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Abstract 

We construct oscillatory solitary wave solutions of a fifth-order Korteweg-de Vries equation, where the 
oscillations decay at infinity. These waves arise as a bifurcation from the linear dispersion curve at that 
wavenumber where the linear phase speed and group velocity coincide. Our approach is a wave-packet analysis 
about this wavenumber which leads in the first instance to a higher-order nonlii~.ar Schr6dinger equation, from 
which we then obtain the steady solitary wave sclution. We then describe a complementary nc~rmal-form analysis 
which leads to the same result. In. addition we derive the nonlinear Schr~-idinger equation lor all wavenumbers, and 
list all the various anomalous cases. 

I. Introduction 

The main purpose of this paper is to establish 
the existence of a new kind of solitary wave 
solution of the fifth-order Korteweg-de Vries 

equation 

u, 4- 6 u u  x + u.,.,, x + uxx~x. ~ = 0 .  (1.1) 

These new solitary waves differ from classical 
solitary waves in that they are oscillatory, with 
oscillations that decay as ixi ~. The possibility 
that such waves may exist as solutions of (1.1) 
was first suggested by the numerical results of 
Kawahara  (1972). They are analogous to the 
new type of capillary-gravity solitary waves dis- 

covered theoretically by looss and Kirchg/issner 
(1990) and Dias and looss (1993), and numeri- 

cally by Hunter  and Vanden Broeck (1983), 
Zufiria (1987), Longuet-Higgins (1989) and Van- 
den Broeck and Dias (1992) who obtained the 
most complete set of results. Indeed Hunter and 
Scheurle (1988) have proposed (1.1) as a model 
equation for capillary-gravity waves when the 
bond number  is just lc.~s than the critical value of 

and hence our Study here can be regarded as 3,  
a investigation of capillary-gravity solitary waves 
in this model context. Recently, Champneys and 
Toland (1993) have summarized the classes of 
solitary wave solutions known to occur as .solu- 
tions of (1.1) using both theoretical and numeri- 
cal methods. These new solitary waves can be 
expected to occur in other physical contexts and 
indeed Benjamin (1992) has established the 
existence cf such waves on the interface of a 
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two-layer fluid where the lower layer is deep and 
the interface is subject to capillarity. His treat- 
ment is based on applying variational methods to 
a model equation which can be :regarded as 
combined Korteweg-de Vries and Benjamin- 
Ono equation, and is different both from the 
approach of Iooss and Kirchg/issner (1990) and 
Dias and Iooss (1993), and to our approach. 

Complementary to the normal form analysis of 
Iooss and Kirchg/issner (1990) and Dias and 
looss (1993), our contribution is to demonstrate 
that these oscillatory solitary waves can be re- 
garded as wave-packet solitary waves. It is well 
known that to leading order wave packets are 
described by the nonlinear Schr6dinger (NLS) 
equation (see (1.4~) below). The solitary wave 
solution of the NLS equation describes a solution 
of the original equation (here (1.1)) in which the 
oscillatory component propagates to leading 
order with the linear phase speed c(k)  (see 
(1.2b)) while the envelope propagates to leading 
order with the group velocity cg(k) (see (1.2c)) 
where k is the &~minant wavenumber of the 
wave packet. In general c ~ c a so that this is not 
a steady travelling wave solution of the original 
equation. However, for values of k such that 
c = cg (i.e. c(k )  is stationary at this value of k) 
this becomes, at least to leading order, a steady 
solitary wave solution of the original equation. It 
transpires that to make this notion more precise 
requires consideration of higher-order correction 
terms to the NLS equation, and this analysis we 
carry out in Section 2. To demonstrate that our 
approach is equivalent to the normal form analy- 
sis of looss and Kirchg/issner (1990) and Dias 
z~nd looss (1993) in Section 3 we carry out a 
normal form analysis of Eq. (1.1) and show that 
the two approaches lead to the same so!itary 
wave solution. 

After the completion and submission of our 
work we became aware of the work of Akylas 
(1993) and Longuet-Higgins (1993) both of 
whom independently observed that for capillary- 
gravity solitary waves the NLS equation for the 
(unique) wavenumber k such that c = c~ provides 

the lowest-order description of these newly-dis- 
covered waves. However, neither of these au- 
thors considered the higher-order corrections to 
the NLS equation which are needed to make this 
approach agree with the normal form analysis. It 
is pertinent to add here that this connection 
between the NLS equation (with c = ca) and the 
existence of these oscillatory solitary waves, 
establishes that this new kind of solitary wave 
can generically be expected whenever the linear 
phase speed c (k )  has a minimum c m (or maxi- 
mum) for some finite non-zero value of k = k m 
(see Fig. 1). The bifurcation to the solitary waves 
then occurs for speeds less than (greater than) 

C m • 

To proceed, we first observe that the linear- 
ized version of Eq. (1.1) has sinusoidal travelling 
wave solutions of frequency to and wavenumber 
k where 

to = - k  3 + k s , (1.2a) 

while 

c = to/k = - k  2 + k 4 , (l .2b) 

and 

,2 m 

/ 

/ 
/ 

k m / k 

/ 

\. 
\ 

Fig. 1. The linear dispersion curve (l.2b) showing the 
schematic bifurcation at k = k,,. 



R. Grimshaw et al. / Physica D 77 (1994) 473-485 475 

dto 
- - 3k 2 + 5k4.  ( 1.2c) Cg-  dk 

Here c(k) is the linear phase speed and Cg(k) is 
the group velocity. The phase velocity has a 
minimum at k = k m = 2 -~t2 where c = Cg = Cm = 
- ~ We shall show that oscillatory solitary waves ..~. 

bifurcate from k = km. The situation is sketched 
schematically in Fig. 1. 

Next, wave-packet analysis proceeds by seek- 
ing an asymptotic solution of (1.1) of the form 

' u = a [ A ( X ,  T )  exp( i0)  + c.c.] 

+ a"[A2(X,  T)exp(2 i0 )  + c.c. + A0] + ~ ( a s ) ,  

(1.3a) 

where 

0 = k(x - ct) (1.3b) 

and 

X = E x ,  T = ~ t .  (1.3c) 

Here c.c. denotes the complex conjugate, while 
a and e are small parameters measuring the 
wave amplitude and inverse of the packet length- 
scale respectively. The NLS equation generically 
requires the balance a = e and is given by 

A¢ + iAA~ + itxlAI2A = C(e) ,  (1.4a) 

where 

~ ' = a T  , ~ = X - c 6 T .  (1.4b) 

Here A and /z are coefficients which are de- 
termined by the asymptotic analysis and are 
given here by (2.9a,c). The NLS equation (1.4a) 
has a solitary wave solution, but as noted above, 
for this to be a steady solitary wave solution of 
(1.1) requires c - c g .  From (1.2b,c) we see this 
occurs when k = 0 or k = k m. This first case is 
not relevant here. There is a steady travelling 
wave solution which bifurates from k = 0, but it 
requires a different kind of analysis from that 
present here (see e.g. Pomeau et al., 1988, 
Boyd, 1991, and Grimshaw and Joshi, 1994). 
This is a non-local solitary wave, and consists of 
a solitary wave core described to leading order 

by the Korteweg-de Vries equation (i.e. (1.1) 
with u.,~,~ x omitted) and co-propagating non- 
decaying oscillations of small amplitude. The 
second case k = k~ is our concern here, but in 
order to make the notion of the matching of the 
envelope speed with the phase speed more 
precise than the leading order matching c = Cg it 
transpires that is necessary to compute the high- 
er-order O(E) terms in the NLS equation (1.4a). 

In Section 2(i) we derive the higher-order NLS 
equation and the end result is (2.8). Our deriva- 
tion uses a classical multi-scale asymptotic per- 
turbation argument based on the expansion 
(1.3a). In Appendix A we outline an alternative 
derivation using a Zakharov spectral formula- 
tion. Then in Section 2(ii) we construct the 
steady oscillatory wave solution of (1.1) from the 
higher-order NLS equation (2.8). This is the 
main result of this study. However, as is well 
known, the derivation of the NLS equation can 
fail for certain values of k when various special 
resonances occur. These special cases require a 
different treatment and scaling and for complete- 
ness we describe these briefly in Section 2(ii~). In 
Section 3 we describe the normal form approach 
of looss and Kirchg/issner (1990) and Dias and 
Iooss (1993) when applied to (1.1) and verify 
that it i~ads to the same steady solitary wave 
solution. Some technical details cf this analysis 
are described in Appendix B. 

2. Approach through the NLS equation 

(i) Derivation. As a preliminary step we 
allow u to depend on the phase variable 0 (1.3b) 
and the slow variables X, T (1.3c) so that Eq. 

(1.1) becomes 

3 k 5 -o~u~ + k tto~ + Uo~ooo + ~uT + 6u(kuo + eUx) 

+ 3ek2uoox + 3E2kuoxx + e3Uxxx + 5ek4uoooox 

+ 10e 'k  Uooox x + lOe3k2uooxxx + 5e4 '  KttOA'XXX 

+ s = 0  (2.1) 
U X X X X  X • 

Next we substitute the expansion (!.3a) into 



476 R. Grimshaw et al. / Physica D 77 (1994) 473-485 

(2.1) and collect the terms proportional to 
exp(i0). At  leading order the dispersion relation 
(1.2a) is satisfied, while the remaining terms give 

e"[A r + ( - 3 k "  + 5k4)Axl 

+ E3[(3ik - lOik3)Axx + 6ik(A2,4 + AoA) ] 

+ e4[(l - lOk2)Axxx + 6(A 2fi, + AA,,)x] 

+ ©~(~~) = 0 .  (2.2) 

2. t At the leading order ~ erm in (2.2) we find 
that 

A r + cga x = C(e) ,  (2.3) 

where we recall that the group velocity cg is 
defined by (1.2c). This suggests the further 
changes of variables from X, T to ~ , r  (1.4b) 
which we shall exploit later. 

Next we collect the terms proportional to 
exp(2i0) and get 

~2[ ( -2 i  w - 8ik 3 + 32ikS)A2 + 6ikA 2] 

+ E3[A2T + ( - 1 2 k  2 + 8 0 k 4 ) A 2 x  + 6 A A x ]  

+ ©,(4) = 0 .  (2.4) 

Noting that A 2, like A, can be regarded as a 
function of the variables r, 6 (l .4b) we can 
readily solve (2.4) to obtain 

A 2 
A , =  + 

" k2(1 - 5 k  2) 
2ie( 1 - 10k" ) 
k3(1 _ 5k2) 2 AA~ + ~(E2)  . 

(2.5) 

Note that this solution fails if 5k 2=  1 and we 
shall return to this special case later. 

Finally we collect the mean terms (i.e. those 
independent of 0) and obtain 

E3(At,r + 6lAI2v) + 6'(e ~) = 0. (2.6) 

Again introducing the variables ~-, ~: (1.4b) this 
cquation can be readily solved for :.'~1 to give 

6IAI 2 

A~, = k2(_ 3 + 5k2) 

6ie(  10k 2 _ 3) 
k 3 ( _ 3  + 5k2) 2 ( ,4A~ - A~t~ ) + (2(e2).  

(2.7) 

Note that this solution fails if 5k 2 = 3 (i.e. Cg = 0) 
and we shall return to this special case later. 

The final ~tep in the derivation of the NLS is 
the substitution of (2.5) and (2.7) into (2.2). 
Omitting details we obtain, upon using the 
variables r, ~ (1.4b)), 

A,  + iAA~ + it~lAl2A 

/x "A +'(A'Ae.~ e +T(IAI"  )~ + vlAI2A~ 

+ v,(lAi2Z _ A 2 - ) 2) A~)  + ~'(~ = 0 .  (2 .8 )  

Here the coefficients A, A', /,, v and v' are 

A = 
1 d2¢o 
2 dk 2 - k(3 - 10k-'), (2.9a) 

1 d3a, 
h ' =  - - -  1 -  10k 2 (2.9b) 

6 dk 3 

6 ( 3 -  25k 2) 

/x = k(1 - 5 k 2 ) ( - 3  + 5k 2) ' (2.9c) 

12(1 - 10k 2) 
~, = (2.9d) 

k 2 ( l - 5 k 2 )  2 , 

36 ( 3 -  10k z) 
u' k 2 ( - 3 + 5 k 2 )  2 " (2.9e) 

At leading order  (2.8) reduces to the NLS 
equation (1.4a) but here we have retained the 
next-order terms as these will be needed in the 
sequel. However ,  unlike the NLS equation, this 
higher-order equation is not integrable in gener- 
al. Indeed at present this higher-order NLS 
equation is known to be integrable only when it 
reduces to the derivative-NLS so that A ' =  0 and 
either v + 3v'  = 0, or z,' = tz/k (Ablowitz and 
Clarkson, 1991), or t3 the Hirota equation so 
that v' = ~ / k  and v + 3 t , '  =3/xA'/A (Newell, 
1985), or when v + 4~,' = tx/k and 2(v + 3v ' )  = 
3/xA'/A (Sasa and Satsuma, 1991). It can be 
shown that the conditions for reduction to the 
derivative-NLS cannot be met for any value of k, 
but that for k = 0.474 and 0.724 (or 0.464 and 

defined by 
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0.744) there  is a reduction to the Hirota equat ion 
(Sasa -Sa t suma  equation). 

(ii) S t e a d y  s o l i t a r y  w a v e .  First we note that  
the NLS equation ( l .4a)  has the solitary wave 

solution.  

A = a sech[y(~ - vr ) ]  exp(il~: - io 'r) ,  

where 

v = - 2 A l ,  

(2.10a) 

(2.10b) 

(2.10c) O" = a ( ' y 2  - -  12)  , 

and 

a z =  2Xy- /k t .  (2.10d) 

Of course,  this solution requires that At* > 0 (i.e. 
32s < ,.2. < ~  or ~ < k 2 <~3 ), which corresponds to 

the s.,-called focussing case of the NLS. Other-  
wise, when al.~ < 0 ,  the so-called defocussing 
case of the NLS, the corresponding solution is 

A = a tanh[7(~ - vr ) ]  exp(il~ - k r r ) ,  (2.1 la)  

where 

v = - 2 A I ,  (2.1Jb) 

c r = a ( 2 y 2 - 1 : ) ,  (2.1 lc) 

and 

a 2 = - - 2 A , y 2 / / . t  . (2.11d) 

However ,  although each of these form a two- 
pa rame te r  family of solutions,  in general they 
are not steady travel!ing wave solutions of the 
original equat ion (1.1). For  this to occur we 
require that  c = cg as noted in the Introduction 

and hence either k = 0 or k = k~, ( = 2 -  ~':). The  
case k = 0 requires a different kind of analysis 
from ,hat... considered ',,,.,,. . . . . . . .  ,,,,,~'4 has """"~,,.,.,, dis- 
cussed elsewhere. Here we con~ider the case 
when k =  k m. But now we note that for this 

solution to be exactly steady requires that both 
the ampl i tude and the phase have the same 

speed. Not ing that k = k m belongs to the focus- 
sing case, it follows from (1.4) and (2.10a) that  
the total  phase is 0 + l ~ - o ' r = ( k , , , + e l ) ( x -  
cmt  ) - e2cr t  where the subscript m denotes quan- 

- ~ Fur- tities evaluated at k = k m so that c m = a. 
ther, the ampli tude in (2.10a) is a function of 
6 - v r  = e ( x  - c, , , t)  - e z v t .  It follows that for the 

amplitude and phase to be propagating at the 
same speed,  k m v  = co-+ G(e:) .  Thus v is O(e), 
and it then follows from (2.10b) that l is likewise 
G(e) and then from (2.10c) o -=  Amy-'+ 0'(e2). 
Finally the relationship (2.10d) remains valid so 
that a" 2 = 2 A m ' Y  / / i 'm ,  where here A m,  ~t£ m denote 
the coefficients A, t~ (2.9a,c) evaluated at/," = km. 
Although we shall see that these relations are 
valid, the fact that v is C(e) indicates that it is 
necessary to consider the C(e) terms in (2.8) 
when constructing a steady solitary wave solu- 
tion. This we shall now proceed to do. 

We set k = k m in (2.8) so that  the coefficients 
A, A'. g ,  v and v' (2 .9a-e)  become respectively 

A m = - 2 k  m, a m - 4 .  ~,,, - 1 5 2 k  m, 

Pm 12.~ 3 " v m = -576  (2.12) 

We then seek a solution of (2.8) of the form 

,4 = R(r/) exp[ie4,(rt) + ielrt - icrr],  (2.13a) 

where 

r I = ~ - e r r .  (2.13b) 

Note that in contrast to (2.10a) we have now 
replaced v and l by ev and el respectively. From 

(1.4) the total  phase is 0 + e(h(rl)+ d ( n ) -  o'r. 
For a steady travelling wave this must be a 
function of r/ alone. Using (1.4b) and recalling 

that cg = c m here it follows that  

o . = k m v .  (2. l-t) 

This baiance confirms that our scaiing of v (and 
1) is correct. Note that the speed of this so!itarv 
wave relative to the group velocity c~ is e ' c .  

Next, substitution of (2.13a) into (2.8) and 
equating to zero the real and imaginary parts of 
the resulting equation gives, on omitting terms ,,f 

AmR~ - orR + ~m R = 0 ,  (2.15a) 
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[ - v  - 2h,,,(l + 4 , , ) I R , -  hm&,,TR + hmR,~,~, 

(3,,,,, ) , 
+ \ km + v m R ' R , = O .  (2.15b) 

Finally using the expressions (2.12) in (2.16c) we 
get 

a =  y / V ' ~ .  (2.21) 

Eq. (2.15a) has the solitary wave solution 

R = a sech(,/rt), (2.16a) 

where 

cr = X,,3,", (2.16b) 

and 

a2 = 2Am,y 2//Xm . (2.16c) 

In fact this is just the same as the amplitude part 
of the NLS solitary wave (2.10a-d).  Combining 
(2.14) and (2.16b) we see that 

v = - 2 y  2 (2.17) 

and hence is al ways negative. This result is to be 
expected as the speed of this solitary wave 

_ t Note also that should be less than c~ = Cm = a" 
if R is a solution of (2.15a) so is - R ,  without 
prejudice to the solution of (2.15b). 

With R given by (2.16a), Eq. (2.15b) becomes 
an equation for the phase ~b alone. Since ~b must 
be bounded for all r/, we get on integrating 
(2.15b) once, 

2A ruth" = ( -  v - 2X.,l + 4k toO') 

+ [  3/~m urn\ , 
i - 2k.-  + - 5 - ) R ' -  

(2.18) 

Further, without loss of generality we can as- 
sume that th,--->0 as [rl[--->~. since we have 
already extracted the term ehl in the phase of 
(2.13a). It follows that 

- v  - 2An, l + 4k,,cr = 0  or 1 = k m y - ,  (2.19) 

where we have used (2.12). It follows that the 
2 l wavenumber correction e is always positive. 

Next we use (2.12) and (2.19) to determine ~b, 
from (2.18), 

~,7 = - .~74:~ k , , ,R" . (2.20) 

Altogether the relations (2.14), (2.17), (2.19), 
(2.20) and (2.21) completely determine the 
steady solitary wave (2.13a) in terms of the 
single parameter .a,. Our results for the speed and 
wavenumber corrections are consistent with the 
schematic bifurcation shown in Fig. 1. 

It is important to note here that c = c m is an 
absolute minimum on the linear dispersion curve 
(Fig. 1), a, ,,~ hence the speed of this steady 
solitary wave is less than the speed of a linear 
oscillatory wave for all wavenumbers k. This 
excludes the possibility of a resonance between 
the solitary wave and a linear oscillatory wave 
which would lead to a non-local solitary wave 
where the solitary wave core is accompanied by a 
co-propagating non-decaying oscillatory tail. 
Such non-local solitary waves occur for (1.1) in 
the bifurcation from k = 0 (Pomeau et al., 1988, 
Boyd, 1991 and Grimshaw and Joshi, 1994, 
Karpman, 1993), and in other physical contexts. 
Indeed, Wai et al. (1990) have shown that the 
higher-order NLS (2.8) with the terms whose 
coefficients are ~ / k ,  v and v' omitted (i.e. only 
the higher-order term EA'A~ is retained) has 
non-local solitary wave solutions due to the 
perturbing effect of the higher-order term. How- 
ever, it is important to recognise that their result 
is not applicable here because the underlying 
resonance does not exist for the full equation 
(1.1). To assist in demonstrating this we carry 
out in Section 3 an alternative construction of 
the steady solitary wave solution using normal 
. . . . . . . .  "~.so.o ~,-o,,,-, on , , .e  . . . . . .  v,o developed 
by Iooss and Kirchgfissner (1990) and Dias and 
Iooss (1993) for capillary-gravity solitary waves. 
Further we note there that the steady solitary 
wave constructed here is oscillatory, due primari- 
ly to the phase factor exp(i0) in (1.3a), but the 
oscillations decay as [rl[---~ 0o due to the localized 
form of the envelope R(r/) (2.16a). A plot of the 
steady solitary wave described to leading order 
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by 2 Re[A exp(i0)] with A given by (2.13a) is 
shown in Fig. 2 for ca = 1 / V ~ ,  and 1 / 2 V ~ .  
Here we have chosen the arbitrary constant of 
integration in (2.20) so that the solution is 
symmetric. Finally in this subsection we note the 
recent theoretical and numerical work of Cham- 
pneys and Toland (1993) which suggests that the 
solitary wave solution (2.16a-c~ or(1.1)  may be 

(a) 0.5 

5.0 

only the first member of a complicated family of 
solitary waves, where the other members appcar 
only when the speed c < c , ,  by somc tinite 
amount. 

(iii) Special cases. We have already noted that 
the solution (2.5) for A 2 fails when 5k 2 =  1, 
while that for A 0 (2.7) fails when 5k 2= 3. These, 
and other special cases are the subject of this 
sub-section. 

(a) Second harmonic resonance, 5k 2= 1. This 
arises whenever c(k)=c(2k)  where we recall 
from (1.2b) that c(k) is the phase speed for 
wavenumbers k. The second harmonic now has 
the same order of magnitude as the primary 
harmonic, and the expansion (1.3a) is replaced 
by 

u = ~[A(X, T) exp(i0) + Az(X,  T) exp(2i0) 

+ c.c] + U(a2),  (2.22) 

where 0, X and T are again defined by (1.3b,c). 
We put 

5k-'= 1 + eA (2.23) 

(b) 
0.2 

Fig. 2. Plots of the steady solitary wave solution for (a) 
~a = 1/\ 3/~, (b) E = I/2V.+,,;. 

and let a = e. Proceeding in a similar manner to 
the general case (i) we find that 

A T - ~ A x  +6ikzA,A. = 0 ,  (2.24a) 

A2r + ~4A, x . . . .  + -~ik,AA~ + 6ikzA2 = 0. (2.24b) 

- ~ when Here k 2 = 5 i/2, and we note that cg = - ~  
k = k 2. Of course, the general form of these 
equations is typical for a second harmonic reso- 
nance (e.g. Craik, 1985). 

(b) Mean flow resonance,  5k  2 =  3. This arises 
whenever cg(k)=0 where we recall from (1.2c) 
that Cg(k) is the group velocity for wavenumber 
k. In this case we replace the expansion (1.3a) 
with 

u = a[A(X,  T) exp(i0) + c.c.] + a'4' 3A,(X, T) 

n t- 0 ' (Og  5 / 3 )  , (2.25a) 

5k 2 = 3 + eA i2.25b) 
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and let a = 3 /2 .  Proceeding in a similar manner 
to the general case (i) we find that 

A r - 3ik0A~ ~ + 6ikoAo A = 0 ,  (2.26a) 

Ao" _3.~ AAo~, + 61al~ = 0 , (2.26b) 

where 

3 zaz. (2.26c) 

Here I- and ~ are again defined by (1.4b) where 
we note that cg = 3eA. The general form of these 
equations is typical for a mean flow resonance 
(e.g. Grimshaw, 1977). 

(c) Higher-order dispersion, 1 0 k 2 = 3 .  This ar- 
ises whenever A(k) = - ½ d 2 w / d k  ~" = 0  (see 
(2.9a)). Here we still use the expansion (1.3a) 
but put a = e 3/2, and replace the definition of ~" 
in (1.4b) with 

4/3 T r = a , (2.27a) 

while 

10k 2= 3 + ~A. (2.27b) 

We then proceed as in the general case (i), and 
obtain 

,4~ - i k 3 A A ~  - 2 A ~  - 120ik31Al2A = O . 

(2.28) 

Indeed this result can be easily obtained from 
(2.8) by noting that when ;t ~ 0 ,  the remedy is to 
retain the third-derivative dispersive term, and 
rescale accordingly. Here k 3 : ( 3 ) 1 / 2 ,  ~ is again 

defined by (1.4b) while the second harmonic 
term A 2 and mean term A 0 are again given by 
(2.5) and (2.7) respectively. 

(d) Htgher-order nonlinearity, 25k2 = 3. This ar- 
ises whenever ~ = 0  (see (2.9c)). Here we still 
use the expansion (1.3a), but put a = e z/', and 
replace the definition of r in (1.4b) with 

r = a ' T ,  (2.29a) 

while 

25k" = 3 + ~A. (2.29b) 

We then proceed as in the general case (i) but 

note that it is necessary now to compute the 
third harmonic component A 3 as well as A:  and 
A 0. Omitting details tile result is 

A T + 9 i k l A ~  + 61-~iklA[Al2A + 125[AI2A~ 

+ 37~(IAI2A~ _ a2fi ,~)_ 55. ,~ 4   kll,.5AI ,4 =0 .  

(2.30) 

Apart form the new term proportional t o  IAI4A 
which arises from the third harmonic term, this 
result follows from (2.8) with/z  ~ 0 followed by 
appropriate rescaling. Here k I = (3)1/2 ,  and ~ is 
again defined by (1.4b). Eq. (2.30) is a deriva- 
tive NLS but is not integrable for the particular 
coefficients which occur here (Ablowitz and 

Clarkson, 1991). 

3. Approach through normal form analysis 

In Section 2(i) we used a standard multi-scale 
perturbation method to derive a higher-order 
(NLS equation (2.8), and then in Section 2(ii) 
we used this equation to construct a steady 
solitary wave solution of (1.1), which bifurcates 
from k = k m on the linear dispersion curve (see 
Fig. 1). Here we use a more rigorous analysis 
based on the reduction to a normal form to 
obtain the same result. This analysis is based on 
concepts used by Iooss and Kirchg/issner (1990) 
and Dias and looss (1993) for capillary-gravity 
waves, and also described by Iooss and 
P6rou~me (1993) and looss and Adelmeyer 
(1992) in a more general setting. The first step is 
to reduce (1.1) to an ordinary differential equa- 
tion by seeking steady travelling wave solutions 
of the form u = u(x - ct). Substitution into (1.1), 
and one integration gives 

- c u  + 3u 2 + uxx + uxxxx = 0 .  (3.1) 

Here we have set a constant of integration equal 
to zero, since for solitary waves we require u---> 0 
as The essence of the normal form 
analysis is the observation that when k = k m and 
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c = c m the linearized part of (3.1) has two double 
eigenvalues which are non semi-simple. 

The first step is to replace (3.1) by a first-order 
system 

u x = Mu + N(u) .  (3.2) 

Here the 4-vector u is defined by 

T --  [ U l ,  U 2 '  U3 '  U4 ] , 

where 

U 1 - -  U , U 2 - -  U x , U 3 

(3.3a) 

- -  U x  x , I,l 4 - -  b l x x  x , 

(3.3b) 

while the matrix M and the nonlinear term N are 
given by 

oi) M =  0 1 
0 0 " 

c 0 - 1  

(3.4a) 

and 

N(u) "r = (0, 0, 0, -3u~) .  (3.4b) 

Then for c = c  m = - ±  the matrix M has the 4 ~ 
eigenvalues +_ik m, each being a double eigen- 
value. For the eigenvalue _+ik m there is just one 
eigenvector v(t~) where 

= - '  -v~ikm). (3.5) v x (1, ik m, ~, _ 

To complete the eigenspace we must find a 
generalised eigenvector w such that ( M -  
ikml)w = o. We find that 

w x = (2ik m, 0, ik~, - 1). (3.6) 

It is useful to introduce the adjoint eigenvector 
v* and generalised adjoint eigenvector w* where 
(M x + ikml)O*= 0 and (M x + ikml)w*= v*. We 
find that 

v *T= (1,2ikm, 2, 4ikm), (3.7a) 

and 

w *T = (-2ikm, 4, 4ikm, 0) .  (3.7b) 

In terms of the inner product (a, b) = t~ T- b, the 
adjoint eigenvector v* is orthogonal to v, w5 and 

while ( v * , w ) = 8 i k  m, and the generalised 

adjoint eigenvector w* is orthogonal to w, ff and 
t~ while (w*, v ) = 8 i k  m. 

With these preliminaries, we now change 
variables from u to (A, A, B, /~)  by the trans- 
formation 

,, - A (x )  v + + B(x)  w + B(x )  

+ ~( /x ;  A, A, B , /~ ) ,  (3.8a) 

where 

= c - c m . (3.8b) 

Note that here A(x) is not the same as A(X, T) 
introduced in (1.aa) and used in Section 2, but 
we have preferred to use here the same notation 
as Iooss and P6rou6me (1993) and Dias and 
Iooss (1993). Here ~( /z ;  A, A, B, /~)  contains 
the higher-order terms in A, f i , ,B, /~ and is 
chosen to produce the desired normal form. 
Substituting (3.8a) into (3.2) and taking the 
inner product with w* and o* gives respectively 

A ~ = i k m A + B + f ( ~ ; A ,  fI, B , B  ) , (3.9a) 

Bx=ik~B + g ( I ~ ; A , A , B ,  B ) .  (3.9b) 

Here f and g contain the higher-order terms and 
are given by 

f(/x; A, ,4, B, /~)  = (w*, ~ - q~x)/Sikm, 

(3.10a) 

g(/.t; A, ,4, B, /~)  = (v*, Mq~ - ~x )/8ikm 

-½/x(A + ,'~ + 2 ikm(B- /3) )  

+~3(A + ,4 + 2 ikm(B- /~)  + q)t) 2 . (3.10b) 

Note that the linear part of (3.9a,b) has eigen- 
values A whcre A2 = _ ± + ~ which are just the 2 -- 
eigenvalues of the matrix M. Fcilowing Iooss 
and Adelmeyer (1992) (see also Iooss and 
P6rou6me, 1993 and Dias and Iooss, 1993) we 
next observe that 4 ( / z ; A , . 4 ,  B, /3)  can be 
chosen to reduce (3.9a,b) to the normal form 

A.~ =ikmA + B + iAP(/x; [A[ 2, ½i(A/~ - ,4B)),  

(3.11a) 

= i k m B  + iBP( ; [A[ 2, ½i(A/3-  ,4B)) 

+ A Q ( t L ;  IAI: ~i(A/~- AB)) (3.11b) 
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where P and Q are real-valued functions, and 
are given to leading order by 

P(tx; IAI 2, ½i(A/~ - ,ziB)) 

=po u + p ,  lA[ ~" + ½P2i (AB - f i lB) + . . . ,  

(3.12a) 

Q(~; IAI 2, ½i(AB- ~B)) 
= q0/z + ql[A[ 2 +½q2 i (A/~ -  AB)  + ' - ' .  

(3.12b) 

It remains to calculate the coefficients Po, P~, PE 

and qo, ql,  q2. The coefficients P0, qo are readily 
found by requiring that the eigenvalues of the 
linearization of (3.11a,b) must agree with the 
eigenvalues of M. Hence we find that 

= = - '  (3.13) Po - ½ k i n ,  qo ~ . 

The coefficients p~, P2 and q~, q2 of the non- 
linear terms require a lengthy calculation which 
is described in Appendix B. The result is 

Pl = - 146 k P2 - -  832 m ,  9 ' q ~ = - - 7 6 ,  

-I ,q q, = 12(14k (3.~-,) 
3 m " 

The system of equations (3.11a.b) has been 
discussed in detail by looss and P6rou~.me 
(1993). It is not Hamiltonian in general, but is 
integrable, possessing two integrals, one of these 
being ½i(A/3 - AB) = C. Here our interest is 
only in the reversible homoclinic orbits which 
correspond to C = 0. We put 

A = R exp(ikmx + i4') ,  

B = S exp(ikmx + iq,) 

(3.15a) 

(3.15b) 

and find that C = - R S  s in (4 , -  0). Thus C = 0  
corresponds to O - q ,  = 0, or -rr. Without loss of 
generality we choose 4 , - q J  = 0  since the case 

- ~  = ~r can be . . . . . . . .  A by ,.,_,,,.,,.u allowing S to be 
negative. Substituting (3.15a,b) into (3.11a,b) 
with C = 0 then gives 

R, = S ,  (3.16a) 

0, = P( t t ;  R:,  0) , (3.16b) 

.R 2 S~ = R Q ( l s ,  , 0 ) .  (3.16c) 

Eqs. (3.16a,c) can be combined to give 

R x x = R Q ( ~ ; R 2 , 0 ) ,  (3.17a) 

where 

Q(/z; R 2, O) = qolX + q lR  2 + ' " .  (3.17b) 

Here (3.17b) follows from (3.12b) and the omit- 
ted terms are higher order in /z and R 2. Since 
here q o < 0  (3.13) and ql < 0  it follows from 
(3.17a,b) that there is a homoclinic orbit for 
/z < 0. Retaining only the leading order terms in 
Q (i.e. Q is given by (3.17)) we find that 

R = a sech 3,x, (3.18a) 

where 

q0/x = y2 ,  (3.18b) 

and 

qla 2 = - 2 y  2 . (3.18c) 

Note that if R is a solution of (3.17a) so is - R .  
With R found from (3.17a) it is straightforward 
to obtain 4' from (3.16b). Using the leading 
order expression (3.12a) for P we find that 

~ = Pot-t + P l R  2 , (3.19) 

while S is readily found from (3.16a). Finally 
returning to (3.8a) and recalling (3.5) and (3.6) 
for v and w respectively we find that to leading 
order as ~, a--* 0 

u ~ - R e x p [ i k m x +  i ( 4 '+  2kin ~ ) ]  + c.c. .  

(3.20) 

Here we recall that in this section x is a replace- 
ment for x -  ct, where c ~ c m. Noting that the 

values of Po, P~, P2 and qo, q~, q2 are given by 
(3.13) and (3.14) we can now compare this result 
with ,t..., .~ . . . .  : .~ '-~"~J w-. ~3a). is ,,,~t u~s~.,,beu by (1 ~n~ ,~,,,""'4 t.~ I ~ It 

readily established that there is exact agreement, 
where we note in particular that 

( 4 ' + 2 k m S ) x = p o l x  + ( p ,  +kn ,  q , ) R  2 . (3.21) 

This agreement confirms that the derivation of 
the steady solitary wave by the multi-scale per- 
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turbation method of Section 2(ii) is correct, and 
hence our  interpretation of this solitary wave as 
a bifurcation of the NLS soliton at k = k m is 
valid. 

Appendix A 

In this appendix we give an alternative deriva- 
tion of the higher-order NLS equation (2.8) 
using the Zakharov spectral formulation. Let us 
introduce the Fourier transform 

oo 

= f exp(-iKx) dx, (A.la) 
--oo 

so that 

oo 

u(x, t) - 2"rrl f U(K, t) exp(iKx) dK . (A . lb )  

Then it follows from (1.1) that 

U, + ito(K)U 

+3iK f fU(KI , t )  U(K2, t) 
--~t: --oo 

X 8(K -- K I - K2) dK I d K  2 "-  0 .  (A.2)  

Here  to(,¢) i.s defined by (1.2a). Next we intro- 
duce a(K, t) by the transformation 

U(K, t) = a(K, t) 
oo 

+ f f Y( , l,K2)a(Kl,t)a(K2, t) 
b o o  ~ 0 ~  

× t~(K -- K 1 -- K2) d~,', d K  2 , (A.3)  

where f(K, K~, K2) is choseo to eliminate quad- 
ratic terms in the evolution equation for a(K, t). 
This procedure is analogous to the normal form 
analysis of Section 3. We find that to cubic order,  
on anticipating the cancellation of the quadratic 
terms when calculating the cubic terms, 

at + ito(K)a 

x a(K ) a(K ) - K, - dK, 

"t-3iK f f a(K1 ) a(~l~,,)) 8 ( K  - K| - K2) dK,  dK, ) 

+6iK f f f f 
x f(K2, K3, K4)8(K -- K 1 -- K2) 

X 8 ( K  2 -- K 3 --  K4) dtq dK 2 d K  3 d K  4 = 0 ,  (A.4) 

where here and henceforth we suppress the 

dependence of a(K,t) on t. To eliminate the 

quadratic terms in (A.4) we must choose 

3K 
f(K, K 1 , K2) = to(K1) + to(K2) _ to(K) ' (A.5) 

and it then follows that 

ae + ito(K)a 
~ oc 

+; f f fT(K, K1,K2, K3)a(K1)a(K2)a(K3) 
x 8(K - K 1 - K 2 - %) dK 1 dK 2 d% = 0.  (A.6) 

Here the nonlinear interaction coefficient 

T(K, K 1 , K 2, %) is given by 

T(K, K l, K 2, %) = 2K[f(K 2 + %, K 2, %) 

+ f ( K  3 + K  1 , K 3 , K 1 )  ' 

+ f(K 1 + K2, K1, K2)], (A.7) 

where we recall that f(K, K 1, K2) is defined by 
(A.5) 

To derive a NLS-type equation from (A.6) we 
assume that a(K) has a narrow spectrum centred 
around k. Letting K---* k in the linear terms of 
(A.6) it is readily seen that,  with appropriate 
rescaling we recover exactly the linear terms of 
the higher-order NLS (2.8) where we note that 
A,A' are defined b y  (2.9a,b) respecti"ely. To 
obtain the nonlinear terms we let K--->k in the 
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nonlinear term in (A.6). ~'he presence of the 
3-function then requires K~ --> ~. K,--> k, ~s--> k 
(and the corresponding lirai~s w~0a a cyclic inter- 
change of indices). The result ,is that the co- 
efficients of the nonlinear terms in (2.8) are 
given by 

/x = 3 lim T ,  (A.8a) 

OT 
v' = - 3  lira 0xl (A.8b) 

~, + ~,' = 3 lim + , 

where in each case we take the limit ~--->k, 
~ ---> - k, x2"-> k, r3--> k. Thus, for instance, we 
obtain 

/x = 18k c ( k )  - c(2k) + ' (A.9) 

where we recall that c(k)  and cg(k) are defined 
by (1.2b,c) respectively. It is then readily shown 
that (A.9) agrees with (2.9c). Similarly evalua- 
tion of (A.8b,c) shows agreement with (2.9d,e). 

Appendix B. Derivation of the nonlinear terms 
in the normal form 

In this appendix we describe the determination 
of the coefficients Pl,  P2 and q~, q2 in (3.12a,b). 
This in turn involves the calculation of 
• (tx; A, ,4, B, /~)  in the transformation (3.8a). 
It is sufficient for our purposes to put ~ = 0 and 
consider only the quadratic and cubic nonlinear 
terms in q~. Thus we put 

+ 

+ 

+ 

+ 

(a,)A 2 + c.c.) + a,  lA! 2 + (/]oB2 + c.c.) 

/3,1BI 2 + ('YoAB + c.c.) + (TI,,1B + c.c.) 

A3 + a3IAI2A + 3 +/ 31B1 8 + c.c.) 

( '2A2B +  ,3IAI2B + 74A2/3 + c.c.) 

(TsB2A + T.IBI ~A + TTB:.4 + c.c.) + . . . .  

(13.1) 

This expression is then substituted into (3.10a,b) 
and then we require' that equations (3.9a,b) 
adopt the normal form (3.11a,b). Since there are 
no quadratic terms in the normal form, elimina- 
tion of the coefficients of all quadratic terms in 
(3.9a,b) gives 

M a  o - 2ikma o = 3e 4 , (B.2a) 

M a  1 = 6e4, (B.2b) 

M ~  - 2ikm/~ 0 = -6e4 + Y0, (B.2c) 

M ~  = 12e 4 + r ,  + ~ ,  (B.2d) 

My o - 2ikm~, o = 12ikme 4 + 2a  o , (B.2e) 

MYl = 12ikme4 + al  • (B.2f) 

x (0, 0 .0 ,  1), and M is given by (3.4a) Here e4 = 
with /~ = 0, or c = c m = -~-. 
(B.2a-f)  is 

aoT = ½(--4, - 8 i k  m, 8, 16ikm) , 

r ( - - 2 4 , 0 , 0 , 0 )  ~lt i "-  

130 v = -~ (328,480, -32 ,  - 4 0 0 ) ,  

fl~v = (144, 0 , - 4 8 ,  0 ) ,  

T 7 0 = ~ ( -  176ikm, 152,256ik m, - 2 0 8 ) ,  

~,~ = ( -48ikm,  -24 ,  0, 0 ) .  

The solution of 

(B.3a) 

(a .3b)  

(a .3c)  

( a .3d )  

(B.3e) 

(B.3f) 

A similar procedure is followed for the cubic 
terms and leads to the following equations 

q~ = 3 ( a  0 + a l , e , ) ,  

8kmp I + ( v* ,  or3) = O, 

2km(q2 - 2pl ) + (o*, ~3) 

= 1"~;1. / _o ;1 . . . .  + "Yo + "/l, el ) , x~lr~ m \ ~l r*  m ~  1 

4ikmP 2 + 2(w*,  t~3) - (o*, 'g3) = 0 ,  

(B.4a) 

(a .4b)  

t ~  A, . \  

(B.4d) 

- 4 k m q  2 + (v*,  ~3 ) " -24 ikm( -2 ikmao  + ~l, e l ) ,  

(B.4e) 

- 4 i k m p  2 -t- ( W * ,  t l t3)  - -  ( O * ,  ~t4)  - - 0 ,  

4ikmP 2 + (v*,  t~3) 

= 24ikm ( -2ikmt~ + 'Y~ + ~o, e~ ) , 

(B.4f) 

(B.4g) 
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- 4 i k m P  2 + (v*, a3) + 2(v*, 1~4) 

= 24ikm(2ikm~ 0 - 2ikm3~ ~ +/3~, e~) .  (B.4h) 

r = (1, 0, 0, 0). These form eight equa-  Here  e 
tions for p~, P2, q~, q2 and (v*, a3), (w*, ~3),  
(v*, Y3) and (v*, Y4). Using (B.3a-f) to evalu- 
ate the right-hand sides, they are then solved to 
give (3.14). 
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