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Inertial instability of a liquid film inside a rotating horizontal cylinder
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We examine the dynamics of a thin film of viscous fluid on the inside surface of a cylinder with
horizontal axis, rotating about this axis. The stability of the film has been previously explored using
the leading-order lubrication approximation, under which it was found to be neutrally stable. In the
present paper, we examine how the stability of the film is affected by higher-order corrections, such
as inertia(described by the material derivatives in the Navier—Stokes equatisumgace tension,

and the hydrostatic pressure gradient. Assuming that these effects are weak, we derive an asymptotic
equation which takes them into account as perturbations. The equation is used to examine the
stability of the steady-state distribution of film around the cylin@denming flow) with respect to

linear disturbances with harmonic dependence on {moemal modesk It is shown that hydrostatic
pressure gradient does not affect those at all, and the effect of surface tension is weak—whereas
inertia always causes instability. The inertial instability, however, can be inhibited by viscosity,
which can make the characteristic time of growth so large that the film would be effectively
stable. ©2005 American Institute of PhysidDOI: 10.1063/1.1905964

I. INTRODUCTION given its complexity, it was examined numerically. The main
conclusion of both papers was that the instability is mostly
Rimming flows, where a thin film of liquid is entrained caused by inertia. An alternative source of instability, result-
on the inside of a rotating cylinder, are of considerable pracing from the interaction of hydrostatic pressure and surface
tical significance. In rotational mouldirfgliquid thermoset-  tension, has been suggested in Refs. 9 and 10. Finally, a
ting plastic is placed inside a mould, which is then rotated tanechanism of instability based solely on the hydrostatic
distribute the liquid as uniformly as possible. In the coatingpressure effect has been put forward in Refs. 11 and 12.
of fluorescent light bulb a suspension consisting of a coat- In the present paper, we shall reexamine the effect of
ing solute and a solvent is placed inside a spinning glasiertia, with surface tension and hydrostatic pressure also
tube. Then, the solvent is evaporated off to leave the coatingncluded in the model. We shall confine ourselves to normal
on the tube. modes, i.e., linear disturbances with harmonic dependence
Most of the theoretical work to date has made use of then time, which will enable us to examine the problem ana-
so-called lubrication approximation, where the inertia andytically and in detail.
pressure terms of the Navier—Stokes equations are dominated The paper has the following structure. In the following
by viscous effects and gravity. The seminal work has beegection, the problem is formulated mathematically. In Sec.
carried out in Ref. 3, where a leading-order lubrication!ll, we develop an asymptotic method for studying the sta-
theory was derived. This was further developed in Ref. 4bility of the film and test it on a simple particular case, where
where the lubrication approximation was used to calculatéhe inertia and hydrostatic pressure are weak and the dynam-
the steady-state distribution of film around the cylinder. ~ics of the film is determined by surface tension. In Sec. IV,
Note, however, that almost all experimentdrave com- ~We apply our method to the full problem, and thus obtain a
mented on the occurrence of instability, which disrupts thestability criterion reflecting the balance of theestabilizing
film and prevents the solute from distributing evenly. Yet, it éffect of inertia and théstabilizing effect of surface tension;
was demonstrated in BPT93 that the leading-order lubricalt Will lso be demonstrated that the hydrostatic pressure gra-
tion model is neutrally stable. As neutral stability is the mostdient does not affect the stability of normal modes. In Sec. V,
precarious stability possible, an obvious approach is to exWe shall consider examples based on the parameters of “real”
tend the lubrication model to a higher order—to see if weakUids (water and glycerin Finally, in Sec. VI, we shall ex-
higher-order effects sway the leading-order balance to eithé_?la'” the differences between our results and those obtained
asymptotic stability or instability. Four such attempts have!l Refs. 7-9.
been mad§.
In Ref. 7, several higher-order models, describing thg FORMULATION
effects of inertia, surface tension, and transvéesaal) vari-
ability were examined analytically. Reference 8, in turn,  Consider a thin film of incompressible liquid on the in-
dealt with a model includingll effects simultaneously— side surface of a cylinder of radil with a horizontal axis,
which is rotating about this axis with constant angular veloc-

Author to whom correspondence should be addressed. Electronic mailty € (_S?e Fig. 1 We shall use po'lar coordinat(as'e), with
eugene.benilov@ul.ie the origin at the center of the cylinder, so the thicknless

1070-6631/2005/17(5)/052106/16/$22.50 17, 052106-1 © 2005 American Institute of Physics


http://dx.doi.org/10.1063/1.1905964

052106-2 E. S. Benilov and S. B. G. O’'Brien

FIG. 1. Film in a rotating cylinder with horizontal axis.

the film depends on the polar anglend the time. We shall
also introduce the densigy of the film, its kinematic viscos-
ity », and surface tensiof, and also the acceleration due to

gravity g.
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The first two terms in figure brackets describe the leading-
order effectqviscosity and gravity, and the terms involving
e, a, and B describe hydrostatic pressure, inertia, and sur-
face tension, respectively. We also comment that equations
similar to (3) have been previously used in Ref. 8 and Refs.
9 and 10(for comparisons with these papers, see Secs. VI A
and VI C, respectively

For a steady-state solution,

1 1 an .
+ = 3 + e =

3,877( ) 37 (wsm 0} 0, 3
where

_OR

o= ’

(4)

From a physical viewpoint, there are five effects govern-

ing the film: viscosity, gravity, surface tension, hydrostatic

pressure, and inerti@escribed by the material derivatives in
the Navier—Stokes equationg he only approach to model-

7(6,1) = 7(6),
Eq. (3) yields

ing these effects developed so far is based on the lubrication 7- 5773<305¢9+ }8;3(‘—7]5"] 0

approximation, where the first two effects are assumed domi-

nant and the last two are treated as perturbatiorathemati-

cally, surface tension can also be treated as a leading-order

effect, but, in all applications, it is weak—see Seg. Yhus,

depending on the parameters involved, various asymptotic
equations, taking into account some or all of the governing

effects, can be deriveee, e.g., Refs. 7, 8, and)11
In the present paper, we shall use(most general

de

2__dyp 8 .
+ -6 2_ 7
aLsn d0(00519) 3157 sin # cosé
2 . . 1 (dn d°n
-— o|+=pr| 2+ ]=q, 5
15778"1} 3P\ 40T a2 (5)

where q is a constant of integratiofphysically, q is the
nondimensional mass fluwx\We shall also impose the period-

asymptotic equation, which takes into account all five eﬁect%ity condition

(it is derived in Appendix A and compared to previous mod-
els in Sec. V). This equations will be expressed in terms of

the following nondimensional variables:

1)

2

. h h?
7= S

Al
Q\R 2R?

[note that, within the framework of the lubrication approxi-
mation, the second term i{2) is small—hencej; is, essen-
tially, the nondimensional thickness of the filnThen, omit-
ting the hats, we can write the governing equafigg. (A45)

of Appendix A] in the form

70+ 2m) =7(6). (6)

In what follows, the evolution equatiaf8) will be used
to examine the stability of; with respect to small distur-
bances. Assuming that

7(0,1) = 7(6) + 7' (6,1),

where 7' describes a disturbance, we substityt®,t) into
(3) and omit the nonlinear terms,

an’ 4 an' (87]' (9377’)}
—+—|CO7n +DO—+BO| —+—3/|=0,
ot (90[ (O ()(90 0 90 96°
(7)
where
— —zd?-
C(0)=1—ncose+s7;£sm0
4_.dn 8
+ a{g?f’d—;?(cosﬁ)z - E?ﬁsin 6 cosé
2_, . _2<d; d’?)
—-7sing|+ —+—, 8
37sl 0} BT\ 4ot aif (8)
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1 2 5 1, confine ourselves to the simplest case, where the fluid is
D(6) = 37 sino+ 1547 (coso)”, B(6) = 5/377 - (9 distributed continuously and surface tension is a small per-
turbation.
Physically,C is the propagation speed of disturbances, the |n this case, Eq(12) can be solved using a simple per-
coefficient of the second derivative(D+B), plays the role  turbation technique based on the smallnesg,of
of effective diffusivity, whereas the fourth derivative term in

Eq. (7) describes dissipative effects due to surface tension. 7=7%9 + g7V + O(8?), (15)
Observe that, for somé, the diffusivity is negative—which
often causes instability. where 7?0 satisfies the leading-order approximation of

In this paper, we shall confine ourselves to harmonicEq. (12),
disturbances, i.e., solutions of the form

_ 1
7'(6,1) = p(0)e", 7%~ 55‘0)3c030= Q. (16)

for which (7) yields
This (cubig equation was examined in Refs. 3 and 4, where

3
d C(O)p+ |3(6,)d_‘ZS + B(g)(d_qb + d_d’ﬂ -iwg=0. it was demonstrated that, fcur<§, it has a smooth unique
de de do  dé® solution for7'%(6). Next, substitution of15) into (12) yields
(10)
. . " . 1o A7, d*7©
This equation and the condition of periodicity, 3 4o + e
1) —
D0+ 2m) = p(6), (11 7= 1-7%%os6 e

form an eigenvalue problem fap and w. If Im >0, the

film is unstable. Following this path, we can calculate as many terms of ex-

pansion(15) as necessary.
Note that, wher approache%, 7% develops steep gra-
IIl. THE SPECIAL CASE IN WHICH INERTIA AND dients nea®=0 (see, for example, Ref. 1.9and the surface-
PRESSURE ARE NEGLIGIBLE (e=a=0, B#0) tension term in Eq(12) may no longer be treated as a per-
turbation (because it involves high-order derivatiyes a
In this section, an asymptotic technique for the stabilityresu“, expansiorf15) fails in the limit qﬂgi B=const. In
problem formulated above will be developed and tested on ractice, however, even the leading tefffl provides a good
simple particular case, where inertia and the pressure gracgpproximation for up tg=0.65—see Fig. 2, wherg® is
ent are negligible, and the stability of the film is determinedcompared with the numerical solution of the exact equation

. 13 . .
by s_urface tensiof® Later on, the same technique will be (12) (the numerical technique is described in Appendix)B 1
applied to the general case.

Substitutinge =a=0 into Eq.(5) for the steady state and B_ pisturbances

(10) for the disturbance, we obtain )
Assuming(15), one can rearrangd4) as follows:

— 1 1 5(dn d'n)_

- 57e0sor 367y + Gt = 12 c=cowpciro@), B=pBY+O(R),
and where

d do d%ﬂ _

—|C(O)p+B(O)| -+ ||~ iwp=0, 13 © =1 -702

da{ (6)p+B( )<d0 96 iwg (13 C0=1-%92cos0, (18
where 70 43,0

dz d°n
(d; ﬁ) 1 ct=- 2%(°>7;<1>cose+%‘°>z<d—a+ F)’
C(0)=1-ncoso+ —+—= ], B(O) =287
(0) 7 B TRT: () 387 19
1
(14 BW(g) = 5;(o)s_
In this section, we shall examine Eq42) and (13). Given
the stabilizing nature of surface tension, it is expected thafhen, (13) becomes
the film is stable.
d dg e\ | .
— | cOp+pCHep+ B(l)(_+_ - =0.

A. Steady state 90 $+pCT o+ TR lwd

Steady rimming flows with surface tension have been (20)

thoroughly investigated in Ref. 16. Several regimes were ex-

amined, including those with a “pool” of fluid formed at the Seek a solution 0f20) as a series irB,

bottom of the cylinder or a shock formed on the cylinder’s

side (see also Refs. 17-19Unlike these papers, we shall ¢=d0+BpY+0(8), w=0w?+BoY+0(B.
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FIG. 2. Steady-state flow foe=«
=0, 8=0.1, and various values of the
nondimensional fluxg. Solid line
shows the numerical solution of the
exact equatiori12), dotted line shows
the leading-order asymptotic solution

0.3 - - q=03 7 [i.e., that of Eq.(16)].
o2 f 1q-02
0.1 q=01
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6

The leading order yields a first-order ordinary differential right-hand side is orthogonal to the solutigh of the adjoint
equation(ODE) problem. Given that we are currently considering a first-
d order ODE, the latter is easy to find,

d_e(c(0)¢(0)) _ iw(0)¢(0) =0,

6 ’
the solution to which is ¢ =expl —iw® do
coe) |’
$9=——exq i <°>J9d—0/ (21) 0
“co ), co) |
o - . In fact, one does not really need to know that is the
The periodicity condition requires adjoint solution. One can simply multip23) with ¢ and
2. integrate from#=0 to #=27. After straightforward algebra
w9 = TR (22)  (involving integration by parbs ¢'» can be eliminated, and
7 we end up with
J c(o)
wheren is an integerithe mode number Observe that, to 27 4 27 e 1
leading order, R@=0, i.e., the disturbance is neutrally iwmf W—J Bu){(@@)
stable, which agrees with the conclusions of BPT93 and Ref.
9 [the latter paper also present&l) and (22)]. Finally, an 4i0®/ &2 1 Cof d 1 2
E?;rgple of the leading-order eigenfuncti@1) is shown in + cO \ g2cO +3iw d6CO
. O. ) 4
The next order yields 6,02 (10)2<£i0> —iw<°)3<i)
d c2\dgc c
- 0) £(1)y _;,.,00 (1
4GP T4 NN DL IRl L
@40 _ 9 [ (1)<d¢(0) d3¢<o)> W <o>} doc®/ ol e e
=i -—|BY —=—+—5]+C . (23
T g o de® A

Expressingn'? from this equation and taking the imaginary
This equation has a periodic solution ) if and only ifits  part, we obtain
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—_
=)
e’
<
;\ 7 FIG. 3. The leading-order eigenfunc-
D tion [given by (21)] for q=0.6,n=5.
= Solid line shows the real and imagi-
nary parts, dashed-dotted line shows
the absolute value.
[/
g e Leasa e sy I [ Leasa o sy Laaaaaaay L a
0 1 2 3 4 5 6
0
27 g(1) 2(0) 0)\2
9?2 B_ 1- i 092 4+ 4C(0)di - 11 & do
o CO3 co2 de? de
Im o® = o . (24)
)
fo co

This expressioiitogether with Eq(16) for 7% and expres- the number of oscillations per period of the eigenfunction
sions(18), (19), and(22) for C©, BY, andw®] is the main  (see, for example, Fig.)3Then, the capillary term in Eq.
result of this section. The sign of Im® determines the (13) is proportional togn*, whereas the leading-order terms
stability—unfortunately, we were unable to determine it ana-2re proportional ta. Accordingly, our expansiofbased on
lytically. It has been computed numerically, and, expectedlythe smaliness of the formkefails for = n">. However, this
Im o turned out to be negative for ati, which means condition is not very restrictive, as higher=2) modes are

asymptotic stability of all steady-state flows. less important than the first offie the following section, this
question will be discussed in detail
C. Discussion Instead of the nondimensional flu it is sometimes

more convenient to use the mean nondimensional thickness
Formula(24) has been tested against the numerical soof the film, defined by

lution of the exact eigenvalue problefil) and (13) (the
numerical technique is described in Appendix Bhe results 1 (2
are shown in Fig. 4. One can see that the region of applica- (7)) = —f 7dé. (25)
bility of the asymptotic solution rapidly contracts with grow- 2mJo
ing mode number.

To explain the deteriorating accuracy of form(@a) for ~ An approximate relationship betweenand (%) can be es-
higher modes, observe that the mode number is, essentialifgblished by solving the leading-order equatid®) for a
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! T P e (1) ———— ]
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1 . Loy TR 1\ PTTTI Lovveniiy Lo, Lo, Lociiniiy Loaog Y K FIG. 4. The decay ratglm w) of
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1 eigenproblem (13) and (11). The
curves are marked with the mode
B number. The solid line shows the nu-
merical solution 0f(13) and (11), the
0

dotted line shows the asymptotic solu-
tion, BIm 0, wherew is given by
expression(24). (a) Im w vs B for q
=0.5;(b) Imw vs q for 5=0.1.
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given g, then substituting the solutiop® into (25). It turns  mate equality of the nondimensional mean thickn@gsand
out that the two parameters are almost equal—see Fig. 5. nondimensional fluxj (see Fig. 5. Indeed, substituting26)
into (25), we obtain

. . . , (m=0q+0(g°) asq— 0. (27)
It is instructive to examine what happens with our results ) ) ) )
asq—0. In this limit, the steady-state equatiét6) can be Strictly speaking, this conclusion applies only to small

D. The small- g limit

solved using a series in powers qf, q—zbut Fig. 5 shows that») xzq for the whole range &q.
0 5 5 <3 [observe that, even fay=3, the error(27) can be esti-
7V =q+(1/3)g°cosf+O(g®>) asq— 0. (26) mated as(%)SzO.OOlS.

This simple formula explains two important features of the ~ Equality (27) also allows one to relatq to the dimen-

results obtained. First26) shows that, for smally, 7(0) sional mean thicknes4), and thus define the smajlimit
becomes flaisee Fig. 2 Second, it explains the approxi- in physical terms. It follows fron{2) that
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FIG. 5. The nondimensional mean
thickness of the filnjdefined by(25)]

vs nondimensional fluxg, as deter-
- mined by the leading-order steady-
state equatior(16) (i.e., for a=pB=¢
=0). The dashed line corresponds to
the smallg limit.

g —

~ \/——(h),

@ =\
which we shall combine witli27) to obtain

/-2 ifg<
gq= vQR<h> if g< 1.

Hence, the assumption of small or equivalently smal{7),
implies

(28)

<F> < V(lR7
g

(29)

which shows that the smatj-limit is a kind of thin-film
approximation.

Using the smally form of the steady state, we can sim-
plify formula for Im Y. Substituting(26) into expressions
(18) and(19) for C©, BY, then substituting those int@4),

we obtain
-39’ forn=1

Im ' =~ ifq<1.

1
- énz(n2 -1g® forn=2,
(30)

Observe that the decay rate of the first mod@©is’), and
those of higher modes af®(q®)—hence, the former is much

smaller than the latter. Moreover, even though this conclu-

sion formally applies only to smati, Fig. 4 shows that it is
valid for the whole range aq<§. Thus, it is natural to
assume that the first mode is always the first one to succumb
to instability, should that appear in the system.

IV. THE GENERAL CASE
A. Steady state

As before, we shall need only the leading-order steady
state, i.e., solutionj® determined by Eq(16). Readers in-
terested in further details are referred to the above-mentioned
papersl.e‘19

B. Disturbances

Employing the same asymptotic method as in the case
e=a=0 (preceding section we obtain

Imw=¢elm w‘(el)+a|m w(al)+B|m wg)

+0(e2,a%, B ea,eB,ap), (31
where
27 ~(1)
w(O)ZJ —D(O)sdﬂ
0 C
Im oY = : (32)

fZﬂT ﬁ
0 co
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27 1) 2~(0) 0)\ 2
w(o)zf % 1 _%{w(O)Z.,. 4C(0)dL - 11(&) ] de
. o C c de? de

Im o = , (33)

J27T ﬂ
0 cO

Im w(81>=o, (34) The other two effects, inertia and surface tension, do
affect the stability of harmonic solutions. The former is al-
As before,C?, BV, and »@ are given by(18), (19), and  ways destabilizinglm wg)>0, see(32)], whereas the latter,

(22), respectively, and as shown in the preceding section, stabilizes the flow. Which
of the two effects is stronger? The answer to this question
DY = (2/157%%(cosh)>. depends on the parameters involved: for angnd 8, there

is a threshold valuegyy, such that flows withg<<q, are un-
Not surprisingly, wg) coincides withew® calculated in the stable. Indeed, substituting2)—(34) into (31) and omitting
preceding section; observe also that the hydrostatic pressusenall terms, one can derive the following condition of insta-
gradient does not contribute to the growth rate of harmonidility:

solutionsg[see(34)]. This does not, however, mean that it has

o
no influence on the stability of the flow, as it may giveriseto ~ f(Q) < 3 (39
nonharmonic growing solution@s shown in Refs. 11 and
12). where
|
27 (1) 2~(0) 0)\ 2
B 1[(0)2 d?C <dd>] }
—3) =o5| @2 +4CO—-12 — | [-1(d#
B fo c<°>3{c<0>2 de? dg
f(q) - 2 D(l) (36)
[

Observe thatf(q) depends on the mode numbar only
throughw'? in its numerator. Recalling thas® grows with
n[see(22)], we conclude that highén=2) modes can grow
only if the first mode grows. Thus, the flow is unstable if and Then. instability exists if and only if
only if criterion (35) and(36) is satisfied for thdirst mode. a

Outside the smaly limit (considered in the following 45q < B ifg<1, (39
section, the functionf(qg) has to be computed numerically—
or, physically, it would be more convenient to computeWhere the 4§ is the smallg limit of f(q).
f((7)), where(7) is the mean nondimensional thickndss- _ It is_ instructive to rgwrite the smadi-criterion (38) in
call that(#) is related toq by formula(25)]. This has been d'lmenS|onaI form. Making use of formul@g) and expres-
done, and the instability region on tiie/8,(7)) plane, de- sions(4) for « and 5, we obtain
termined by criterion(35) and (36), is shown see Fig. 6. —  pOPR* | — [vQOR
Observe that, counterintuitively, thinner filmgvith small () < if () <
() are more unstable than thicker films—this question will
be discussed in the following section.

1
Im o® ~ 1_5aq6— 38q" if q<1. (37)

(39

[keep in mind that this criterion holds subject to fldémen-
siona) thin-film condition (29)]. Thus, increasing the veloc-
ity of rotation or the cylinder’s radius strengthens instability,
whereas increasing surface tension or thickness of the film
weakens it. On the other hand39) is independent of
v—hence, a change in viscosity cannot stabilize an otherwise
If g is small, criterion(35) and (36) can be simplified unstable film or vice versénote that this conclusion applies
asymptotically. Puttingn=1 (first modg and assuming the only to the smallg limit).
smallq limit, we can reduc€31)—(34) to Condition (39) can also be written in the form

C. The small- g limit
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B>1, V. EXAMPLES

In this section, we shall apply criterigi35) and (36) to
“real” fluids, such as, for example, water, for which

where
r=1.75X 10°m?s, y=0.0728 N/m,
(41)
PR p=1.0x 10° kg/m®
B= — (40)
45y(h)y (these parameters correspond to 20.9@ order to increase

the effect of surface tension and thus improve the chances of
stability, we shall consider a relatively small cylinder,
is a nondimensional parameter characterizing the relative
strengths of inertia and surface tension. Note that, even R=1.5cm. (42)
though (39) was derived for small, B should retain its  The so-called volume fraction will be fixed at 1%, i.e.,
physical meaning for the general case as well.
The smallg limit also allows us to understand why thick 2@)
films are more unstable than thin onege the end of the ?20-01’ (43
preceding section Observe that the contribution of surface
tension to the growth ratfformula (37)] is proportional to  and the spin rate will be fixed at 1.5 revolutions per, i.e.,
q’, whereas that of inertia is proportional ¢5. Hence, we
conclude that thdstabilizing effect of surface tension de-
pends on the film's thickness more strongly than esta-  ysing our asymptotic method to calculate the growth rate
bilizing) effect of inertia—which explains the stabilization of |m @ for parameterq41)—(44), we obtain the following
the film with growing¢h). dimensionale-folding time:

Q=27x15s™ (44)
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] stems from the assumption made in Ref. 8 that “events
T:m = 11.5min equilibrate themselves quickly over the fast time scale,”
where the “fast time scale” means the period of rotation of

[it has been taken into account here that the time is scaled ke cylinder. On the basis of this assumption, the time vari-
07!, see(1)]. Note that, if we ignore surface tensiom, able was nondimensionalized by the slow time scale deter-
hardly changegr=10.9 min, which means that capillary mined by viscosityfsee formula2.14 of Ref. §|.
effects are negligible. This conclusion can be verified by cal-  Note, however, that the time scale of an evolution equa-
culating B: substituting (41)—(44) into (40), we obtainB  tion cannot be determined on the basis of an assumption. It
~18>1. Thus, in order to stabilize inertial instability, we should be determined by balancing the time derivative and
need to decreadR or (), or increasey or <h). the largest of the other terms in the equation. If this approach

Unfortunately,R cannot be changed in most industrial is applied to the problem at hand, it yields flasttime scale.
applications(in coating of fluorescent bulbs, for exampR, Indeed, observe thatin Eq. (3) is nondimensionalized using

is the radius of the bulbThe thickness of the filnfh) cannot  the period of rotatiof)™*—and any other choice would vio-
be controlled either, as it is determined by the amount O{ate the balance between the time derivative and the other

coating to be put on the bulb. Moreover, during the coatind®™S in the equation.

. . . As a result of the alternative choice of the time scale, a
process, the solvent is being evaporated, {le.is gradually : .
. N . term has been lost in the expression for mass flux due to
decreasing to 0. Thus, to inhibit instabili, has to be con-

: _ inertia derived in Ref. 8.
tinuously reducedadjusted to the current value df)). To be specific, consider the mass flux due to inertia ob-
Note, however, that—instead of completely eliminatingtajned in our paper,
instability—we can reduce its growth rate by increasing vis-
cosity. Replace, for example, water with glycerin, for which h 5 sh 5
(f v dr) = a[ —
inertia

il Ay
»=1.18x 10°%m?/s, y=0.0834 N/m, h*=—cos¢+

dh
h*—cosé
24 It 24 960

0

= 3 2 3 .oh
p=1.26x 10° kg/m°. — —hSsin - —h®—(cos6)?

Then, the correspondingfolding time, 15 4096
. 37
7=~ 7 X 10" min, +——h’cosésin (46)
840

is so large that the instability can be simply ignored. Note

.thatB, ?n.this case, is still largeB~27), i.e., surface tension [¢hjg expression has been extracted from formi#a9) of
is negligible. _ Appendix A and changed to the notation of the main body of
In order to further illustrate the strong dependencer of e pape}. After straightforward algebra described in Appen-

on v, we shall calculater for the smallg limit. To do so,  gix A, (46) gives rise to the following diffusion term in
assume for simplicity tha=0 (no surface tensign after  gq (3).

which (37) yields

(1) ~ 6 < J| 2 J
Im w (1/19aq® if g<1. a—[—n‘s(cosﬂ)z—n} '
Then, make use of expressi¢28) for g and expressioi) 90115 79

for a,
. where the factor
15R — QR
=it (< 4 (45) _ 6 )2
g&hy® g Dgo = - (2/15ar°(cosb)
Thus, if v is increased by a factor of 5, the instability slows pjays the role of diffusivity.
down by a factor of 125. If, however, we comparé46) to the corresponding ex-

Given that the viscosity coefficientof any fluid can be  pressjon derived in Ref. Bee the formula without a number
dramatically increased by mixing it with another fluidf a  fo|lowing their Eq. (2.20], the latter misses the time-
greaterv), this “method” of inhibiting inertial instability is  gerivative tern{the first term in(46)]. All other terms of the
much simpler than the one based on surface tension. two expressions coincide, but the omission results in a dif-

ferent expression for the diffusivity,
VI. COMPARISON TO EARLIER WORK

In this section, we shall compare our results on inertial Dy = a[ - (5/24h*cos 6 + (3/40h®(cos 6)?].

instability to those obtained in Refs. 7-9. Observe that “our” expressiorDgo, i always negative

whereasDy, can beeither negative or positivedepending
onh andé.

In this paper, the effect of inertia was examined using  Given that negative diffusivity is the main mechanism of
the same approximations as ours, but the inertia terms olirertial instability, this omission can have a significant im-
tained in the two papers differ significantly. The discrepancypact on the dynamics of the flow.

A. The paper by Hosoi and Mahadevan (Ref. 8)
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B. The paper by Johnson (Ref. 7) make the characteristic time of growth so largierally,
This paper examined three limiting cases. Inertia waés":;lk')?gs of years that the film would appear effectively

taken into account in the one considered in Sec. IV.

Unlike the present paper and Ref. 8, Ref. 7 examined the . Fi_nally, we note that at least some _Of the experiments
effect of inertia using a short-wave approximation. Accord-With imming flows show that unstable disturbances depend
on the axial variablgi.e., vary along the cylinder’'s axis

ingly, the steady-state flow was assumed “slowly varying in_ .
the 6 direction” and, hence, “locally independent®f Note, nﬂ%ﬂgysé gtgheeStfiIltrt]ﬁrgg(ii?rr:gni)igig? ;P:blr;iu'ts of the present

however, that the steady-state flow is defined on an order-o

interval, O< <2, and therefore cannot be assumed slowly

varying. What the author meant was, in fact, that hecale = APPENDIX A: DERIVATION OF EQ. (3)

of the steady state is much Iarg_er th_an the wavelength of thi The nondimensional parameters

disturbance—which effectively implies that the wavelength

of the latter is short. Most importantly, this assumption re-  Consider a thin film of incompressible liquid on the in-

quires introduction of a short-scale spatial variable. In otheside surface of a cylinder of radilg with a horizontal axis,

words, since the spatial scale of the steady state cannot Wehich is rotating about this axis with constant angular veloc-

scaled up, the spatial scale of the disturbance should bi&y ) (see Fig. 1 We shall use polar coordinatés 6), with

scaled down. the origin at the center of the cylinder, so the thicknless
Unfortunately, this has not been done, and the problenthe film depends on the polar angleand the time. We shall

was analyzed in terms of the “natural” varialsleAs a result,  also introduce the densigy of the film, its kinematic viscos-

Egs. (153, (17), (21), and (22) derived in Ref. 7 miss a ity v and surface tensio, and also the acceleration due to

number of important terms involving high-order derivativesgravity g.

with respect tod. In addition toR, the problem includes another character-
istic length. To introduce it, observe that the volume of fluid
C. The papers by O'Brien (Ref. 9) and Benilov, per unit length of the cylinder,

Kopteva, and O’'Brien (Ref. 10)

27 R 2
1
— K2
These papers examined the stability of the film affected J f rdr da—J (Rh_ 2h )da,
. - . 0 R-h 0
by hydrostatic pressure and surface tendioertia was not
taken into accoumt using an equation equivalent to our Eq. is conserved, and we can define

(3) with @=0. It was shown numerically that unstable modes 1 (2 1
exist in this case, which appears to contradict our results (h)= —— (Rh— —hz)de.
(recall that we concluded that pressure gradient is a neutrally 2R/, 2

stable effect, while surface tension is even a stabilizing.one S - . .
To reconcile the results obtained in Refs. 9 and 10 withIf h<R (which is the limit we are interested)inh) repre-

. .. sents the mean thickness of the film.
those of the present work, observe that, in the former, insta- . S .
The evolution of the film is governed by four nondimen-

bility was found forhighereigenmodesi.e., those that make sional parameters. First we shall introduce the nondimen-

many oscillations per perigdThe present work, on the other :onal rFr)1ean thickr;esls, » W ! u !

hand, is concerned mainly with the first eigenmode, as thé '

asymptotic method that we use is inapplicable to the higher 5= @ a1

modes. "R (A1)
Note also that, for the higher modes, the hydrostatic ] ) o )

the leading-order termsyhich violates the lubrication ap- 92l forces,

proximation under whicli3) was derivedin other words, the g

unstable modes found in Refs. 9 and 10 should be reexam- G= R’ (A2)
ined using a model that is not based on the lubrication ap-
proximation. whereg is the acceleration due to gravity. Third, we intro-
duce a parameter characterizing viscosigain, relative to
VIl. CONCLUDING REMARKS rotation),
We have examined the stability of a thin viscous film in v
a rotating cylinder with respect to harmonic disturbances. T hy?’ (A3)

Three effects were taken into account: inertia was demon-

strated to cause instability, surface tension turned out to be Wherev is the kinematic viscosity. Finally, the most conve-
stabilizing influence, whereas the hydrostatic pressure gradiient parameter to characterize capillary effects is

ent does not affect the stability at all. An instability criterion wh)

[condition (35) and (36)] has been derived, reflecting the — I'= 0= (A4)
balance of inertia and surface tension—using which it was P

shown that the effect of the latter is weak. The inertial insta-where vy is the coefficient of surface tension apdis the
bility, however, can still be inhibited by viscosity, which can density of the film.
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The lubrication approximation corresponds to the as+=R-h(6,t), whereh is the thickness of the film. We shall
sumptions require that

6<1, N>1, G=N, (A5) n-on=yk, t-on=0 atr=R-h, (A12)

in which case viscosity is on par or stronger than gravity, andynere
in any case stronger than the hydrostatic pressure gradient

and inertia. The importance of surface tension, in turn, de- 1 1 oh
pends orl’. We shall consider the simplest case, n= 1 1 oh t=| R-hao
2 _ L)
I'<G~N, (AB) \/1+ 1 2<(?_h) R-hao -1
(R=-h)“\a6

where capillary effects are weaker than gravity and viscosity.
In addition to surface tension, there are another two

groups of small terms in the governing equations. First, thel’gre the unit normal and a tangdnbt necessar”y unit
are terms associated with the hydrostatic pressure gradient

(A13)

and the curvature of the flow—the ratio of these to the 5 V@_ pr(ou_ Vﬁ_v
leading-order terms i8. Second, there are inertia terms, i.e., P ar P r\odeé v)Te ar
thg material derivatives in the Nawer—Stokis equations—the 9 - pv( du ov 20v( dv
ratio of these to the leading-order terms@s~. In order to — —0 -v +pva— —_— _6 -p
derive the most general equation, we assume that surface FAd r rAd
tension, hydrostatic pressure, and inertia are all of the same (A14)
order
is the stress tensgsee Ref. 2f) v is the surface tension, and
r S~ 1 A7)~ is the curvature of the surface. An expression for the cur-
G G’ vature can be extracted from Ref. 21,
#h ah\?

2. The governing and asymptotic equations (R-h)?+ (R~ h)ﬁ + 2(%)

A two-dimensional flow of viscous fluid inside a cylin- "= , [oh 2132 ’ (A15)
der with horizontal axis is convenient to describe by the (R-h)"+ 90

radial and angular velocities(r, 6,t) andv(r, 6,t), and the
pressurep(r, 6,t) (r and 6 are the polar coordinatesjs the ~ We shall also require that the normal velocity of particles at
time). In terms ofu, v, andp, the governing equations are the surface matches the normal velocity of the surface itself.

(see, e.g., Ref. 20 A straightforward calculation yields
du  du au 19
—+u—+2(—— )+__p &—h+ v a—h+u:0 atr=R-h
ot ar  r\de par g R-hae '
=—gsing+ v{}i<r@) + %(@ -u- 2&1)} This condition can be rewritten in a more convenient form.
ror\ ar) rA\o¢ a0 Integrate the continuity equatiofA10) with respect tor
(A8) from R—h to R and use the first one of the boundary condi-
tions (A11),
a—v+ua—u+2<ﬁ—v+u>+i@ a (R dh
ot ar  r\d6 prao -[(R=h)ulyegn + — vdr-—uv=0.
30 an a0
_ 19 aw) Lfdv_ o
=gcoser vl e\ o) el TV 200/ | Combining the last two equalities, we obtain
(A9) oh o (R
(R-h)y—+— vdr=0. (A16)
at 90)gn
d dv
—(ru)+ —=0, (A10) .
ar a0 Equations(A8)—(Al16) form a closed set.

: : L . As mentioned in the preceding section, the problem at
whereg is the acceleration due to gravity,is the density, hand is governed by four nondimensional parameters

andv is the kinematic viscosity. We assume that the cylinder . - -
is rotating with constant angular velociQ, which corre- 9, G, N, andI’ [defined by(A1)-{A4)]. Summarizing appli

sponds to the following boundary conditions: cability conditions(A5)—A7), we obtain

u=0, v=0R atr=R, (A11) N~GeX T[—1
57 1

where R is the radius of the cylinder. We shall also need
boundary conditions on the free surface of the film, i.e., abr, equivalently,
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N’ G’ d d d d 1 19
N=—, G=—, T=I", (AL7) R L op
) 1) at aor 1-6d0 1-6r 1- &5&0
whereN’, G’, andI"" are constants of order one. The corre- -—G—,cos¢9+N—, @_ 6 v
sponding nondimensional variables are TS Slor2 1-6ror
_ 1R-r -~ . & (0720 au)
F==——, 6=6, T=0t, A18 +—— = 25— ||, A22
s R (A18) 1-on2\a® " “ag (A22)
-~ 1lu - U - M - oo du Jdu
= —— = = ou-(1-6r)—+—=0, A23
Ysre TR PToRre2 7T (RO A=07r*5e (h23)
Al19
(A19) u=0, v=1, atr=0, (A24)
~ 1h _ ., _ _
h::sﬁ’ k=Rk. (A20) n-on=I"k, t-on=0 atr=h, (A25)
Substituting (A17)—(A20) into the governing equations 1 1
(A8)—(A16), we obtain(hats omittegl n= 3 5 dhi,
du_ U v du v2  1dp 1+ Ih\2 1-6hoo
—=u—+ - (1—5h)2 i
o 1-ora0) 1-or For 90
——G—,sin0+N’ @—L@ (A26)
) a2 1-8ar _ 6 dh
+L(5@_&J_20”_U>:| 21) t=|1- 5h(9!9 )
(1-on2\ ¢ 6] | -1
|
Jdu ON'
—2N’52—— P s- -
B P 1—&[ g -1 ] 27)
77 N 2N' 82 [ v ’
FN s &)— ——|—+au|-p
1 or a0 1-or\o6
|
&#h oh\? To the leading orderA21)—(A28) yield
(1-6h)2+8(1 - 5h)72 252((9—0> g y
K= PNVIED. , (A28)
{(1 sh)?+ 52( 0>J p© op© PO
-——=0, ——=G'cosf-N—,
ar a0 ar
A30)
oh o (M (
(1-6h)=+ —f vdr=0. (A29) u® _ v
at a0l PRy

Observe that the pressure term in E421) appears to ex-

ceed all other terms—which, however, does not create a

problem as the leading-orderis constanisee below. U9=0 v@=1 atr=0, (A31)
Now, seek a solution of the form

=u@+suP+0(8%, v=v?+oY+0(8,

© (90(0)

=TI, =0 atr=h. A32
p= p(o) + ép(l) + 0(62) . P ar ( )
We shall pursue the following plan: using E§a21)—(A28),

we shall relatey to h and thus close EqA29). Solving (A30)—(A32), we obtain
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p@=T1", Substitution of(A39) into (A29) yields
G'(1
v@=1+ N_< 2r2 - rh)cosa, (A33)
J G'1
(1- 6h)— (h———h%os&)
oTi1. 1 L gt a6\ N'3
(O):_|:(_ Zh__3) f 0——2h 0:|
u -1 =r r|sin r’h,cosé |. G sh ah
N"L\2 6 2 5—{—,2{ —h ( coso- =HBsin g
N 20\ N2[ 24" \at " 90 15
In the next order, we need onpy? andv
G'?| 3 37
ap? . - —hG— - ——h’cos@sin 6
- % =-G'siné, (A34) N3 [ 40 aa( s6)° 840
G (1 1 .0h 1
+ —| =h%cosf+ —h®>—sin 0) -=h?
w0 on®, o N’ (2 3 96 2
at r a0 a0 r Jh &n
Fo®  9p© N—{ h3( i 03”} o(&). (A40)
:N'(—2 -— (A35) 9 7
ar at
vP=0 atr=0, (A36)  Note that the first two expressions in square brackets are

) W contributed by inertia, the third one is contributed by the
p = F'<h+ 5_h) dv -0 atr=nh. (A37) hydrpstatic pressure gradient, and the fourth one, by surface
0P ar tension.

The solution to(A34)A37) is Rewriting (A40) in terms of

#h
p® =(r —h)sin g+ F’(h+ 0—)

¢ i i o
=0, i=t, h:\/Wh, (A41)

G’ 1 dh  oh 1
W= 2{<—rh2——r3>(—+—)cose—(—rh3
N’ 2 6 at 96 3

_ 1r3h+ ir“)sina + G_'2 (ir“h omitting the hats, and introducing
6 24
1 ,\dh 5 1 . 1 1,5
—Erh )a—e(cosa) —(Qr —6—0r h+ar h s B N_’ B /N2
a—G,, e=46 G’, ,8—5 G,3/2 ’ (A42)

1 Gl|[1
——rh5>cosasin6 +— (—rs—rzh
10 N |\3

3, 1.,\oh I'"(oh we obtain
+—rh°|cosf+(rh——r|—sinf|-r—-—| —
2 2 /960 N\ g6
oz )
— || =-rh (A38) K2 ah
T 1- h—+—<h——h3 o)
(A =eh) 2+ 7g\Ngieos 24
Summarizing(A33) and(A38), we obtain
ah\ , 2 .. 3 4dh 5
b G'1 G’ ah + — |h"cosd— —hsin § — —h°—(cos6)
Jvdr:1———h2cosa+ — h a0 15 40 96
0 N’ 3 N'2| 24\ at
37 4. 1,
Jh 2 +%h sinfdcosé | +¢ Eh cosé
+— |cos# - —h®sin 6
a0 15
1 40h 1, o o 7h
G'?| 3 37 +-h*—sing|--h* [+ h o
-— —h6—( s6)?- ——h’cos@sin 0 3 d0 2 3" \a0"
N2 40 960 840

- 1 L =0(6%). (A43)
+ —| =h*cosf+ =h°h,si )——hz
N’(Z cos¢ 3 eSin g >

3 This equation can be simplified. First, observe that its zeroth
I 3 (?h h
*Vl3 h EYREY: +0(&). (A39)  order,
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oh oh o9 (1 dv dv dv
—+—=—|=h8 0>+06, —1=0, —£=0, —2=0 B2
ot a0 ae(s cosd) +0(o) do do do 62)
can be “resubstituted” into the first of the first-order terms,(this method has been previously used in BPT3®en, the
which yields, after straightforward algebra, boundary conditions are
(l _ Sh)o"_h + aie{h _ %hSCOSH ul(o) = Ul(o)v u2(0) = U2(0)1 US(O) = U3(O)! (BS)
8 Uy(2m) =v1(2m),  Ux(2m) =vy(27), Uz(2m) =v3(2m).
6_ 2__ T
[ 15h éa(cosa) 315h sin 6 coso (B4)
2 The two point boundary-value proble(81)—(B4) can then
- 1—5h55in 0 be solved using the an appropriate NAG routine, DO2TKF.

1, 1 .oh 1, 2. Eigenvalue problem (13) and (11)
+e| | zh*cosf+ —h —sind| - -h
2 a0 Observe that the coefficients (3) involve four deriva-
Jh  &h tives of 7(6). The first two derivatives are available directly
+B 3h3<(w (903> =0(&). (A44)  asu,, us (see the preceding sectipmnd the third derivative
can be computed as the right-hand side of the last equation of
[Note that this equation is not equivalent #843), but as-  set(B1). Finally, the fourth derivative can be obtained using
ymptotically equivalent, as we have omitted ter@s°).]  the formula
Second, we shall introduce o
duz; _ 9qu, 6u,

—h_ 2 - +—2 — U,
n=h-(1/2)eh". d&? Bulll ﬁui 3

It terms of 7, (A44) becomes which can be derived by differentiating the last equation of

dn d 1 2 97 ) set(B1).
ot a7 37 ‘cosf+a 157 %(COSG) Next, rewrite the eigenvalue problefhd) and(11) in the
form
8 2 . ] 1 an. .
—3—15775|nacos¢9—1—57;sm0 +5em Esmﬁ (0)¢+a(0)d¢+a(¢9) ¢+a(0) d’ Pk d*o
p % U0 g T 20 qgp TR0 qgp TR0 G
-B ( . 0’3’)} =0(&) (A45) = s, (B5)

[again, this equation iasymptotically(not exactly equiva- wheres=iw and

lent to its predecesspr _dcC _ . dB _ _dB _
~ Finally, dropping the unspecified small terms on the =45 al‘C‘L@' a=B, 8= g a,=B.
right-hand side ofA45), we obtain Eq(3), as required. Ex- . _
pressiong4) for the coefficients of this equation follow from [Recall thatB andC are related toy by (14).] We shall write
(A17) and (A42), whereas expressiord) and (2) for the — &(6) and ¢(6) as complex Fourier series,
nondimensional variables followA18), (A20), (A41), and o w
(ALT) and(AL-(A4) a0)= 3 au™, #0)= 2 de™,

j=— j=—

APPENDIX B: NUMERICAL METHODS .
whereg, , are given by

In this appendix, we shall describe the numerical tech- o
niques used for solving the boundary-value prob(é®) and a,=— ak(e)e infgg,
(6) (for the steady stajeand the eigenvalue problefi3) T 27

and(11) (for disturbances and the Fourier coefficientg, are unknown. Using the

1. Boundary-value problem (12) and (6) identity

Rewrite Eq.(12) as a set of three first-order equations ( i o eine>< i B eine> — i ( i 1B )eime
n n - m—n/~n 1

du, ! du, dus _ q-u; + (1/3)ujcosg Ty n=—e n=-e me=—oe A n=—e0
de % do > de (1/3)Bu3 z we can rewrite(B5) in the form
(B1) 4 % o
o in\K img — imo
whereu;=7. As the system is subject to periodic boundary %m_E_w nzz_m Bmn(in)¢bn | €= SEOC €™,

conditions, the easiest way to deal with these is to introduce
three extra unknowns,, v,, vs, which satisfy which can be further rearranged into
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