids 17, 052106 ~2005!
t =
1

V Im vs1d < 11.5 min

fit has been taken into account here that the time is scal
V−1, see s1dg. Note that, if we ignore surface tensiont
hardly changesst<10.9 mind, which means that capilla
effects are negligible. This conclusion can be verified by
culating B: substituting s41d–s44d into s40d, we obtain B
<18@1. Thus, in order to stabilize inertial instability, w

need to decreaseR or V, or increaseg or kh̄l.
Unfortunately,R cannot be changed in most indust

applicationssin coating of fluorescent bulbs, for exampleR

is the radius of the bulbd. The thickness of the filmkh̄l canno
be controlled either, as it is determined by the amoun
coating to be put on the bulb. Moreover, during the coa

process, the solvent is being evaporated, i.e.,kh̄l is gradually
decreasing to 0. Thus, to inhibit instability,V has to be con

tinuously reducedsadjusted to the current value ofkh̄ld.
Note, however, that—instead of completely elimina

instability—we can reduce its growth rate by increasing
cosity. Replace, for example, water with glycerin, for wh

n = 1.183 10−3 m2/s, g = 0.0834 N/m,

r = 1.263 103 kg/m3.

Then, the correspondinge-folding time,

t < 7 3 1012 min,

is so large that the instability can be simply ignored. N
thatB, in this case, is still largesB<27d, i.e., surface tensio
is negligible.

In order to further illustrate the strong dependencet
on n, we shall calculatet for the small-q limit. To do so,
assume for simplicity thatb=0 sno surface tensiond, after
which s37d yields

Im vs1d < s1/15daq6 if q ! 1.

Then, make use of expressions28d for q and expressions4d
for a,

t =
15R2n3

g2kh̄l6
if kh̄l !ÎnVR

g
. s45d

Thus, if n is increased by a factor of 5, the instability slo
down by a factor of 125.

Given that the viscosity coefficientn of any fluid can be
dramatically increased by mixing it with another fluidsof a
greaternd, this “method” of inhibiting inertial instability i
much simpler than the one based on surface tension.

VI. COMPARISON TO EARLIER WORK

In this section, we shall compare our results on ine
instability to those obtained in Refs. 7–9.

A. The paper by Hosoi and Mahadevan „Ref. 8…

In this paper, the effect of inertia was examined us
the same approximations as ours, but the inertia term

tained in the two papers differ significantly. The discrepancy

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
y
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stems from the assumption made in Ref. 8 that “ev
equilibrate themselves quickly over the fast time sca
where the “fast time scale” means the period of rotatio
the cylinder. On the basis of this assumption, the time
able was nondimensionalized by the slow time scale d
mined by viscosityfsee formulas2.14d of Ref. 8g.

Note, however, that the time scale of an evolution e
tion cannot be determined on the basis of an assumpti
should be determined by balancing the time derivative
the largest of the other terms in the equation. If this appr
is applied to the problem at hand, it yields thefast time scale
Indeed, observe thatt in Eq. s3d is nondimensionalized usin
the period of rotationV−1—and any other choice would vi
late the balance between the time derivative and the
terms in the equation.

As a result of the alternative choice of the time sca
term has been lost in the expression for mass flux du
inertia derived in Ref. 8.

To be specific, consider the mass flux due to inertia
tained in our paper,

SE
0

h

v drD
inertia

= aF 5

24
h4]h

]t
cosu +

5

24
h4]h

]u
cosu

−
2

15
h5sinu −

3

40
h6]h

]u
scosud2

+
37

840
h7cosu sinuG s46d

fthis expression has been extracted from formulasA39d of
Appendix A and changed to the notation of the main bod
the paperg. After straightforward algebra described in App
dix A, s46d gives rise to the following diffusion term
Eq. s3d:

a
]

]u
F 2

15
h6scosud2]h

]u
G ,

where the factor

DBO = − s2/15dah6scosud2

plays the role of diffusivity.
If, however, we compares46d to the corresponding e

pression derived in Ref. 8fsee the formula without a numb
following their Eq. s2.20dg, the latter misses the tim
derivative termfthe first term ins46dg. All other terms of the
two expressions coincide, but the omission results in a
ferent expression for the diffusivity,

DHM = af− s5/24dh4cosu + s3/40dh6scosud2g .

Observe that “our” expression,DBO, is always negative,
whereasDHM can beeither negative or positive, depending
on h andu.

Given that negative diffusivity is the main mechanism
inertial instability, this omission can have a significant

pact on the dynamics of the flow.
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B. The paper by Johnson „Ref. 7…

This paper examined three limiting cases. Inertia
taken into account in the one considered in Sec. IV.

Unlike the present paper and Ref. 8, Ref. 7 examine
effect of inertia using a short-wave approximation. Acco
ingly, the steady-state flow was assumed “slowly varyin
theu direction” and, hence, “locally independent ofu.” Note,
however, that the steady-state flow is defined on an orde
interval, 0øu,2p, and therefore cannot be assumed slo
varying. What the author meant was, in fact, that theu scale
of the steady state is much larger than the wavelength o
disturbance—which effectively implies that the wavelen
of the latter is short. Most importantly, this assumption
quires introduction of a short-scale spatial variable. In o
words, since the spatial scale of the steady state cann
scaled up, the spatial scale of the disturbance shou
scaled down.

Unfortunately, this has not been done, and the prob
was analyzed in terms of the “natural” variableu. As a result
Eqs. s15ad, s17d, s21d, and s22d derived in Ref. 7 miss
number of important terms involving high-order derivati
with respect tou.

C. The papers by O’Brien „Ref. 9… and Benilov,
Kopteva, and O’Brien „Ref. 10…

These papers examined the stability of the film affe
by hydrostatic pressure and surface tensionsinertia was no
taken into accountd, using an equation equivalent to our E
s3d with a=0. It was shown numerically that unstable mo
exist in this case, which appears to contradict our re
srecall that we concluded that pressure gradient is a neu
stable effect, while surface tension is even a stabilizing od.

To reconcile the results obtained in Refs. 9 and 10
those of the present work, observe that, in the former, in
bility was found forhighereigenmodessi.e., those that mak
many oscillations per periodd. The present work, on the oth
hand, is concerned mainly with the first eigenmode, as
asymptotic method that we use is inapplicable to the hi
modes.

Note also that, for the higher modes, the hydros
pressure term in the original equations3d is comparable t
the leading-order terms,which violates the lubrication ap
proximation under whichs3d was derived. In other words, th
unstable modes found in Refs. 9 and 10 should be ree
ined using a model that is not based on the lubrication
proximation.

VII. CONCLUDING REMARKS

We have examined the stability of a thin viscous film
a rotating cylinder with respect to harmonic disturban
Three effects were taken into account: inertia was dem
strated to cause instability, surface tension turned out to
stabilizing influence, whereas the hydrostatic pressure g
ent does not affect the stability at all. An instability criter
fcondition s35d and s36dg has been derived, reflecting t
balance of inertia and surface tension—using which it
shown that the effect of the latter is weak. The inertial in

bility, however, can still be inhibited by viscosity, which can

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
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make the characteristic time of growth so largesliterally,
millions of yearsd that the film would appear effective
stable.

Finally, we note that at least some of the experim
with rimming flows show that unstable disturbances dep
on the axial variablesi.e., vary along the cylinder’s axisd.
This suggests the need to extend the results of the pr
study to the full three-dimensional problem.

APPENDIX A: DERIVATION OF EQ. „3…

1. The nondimensional parameters

Consider a thin film of incompressible liquid on the
side surface of a cylinder of radiusR, with a horizontal axis
which is rotating about this axis with constant angular ve
ity V ssee Fig. 1d. We shall use polar coordinatessr ,ud, with
the origin at the center of the cylinder, so the thicknessh of
the film depends on the polar angleu and the timet. We shal
also introduce the densityr of the film, its kinematic viscos
ity n and surface tensiong, and also the acceleration due
gravity g.

In addition toR, the problem includes another charac
istic length. To introduce it, observe that the volume of fl
per unit length of the cylinder,

E
0

2p E
R−h

R

r dr du =E
0

2p SRh−
1

2
h2Ddu,

is conserved, and we can define

khl =
1

2pR
E

0

2p SRh−
1

2
h2Ddu.

If h!R swhich is the limit we are interested ind, khl repre-
sents the mean thickness of the film.

The evolution of the film is governed by four nondim
sional parameters. First, we shall introduce the nondim
sional mean thickness,

d =
khl
R

. sA1d

Second, we define the ratio of the gravitational and cen
gal forces,

G =
g

V2R
, sA2d

whereg is the acceleration due to gravity. Third, we int
duce a parameter characterizing viscositysagain, relative t
rotationd,

N =
n

Vkhl2 , sA3d

wheren is the kinematic viscosity. Finally, the most con
nient parameter to characterize capillary effects is

G =
gkhl

rV2R4 , sA4d

where g is the coefficient of surface tension andr is the

density of the film.

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



as-

and
die
de

sity
two
here
die
the
.e.,

the

rfac
sam

n-
the

re

,
der

ed

all

nd
cur-

s at
tself.

rm.

ndi-

at
ters

i-

052106-12 E. S. Benilov and S. B. G. O’Brien Phys. Fluids 17, 052106 ~2005!
The lubrication approximation corresponds to the
sumptions

d ! 1, N @ 1, G & N, sA5d

in which case viscosity is on par or stronger than gravity,
in any case stronger than the hydrostatic pressure gra
and inertia. The importance of surface tension, in turn,
pends onG. We shall consider the simplest case,

G ! G , N, sA6d

where capillary effects are weaker than gravity and visco
In addition to surface tension, there are another

groups of small terms in the governing equations. First, t
are terms associated with the hydrostatic pressure gra
and the curvature of the flow—the ratio of these to
leading-order terms isd. Second, there are inertia terms, i
the material derivatives in the Navier–Stokes equations—
ratio of these to the leading-order terms isG−1. In order to
derive the most general equation, we assume that su
tension, hydrostatic pressure, and inertia are all of the
order

G

G
, d ,

1

G
. sA7d

2. The governing and asymptotic equations

A two-dimensional flow of viscous fluid inside a cyli
der with horizontal axis is convenient to describe by
radial and angular velocitiesusr ,u ,td and vsr ,u ,td, and the
pressurepsr ,u ,td sr andu are the polar coordinates,t is the
timed. In terms ofu, v, and p, the governing equations a
ssee, e.g., Ref. 20d

]u

]t
+ u

]u

]r
+

v
r
S ]u

]u
− vD +

1

r

]p

]r

= − g sinu + nF1

r

]

]r
Sr

]u

]r
D +

1

r2S ]2u

]u2 − u − 2
]v
]u
DG ,

sA8d

]v
]t

+ u
]u

]r
+

v
r
S ]v

]u
+ uD +

1

rr

]p

]u

= − gcosu + nF1

r

]

]r
Sr

]v
]r
D +

1

r2S ]2v
]u2 − v + 2

]u

]u
DG ,

sA9d

]

]r
srud +

]v
]u

= 0, sA10d

whereg is the acceleration due to gravity,r is the density
andn is the kinematic viscosity. We assume that the cylin
is rotating with constant angular velocityV, which corre-
sponds to the following boundary conditions:

u = 0, v = VR at r = R, sA11d

where R is the radius of the cylinder. We shall also ne

boundary conditions on the free surface of the film, i.e., at

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
nt
-

.

nt

e
e

r =R−hsu ,td, whereh is the thickness of the film. We sh
require that

n · sn = gk, t · sn = 0 at r = R− h, sA12d

where

n =
1

Î1 +
1

sR− hd2S ]h

]u
D23 1

1

R− h

]h

]u
4, t = 3 1

R− h

]h

]u

− 1
4

sA13d

are the unit normal and a tangentsnot necessarily unitd,

s = 3 2rn
]u

]r
− p

rn

r
S ]u

]u
− vD + rn

]v
]r

rn

r
S ]u

]u
− vD + rn

]v
]r

2rn

r
S ]v

]u
+ uD − p 4

sA14d

is the stress tensorssee Ref. 20d, g is the surface tension, a
k is the curvature of the surface. An expression for the
vature can be extracted from Ref. 21,

k =

sR− hd2 + sR− hd
]2h

]u2 + 2S ]h

]u
D2

FsR− hd2 + S ]h

]u
D2G3/2 . sA15d

We shall also require that the normal velocity of particle
the surface matches the normal velocity of the surface i
A straightforward calculation yields

]h

]t
+

v
R− h

]h

]u
+ u = 0 at r = R− h.

This condition can be rewritten in a more convenient fo
Integrate the continuity equationsA10d with respect tor
from R−h to R and use the first one of the boundary co
tions sA11d,

− fsR− hdugr=R−h +
]

]u
E

R−h

R

vdr −
]h

]u
v = 0.

Combining the last two equalities, we obtain

sR− hd
]h

]t
+

]

]u
E

R−h

R

vdr = 0. sA16d

EquationssA8d–sA16d form a closed set.
As mentioned in the preceding section, the problem

hand is governed by four nondimensional parame
d , G, N, andG fdefined bysA1d–sA4dg. Summarizing appl
cability conditionssA5d–sA7d, we obtain

N , G ,
1

d
, G , 1,
or, equivalently,
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N =
N8

d
, G =

G8

d
, G = G8, sA17d

whereN8 , G8, andG8 are constants of order one. The co
sponding nondimensional variables are

r̃ =
1

d

R− r

R
, ũ = u, t̃ = Vt, sA18d

ũ =
1

d

u

RV
, ṽ =

v
RV

, p̃ =
dp

rsRVd2, s̃ =
ds

sRVd2 ,

sA19d

h̃ =
1

d

h

R
, k̃ = Rk. sA20d

Substituting sA17d–sA20d into the governing equation
sA8d–sA16d, we obtainshats omittedd

dS ]u

]t
− u

]u

]r
+

v
1 − dr

]u

]u
D −

v2

1 − dr
−

1

d2

]p

]r

= −
G8

d
sinu + N8F ]2u

]r2 −
d

1 − dr

]u

]r

d ]2u ]v

+

s1 − drd2Sd
]u2 − du − 2

]u
DG , sA21d

-
te a

we shall relatev to h and thus close Eq.sA29d.
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]v
]t

− u
]v
]r

+
v

1 − dr

]v
]u

+
]uv

1 − dr
+

1

1 − dr

1

d

]p

]u

= −
G8

d
cosu +

N8

d
F ]2v

]r2 −
d

1 − dr

]v
]r

+
d2

s1 − drd2S ]2v
]u2 − v + 2d

]u

]u
DG , sA22d

du − s1 − drd
]u

]r
+

]v
]u

= 0, sA23d

u = 0, v = 1, atr = 0, sA24d

n · sn = G8k, t · sn = 0 at r = h, sA25d

n =
1

Î1 +
d2

s1 − dhd2S ]h

]u
D2

3 1

d

1 − dh

]h

]u
4 ,

sA26d

t = 3 d

1 − dh

]h

]u 4 ,
− 1
s = 3 − 2N8d2]u

]r
− p

dN8

1 − dr
Fd2]u

]u
− dv − s1 − drd

]v
]r
G

dN8

1 − dr
Fd2]u

]u
− dv − s1 − drd

]v
]r
G 2N8d2

1 − dr
S ]v

]u
+ duD − p 4 , sA27d
k =

s1 − dhd2 + ds1 − dhd
]2h

]u2 + 2d2S ]h

]u
D2

Fs1 − dhd2 + d2S ]h

]u
D2G3/2 , sA28d

s1 − dhd
]h

]t
+

]

]u
E

0

h

v dr = 0. sA29d

Observe that the pressure term in Eq.sA21d appears to ex
ceed all other terms—which, however, does not crea
problem as the leading-orderp is constantssee belowd.

Now, seek a solution of the form

u = us0d + dus1d + Osd2d, v = vs0d + dvs1d + Osd2d,

p = ps0d + dps1d + Osd2d.

We shall pursue the following plan: using Eqs.sA21d–sA28d,
To the leading order,sA21d–sA28d yield

−
]ps0d

]r
= 0,

]ps0d

]u
= G8cosu − N8

]2vs0d

]r2 ,

sA30d
]us0d

]r
=

]vs0d

]u
,

us0d = 0, vs0d = 1 at r = 0, sA31d

ps0d = G8,
]vs0d

]r
= 0 at r = h. sA32d
Solving sA30d–sA32d, we obtain
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ps0d = G8,

vs0d = 1 +
G8

N8
S1

2
r2 − rhDcosu, sA33d

us0d =
G8

N8
FS1

2
r2h −

1

6
r3Dsinu −

1

2
r2hucosuG .

In the next order, we need onlyps1d andvs1d,

−
]ps1d

]r
= − G8sinu, sA34d

]vs0d

]t
− us0d]vs0d

]r
+ vs0d]vs0d

]u
+

]ps1d

]u

= N8S ]2vs1d

]r2 −
]vs0d

]t
D , sA35d

vs1d = 0 at r = 0, sA36d

ps1d = G8Sh +
]2h

]u2D,
]vs1d

]r
= − vs0d at r = h. sA37d

The solution tosA34d–sA37d is

ps1d = sr − hdsinu + G8Sh +
]2h

]u2D ,

vs1d =
G8

N82FS1

2
rh2 −

1

6
r3DS ]h

]t
+

]h

]u
Dcosu − S1

3
rh3

−
1

6
r3h +

1

24
r4DsinuG +

G82

N83FS 1

24
r4h

−
1

6
rh4D ]h

]u
scosud2 − S 1

360
r6 −

1

60
r5h +

1

24
r4h2

−
1

10
rh5Dcosu sinuG +

G8

N8
FS1

3
r3 − r2h

+
3

2
rh2Dcosu + Srh −

1

2
r2D ]h

]u
sinuG − r −

G8

N8
S ]h

]u

+
]3h

]u3DS r2

2
− rhD . sA38d

SummarizingsA33d and sA38d, we obtain

E
0

b

vdr = 1 −
G8

N8

1

3
h2cosu + dH G8

N82F 5

24
h4S ]h

]t

+
]h

]u
Dcosu −

2

15
h5sinuG

−
G82

N83F 3

40
h6]h

]u
scosud2 −

37

840
h7cosu sinuG

+
G8

N8
S1

2
h4cosu +

1

3
h3husinuD −

1

2
h2

G8 1 3 ]h ]3h 2
+
N8
F

3
h S

]u
+

]u3DGJ + Osd d. sA39d
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Substitution ofsA39d into sA29d yields

s1 − dhd
]h

]t
+

]

]u
Sh −

G8

N8

1

3
h3cosuD

+ d
]

]u
H G8

N82F 5

24
h4S ]h

]t
+

]h

]u
Dcosu −

2

15
h5sinuG

−
G82

N83F 3

40
h6]h

]u
scosud2 −

37

840
h7cosu sinuG

+
G8

N8
S1

2
h4cosu +

1

3
h3]h

]u
sinuD −

1

2
h2

+
G8

N8
F1

3
h3S ]h

]u
+

]3h

]u3DGJ = Osd2d. sA40d

Note that the first two expressions in square brackets
contributed by inertia, the third one is contributed by
hydrostatic pressure gradient, and the fourth one, by su
tension.

Rewriting sA40d in terms of

û = u, t̂ = t, ĥ =ÎG8

N8
h, sA41d

omitting the hats, and introducing

a =
d

G8
, « = dÎN8

G8
, b = d

G8N81/2

G83/2 , sA42d

we obtain

s1 − «hd
]h

]t
+

]

]u
Sh −

1

3
h3cosuD +

]

]u
HaF 5

24
S ]h

]t

+
]h

]u
Dh4cosu −

2

15
h5sinu −

3

40
h6]h

]u
scosud2

+
37

840
h7sinu cosuG + «FS1

2
h4cosu

+
1

3
h3]h

]u
sinuD −

1

2
h2G + bF1

3
h3S ]h

]u
+

]3h

]u3DGJ
= Osd2d. sA43d

This equation can be simplified. First, observe that its ze

order,
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]h

]t
+

]h

]u
=

]

]u
S1

3
h3cosuD + Osdd,

can be “resubstituted” into the first of the first-order ter
which yields, after straightforward algebra,

s1 − «hd
]h

]t
+

]

]u
Hh −

1

3
h3cosu

+ aF 2

15
h6]h

]u
scosud2 −

8

315
h7sinu cosu

−
2

15
h5sinuG

+ «FS1

2
h4cosu +

1

3
h3]h

]u
sinuD −

1

2
h2G

+ bF1

3
h3S ]h

]u
+

]3h

]u3DGJ = Osd2d. sA44d

fNote that this equation is not equivalent tosA43d, but as-
ymptotically equivalent, as we have omitted termsOsd2d.g
Second, we shall introduce

h = h − s1/2d«h2.

It terms ofh, sA44d becomes

]h

]t
+

]

]u
Hh −

1

3
h3cosu + aF 2

15
h6]h

]u
scosud2

−
8

315
h7sinu cosu −

2

15
h5sinuG +

1

3
«h3]h

]u
sinu

+
1

3
bh3S ]h

]u
+

]3h

]u3DJ = Osd2d sA45d

fagain, this equation isasymptoticallysnot exactlyd equiva-
lent to its predecessorg.

Finally, dropping the unspecified small terms on
right-hand side ofsA45d, we obtain Eq.s3d, as required. Ex
pressionss4d for the coefficients of this equation follow fro
sA17d and sA42d, whereas expressionss1d and s2d for the
nondimensional variables followsA18d, sA20d, sA41d, and
sA17d and sA1d–sA4d

APPENDIX B: NUMERICAL METHODS

In this appendix, we shall describe the numerical te
niques used for solving the boundary-value problems12d and
s6d sfor the steady stated, and the eigenvalue problems13d
and s11d sfor disturbancesd.

1. Boundary-value problem „12… and „6…

Rewrite Eq.s12d as a set of three first-order equation

du1

du
= u2,

du2

du
= u3,

du3

du
=

q − u1 + s1/3du1
3cosu

s1/3dbu1
3 − u2,

sB1d

whereu1=h̄. As the system is subject to periodic bound
conditions, the easiest way to deal with these is to intro

three extra unknowns,v1, v2, v3, which satisfy

Downloaded 20 May 2005 to 193.1.100.105. Redistribution subject to AIP
dv1

du
= 0,

dv2

du
= 0,

dv3

du
= 0 sB2d

sthis method has been previously used in BPT93d. Then, the
boundary conditions are

u1s0d = v1s0d, u2s0d = v2s0d, u3s0d = v3s0d, sB3d

u1s2pd = v1s2pd, u2s2pd = v2s2pd, u3s2pd = v3s2pd.

sB4d

The two point boundary-value problemsB1d–sB4d can then
be solved using the an appropriate NAG routine, D02TK

2. Eigenvalue problem „13… and „11…

Observe that the coefficients ofs13d involve four deriva
tives of h̄sud. The first two derivatives are available direc
asu2, u3 ssee the preceding sectiond, and the third derivativ
can be computed as the right-hand side of the last equat
setsB1d. Finally, the fourth derivative can be obtained us
the formula

d2u3

du2 = −
9qu2

bu1
4 +

6u2

bu1
3 − u3,

which can be derived by differentiating the last equatio
set sB1d.

Next, rewrite the eigenvalue problems13d ands11d in the
form

a0sudf + a1sud
df

du
+ a2sud

d2f

du2 + a3sud
d3f

du3 + a4sud
d4f

du4

= sf, sB5d

wheres= iv and

a0 =
dC

du
, a1 = C +

dB

du
, a2 = B, a3 =

dB

du
, a4 = B.

fRecall thatB andC are related toh̄ by s14d.g We shall write
aksud andfsud as complex Fourier series,

aksud = o
j=−`

`

ak,ne
inu, fsud = o

j=−`

`

fne
inu,

whereak,n are given by

ak,n =
1

2p
E

0

2p

aksude−inudu,

and the Fourier coefficientsfn are unknown. Using th
identity

S o
n=−`

`

ane
inuDS o

n=−`

`

bne
inuD = o

m=−`

` S o
n=−`

`

am−nbnDeimu,

we can rewritesB5d in the form

o
k=0

4

o
m=−`

` F o
n=−`

`

ak,m−nsindkfnGeimu = s o
m=−`

`

fmeimu,
which can be further rearranged into
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o
n=−`

`

Amnfn = sfm, sB6d

where

Amn= o
k=0

k=4

ak,m−nsindk.

EquationsB6d is, essentially, an eigenvalue problem fo
given matrixA =hAmnj of infinite order, withf=hfnj ands
being the eigenvector and eigenvalue. In practice,A andf
can be truncated at a large integerN, so that −Nøm,n
øN, in which casesB6d is approximated by an eigenval
problem for as2N+1d3 s2N+1d matrix. This eigenvalu
problem was solved using an appropriate NAG routine
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