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We consider a fifth-order KdV equation, where the fifth-order derivative term is multiplied by a small parameter .  It has 
been conjectured that this equation admits a non-local solitary wave solution which has a central core and an oscillatory tail 
either behind or in front of the core. We prove that this solution cannot be exactly steady, and instead the amplitude of the 
central core decays due to the energy flux generated in the oscillatory tail. The decay rate is calculated in the limit as the 
parameter  tends to zero. 

In order  to verify the analytical results, we have developed a high-precision spectral method for numerical integration of 
this equation. The analytical and numerical result show good agreement. 

I. Introduction 

Recently there has been considerable interest 
in non-local solitary waves. These consist of a 
central part resembling classical solitary waves 
which, however, are accompanied by co-prop- 
agating oscillatory tails. They occur for solitary 
water waves in the presence of surface tension 

1 when the Bond number lies between 0 and 3 
(e.g. see Hunter  and Vanden-Broeck [9] and 
Vanden-Broeck [14] for numerical studies, and 
Beale [3] and Sun [13] for theoretical work), and 
also for internal solitary waves of mode number 
greater than two (e.g. Vanden-Broeck and 
Turner [15] for a numerical investigation, and 
Akylas a n d  Grimshaw [1] for an analytical 
study). A lot of attention has been focused on 
the fifth-order Korteweg-de Vries equation 

u, + 6 u u  x + ux~ x + eZu . . . . .  = 0 ,  (1) 

which has been obtained by Kakutani and Ono 

[10] for magneto-acoustic waves and Hasimoto 
[7], and later by Hunter  and Scheurle [8] as a 
model for capillary-gravity waves of small am- 
plitude when the Bond number is close to but 
just less than ½. See for instance the analytical 
studies by Pomeau et al. [12], Byatt-Smith [5], 
Amick and Toland [2], Karpman [11] and Grim- 
shaw and Joshi [6], and the comprehensive 
numerical investigation by Boyd [4] who has 
called these non-local solitary waves "nanop- 
terons" and drawn attention to their prevalence 
in a variety of physical contexts. 

Most attention has focused on steadily prop- 
agating symmetric non-local solitary waves, and 
two types have been described in the literature. 
There are s y m m e t r i c  non-local solitary waves 
with identical oscillatory tails on both sides of 
the central core, and a s y m m e t r i c  non-local solit- 
ary waves with the oscillatory tail on one side 
only. Pomeau et al. [12] examined both types 
asymptotically in the limit e ~ 0 and found the 
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relationship between the amplitudes of the solit- 
ary wave core and the tail oscillations which are 
exponentially small with respect to e (or more 
strictly, with respect to 3 = e2A where A is the 
core amplitude). 

However, symmetric non-local solitary waves 
will have an energy flux due to the oscillatory 
tails, and since this will be nonzero in general, it 
is clear that such symmetric waves require an 
energy source on one side of the wave and an 
energy sink on the other. Hence it seems very 
unlikely that they could be readily generated in 
practical situations, or realized as the outcome of 
an initial-value problem with a localized initial 
condition. The latter conclusion was made by 
Pomeau et al. [12], but they did not discuss the 
energetics of this localized initial-value problem. 
Our expectation is that a localized initial con- 
dition will produce one-sided non-local solitary 
waves, with the oscillatory waves appearing only 
on that side of the central core consistent with 
the energy flux of the oscillatory waves being 
directed outwards. 

But now it is apparent that steady asymmetric 
non-local solitary waves cannot exist since the 
central core must lose energy to the outwardly- 
propagating oscillatory waves. Indeed, Boyd's 
[4] attempt to numerically calculate steady 
asymmetric solutions was unsuccessful, which led 
him to conclude that " . . .  only symmetric nanop- 
terons exist in a strict sense, that is, with an error 
smaller than 6t(a2). It would be very interesting 
to have a rigorous proof of this hypothesis. It 
would be even better if analysis could explain 
why the nanopteron must be symmetric." (Here 
a is the amplitude of the oscillatory tail.) In 
section 2.1 we shall show that the existence of 
steady non-local asymmetric solitary waves con- 
tradicts the energy conservation law, and a 
rigorous proof of their non-existence will be 
presented, based on this contradiction. 

In the remainder of this paper we consider the 
time evolution of non-local asymmetric solitary 
wave solutions of the fifth-order Korteweg-de 
Vries equation (1), emphasizing again that these 

are inherently unsteady and the solitary wave 
core decays as it loses energy to the outwardly- 
propagating waves in the oscillatory tail. How- 
ever, as e---~ 0 this decay is exponentially slow, 
and the result of Pomeau et al. [12] for the 
amplitude of the oscillatory tail is asymptotically 
correct, even though it was obtained for the 
(non-existent) steady solution. This discussion is 
presented in sections 2.2 and 2.3. Then in section 
3 we describe our numerical results which con- 
firm this asymptotic result. 

2. Analytical results 

2.1. Steady asymmetric solutions 

First we shall discuss the non-existence of 
steady, non-local, asymmetric solutions to eq. 
(1). We seek a solution of (1) in the form 

u ( x , t ) = u ( O ) ,  O = x - c t .  (2) 

Substitution of (2) into (1) gives 

- c u  o + 6uu o + uoo o + eZ Uooooo = 0.  (3) 

Equation (3) should be supplemented by the 
following boundary conditions: 

u - + u  w a s 0 - + ~ ,  (4) 

u ~ 0  a s 0 ~ - ~ ,  (5) 

where uw is a periodic function which describes 
the oscillatory tail. If e ~ 1, the amplitude of this 
tail is small, and (4) can be replaced by 

u---~a sin(kx + ~)  + (7(a 2) a s 0 - + ~ ,  (6) 

where a, ~b and k are the amplitude, phase and 
wavenumber, respectively. The latter can be 
readily found via substitution of (6) into the 
linearized version of (3): 

= - 1  + Xec + ~(e3) .  (7) 

Observe that, if e ~ 1, the trailing wave is short: 
k -> l .  

The boundary value problem (3), (5), (6) was 
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solved asymptotically by Pomeau et al. [12]. For 
the central core part of the non-local solitary 
wave the solution was obtained by letting 

2 n  2n  
U = e U n , C = 8 C n , 

n = 0  n = 0  

where 

u 0 = 23, 2 sech2(3,0), c o = 43, 2 , (9a) 

u 1 = 3,4[-20 sech2(y0) + 30 sech4(3,0)] , 

c 1 = 163, 4 , (9b) 

and 3' is the (free) parameter  which characterizes 
the amplitude and "width" of the soliton core. 
The  amplitude of the trailing wave, in its turn, is 
related to 3' by 

a 2exp( )  10) 

where K ~ -19 .97  is a numerical constant. Solu- 
tion (9), (10) corresponds to the solution u+ in 
Grimshaw and Joshi [6], where we note that the 
full value of k is used rather than the approxi- 
mate value k~- -e  -1 (see (7)), and that this 
expression is valid to a relative error  of order e 4. 

This result also corrects a missing factor of ½ in 
the result of Pomeau et al. [12]. 

From a physical viewpoint, the wavenumber k 
of the trailing wave is determined by the require- 
ment  that the phase speed of the latter is equal 
to the speed c of the central core. Indeed, 
calculating the dispersion relation of small-am- 
plitude waves within the framework of (1) 

w ( k )  = - k  3 + e2k 5 , 

we see that the condition 

Cph(k ) = - k  2 + e2k 4 = c 

yields the correct value for k. This is precisely 
how k is calculated in (7), and in terms of 3" it 
may be shown that 

k = __1 (1 + 4e23"2) 1/2 
e 

exactly (see [6]). At the same time, the g r o u p  

speed of the trailing wave is no t  equal to c: 

cg r = - 3 k  2 + 5 8 2 k  4 = 2e -2 + ~ ( 1 ) ,  (11) 

and since the wave energy is transferred at the 
g r o u p  speed, the corresponding energy flux in 
the moving reference frame is 

F = p(Cg r - Cph ) ~& 0 ,  

where p is the density of energy in the trailing 
wave. O b v i o u s l y ,  the sol i tary wave  core loses 

energy (due to the radiat ion o f  the trail ing wave)  

and  therefore  canno t  be s teady.  

In order to express the above argument in a 
more rigorous form, we multiply (3) by u and 
integrate it: 

1 2 - ~ c u  + 2u 3 + u u 0 0 - ½ ( u 0 )  2 

2 
+ e [UUoooo - UoUoo o + ½(Uoo) 2] = P ,  (12) 

where P is the constant of integration (phys- 
ically, the left-hand side of (12) represents the 
energy flux). Substitution of boundary conditions 
(5) and (6) into (12) gives 

0 = P ,  
1 2 za  (c + 3k 2 - 582k 4) + O ( a  3) = P .  

These equalities are, evidently, incompatible 
(see also (7)), which proves that the asymmetric 
solutions cannot exist in the small-amplitude 
limit a ~ l .  This simple proof  can be easily 
generalized for the case when a is not necessarily 
small. 

2.2.  Discuss ion  

The above argument entails the following 
conclusions: 

(i) The asymmetric non-local solutions to eq. 
(1) cannot be steady: the amplitude of 
the central core decays due to the energy 
loss caused by the radiation of a trailing 
wave; 
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(ii) Since the difference between the group 
speed Cg r of the trailing wave and the 
speed c of the central core is positive (see 
(11)), the oscillatory wave is radiated 
forward (and therefore can hardly be 
called "trailing"); 

(iii) Since all periodic solutions to eq. (1) 
correspond to non-zero energy flux, 
steady non-local symmetric solutions (see 
[4,6,12]) cannot evolve from localized 
initial conditions and require a source o f  
wave energy as x---~ -co, as well as the sink 
a s  X...--> oo 

It should also be emphasized that 
(iv) Although the non-local asymmetric solit- 

ary wave does not exist as an exact 
steady-state solution, it still solves eq. (1) 
with an error o f  ~(a2). 
Therefore, if the evolution of the solution 
is sufficiently slow (i.e. if the time scale of 
the evolution is of the order of, or greater 
than a-2), relationship (10) between the 

amplitudes o f  the soliton core and oscillat- 
ory wave is asymptotically correct. We 
shall expand on this below in section 2.3, 
and then discuss our numerical results in 
section 3 which confirm the above asymp- 
totic estimates. 

(v) A reviewer called our attention to the 
observation that it could be conjectured 
from our result (i) above that all steady 
solutions of eq. (1) must be symmetric. 

2.3. The evolution o f  solitary waves 

In this sub-section we suggest a simple asymp- 
totic approach to the problem of the evolution of 
a solitary wave which radiates a small amplitude 
oscillatory wave. In order to determine the rate 
of decay of the central core, we change variables 
in equation (1) from (x,t) to (O,t) where 

0 = x - i c( t ' )  d t ' .  
0 

Now we can assume that t is "slow", i.e. O/Ot 
c O/O0. Observe that the speed c(t) of the core is 
now described by an undetermined function of t. 
The solitary wave parameter 3' will also be 
described by an undetermined function of t, but 
the relationship between c(t) and 3'(0 described 
by (8) and (9a,b) is maintained to the leading 
order in e. Then we construct the energy equa- 
tion 

P, + Po = 0 ,  (13) 

where the energy density is 

~ 1  2 p ~u 

and the energy flux P coincides with the left- 
hand side of (12). Since the small-amplitude 
oscillatory wave is radiated to the right (see 
conclusion (ii) in section 2.2), we use boundary 
condition (6), and then integrate (13) from -o0 
to 00 with respect to 0, where 00 is a fixed value 

- 1  
of 0 less than  (Cgrt), but much greater than 3' 
which is the effective width of the central core. 
We get 

00 

-~  p dO + P(O = 00) = 0.  (14) 

This equation states that the rate of loss of 
energy of the solitary wave core is balanced by 
the energy flux in the oscillatory waves. The 
integral term can be estimated using the un- 
perturbed profile of the KdV soliton u 0 given by 
(9a). On the other hand P(O = 00) is estimated 
from the oscillatory waves alone (given by the 
boundary condition (14)). To the leading order 
in e we find that 

2 d3' a 2 
83' - ~ +  2e 2 = 0 .  (15) 

Now we see that the time scale of the evolution 
of the solution is proportional to a -2, and the 
time derivative in equation (1) is sufficiently 
small. Thus, in order to close equation (14), we 
may use the relationship (10) between a and 3, 
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(see conclusion (iv) in section 2.2). Substitution 
of (10) into (15) yields 

?)=0 dt + 4e6,y 2 

With k given by (7), this equation can be 
integrated to determine y = y(t) and the rate of 
decay of the core amplitude 2y 2 can be esti- 
mated. 

3. Numerical  results 

As mentioned above, the asymptotic formula 
(10) was obtained for the non-existent steady 
asymmetric solution to eq. (1). Nevertheless, in 
section 2.2 we argued that it is correct for the 
quasi-steady non-local solitary waves. In order to 
verify this hypothesis, eq. (1) was integrated 
numerically with the initial condition 

u(x, O) = Uo(X ) , (16) 

where Uo(X ) is the unperturbed KdV solitary 
wave (9a). As it turned out, the traditional 
spectral or finite-difference methods are not 
accurate enough to simulate the exponentially 
weak effect of oscillatory-wave radiation, and 
hence we developed the following high-precision 
spectral technique. 

3.1. Numerical method 

The basic concept of our method consists in 
solving the equation in the Fourier space. In 
terms of the Fourier transform, 

1 i a (a ,  t) = ~ u(x, t) e ixx dx 

we can rewrite (1) in the form 

~t(A) = ioJ(A) ~(A) + 3ia _/ ~(A - A') t~(a') d a ' ,  

(17) 

where ~0(A) = _/~3 + E2/~5. In order to "prepare"  
eq. (16) for numerical integration, we truncate 

u(A) ~ 0 if IA] ~> Atr 

and discretize the Fourier variable A. The inte- 
gral on the right-hand side of (16) is evaluated 
using the Simpson rule, while the time derivative 
is approximated by the leap-frog finite difference 
scheme. Thus, the accuracy of this method is 

aU = G(r 2, h4),  

where r and h are the steps in time t and 
wavenumber A respectively. The error caused by 
the truncation of the integral is exponentially 
small: since u(x, t) is a smooth function of x, 
fi(A, t) decreases exponentially as A--+~. 

It should be emphasized that this technique is 
numerically stable regardless of  the ratio of  the 
steps r and h; which means that the accuracy 
with respect to h can be improved with the time 
step r being fixed. The only constraint on r 
follows from the condition of the stability of the 
leap-frog approximation: 

1 
r E  

(-O(atr) 

(this constraint can be easily satisfied in all cases 
of practical interest). The independence of steps 
r and h is a major advantage over the "tradition- 
al" spectral method where the spatial step may 
not be diminished without diminishing the time 
step. This advantage is particularly important for 
the fifth-order KdV equation; if it is integrated in 
the x-space (the traditional spectral method),  the 
spatial step should be small enough to resolve 
the short-wave oscillatory tail and the stability 
requirement then makes this approach practical- 
ly not applicable to (1) with e ~< 0.3. 

In general, the traditional spectral method is 
slower in all cases which require high accuracy. 

3.2. Results 

We integrated the initial value problem (16), 
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(17) using the above numerical method.  In order  
to compute  the amplitudes of the solitary wave 
core and the oscillatory wave, we performed the 
inverse Fourier  t ransform each fifth time step. 
The  fast Fourier  t ransform was used to locate the 
crest of the core and the beginning of the 
oscillatory wave, after which we used the "s low" 
Fourier  t ransform to compute  the amplitudes of 
the core and oscillatory wave (the FFT was not 

accurate enough for this task). The amplitude of 
the core we denote by A and determine as the 
max imum of u(x, t). The amplitude of the oscil- 
latory wave was determined as 

r .  (j) . (J) / a = ½ max ~ t ~ c r e s  t - -  ÷4trough] , 
l_<j~5 

(" (/) ~ and where j enumerates  the local maxima , ,  .... t) 
/ ,  (J) "~ minima Lmro.gh) of the function u(x,t) (the 

minimum closest to the solitary wave and the 
next maximum correspond to j = 1). Since both 
A and a depend on t (see fig. 1), it is important  
to set a formal criterion of "quasi-steadiness" 
which we define as that moment  of t ime when 
the solitary wave core has finished adjusting its 
initial form and the oscillatory wave has adjusted 
its ampli tude to the current value of A. We 
assumed that the solution is quasi-steady when 
a(t) begins to decrease (see fig. 1). 

During the computat ion we monitored the 
energy 

o o  

E= f u2 , 

the Hamil tonian 
~ c  

H =  } [ u 3 - ½ ( u ~ ) 2 +  1 -:2(Uxx):] dx 
- -  o z  

and the velocity of the center of mass 

V = .1 XU t d x  . 

All these are conserved quantities for (1). Note 
that the spectral method automatically conserves 
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Fig. 1. The ampli tudes of the solitary wave core (a) and 
oscillatory wave (b) versus time (e 2=  0.065). 

the mass invariant (i.e. fi(A, t) at h = 0). H and v 
proved to be most sensitive to the computat ional  
errors and we were able to keep 8H/H and 8v/v 
only within the limits of 0 .5%, whereas the error  
8E/E was usually less than 0.01%. 
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Fig. 2. The  ampli tude of  the oscillatory wave scaled by the 
left-hand side of formula (10), versus the parameter  e2A. 
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t = O  

t = 0 .2  

t = 0 . 4  

(a) (b) 

Fig. 3. The evolution of a solitary wave (e 2 =  0.065, the initial amplitude A(0)  = 1). (a) u(x, t); (b) [fi(A, t)t. The vertical line 
indicates the asymptotic value of the wavenumber  of oscillatory wave (formula 7)). 
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t = 0.6 
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J 

t = 0 . 8  

(a) 

Fig. 3. Contd. 

(b) 

In order  to verify formula (10) for the am- 
plitude of the oscillatory wave, we shall first 

relate the parameter  3' to the observed  value of 
A ,  which takes into account distortion of the 
solitary wave form due to the perturbation. 
Taking into account the first correction (9b), we 

obtain 

5 ^ 2 A 2  2 3 ' 2 - ~ A - ~ e  ~ . (18) 

Then,  the computed values of a were scaled by 
the right-hand side of (10) (the scaled quantity is 
denoted by ~ and plotted versus 8 = e2A (see 
fig. 2). Evidently, (10) and (18) provide a good 
approximation of the numerical results for 
0 . 0 1 5 ~ 8  ~<0.04. Unfortunately,  we were not 
able to compute ~ for 8 <0.015,  where the 
roundoff  error  was of the order  of (or even 

greater than) the solution itself. Instead, we 
extrapolated ~(8) using the cubic parabola,  pass- 
ing through the last three points. Assuming that 
the coefficient of the quadratic term is zero (it 
should be recalled that formulae (14) and (22) 
are valid up to the quadratic term in e), we 

obtain 

~ =  0.9991 - 136.51 8 2 + 1803.1 8 3 , 

which shows that formulae (10), (14) work 
increasingly well as 8--->0. The difference be- 
tween the exact value ~(0) = 1 and the numerical 
one ~(0) = 0.9991 characterizes the computation- 
al error  of our numerical method. 

It is also worth noting that the "waves" on the 
graph if(8) (see fig. 2) are too big to be ac- 
counted for solely by the numerical error. The 
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m o s t  p r o b a b l e  r e a s o n  is tha t  o u r  c r i t e r i o n  of  

q u a s i - s t e a d i n e s s  does  n o t  w o r k  wel l  w h e n  the  

m a x i m u m  of  a(t)  is flat, whi le  the  m a x i m u m  of  

A ( t )  is " s h a r p "  (see fig. 1). A s  e---~0, b o t h  

m a x i m a  b e c o m e  flat,~ a n d  the  waves  d i s a p p e a r .  

I n  c o n c l u s i o n ,  we  s h o u l d  e m p h a s i z e  tha t  the  

s y m m e t r i c  ( s t eady  or  q u a s i - s t e a d y )  n o n - l o c a l  

so l i t a ry  w a v e  n e v e r  e m e r g e d  f r o m  the  loca l ized  

in i t i a l  c o n d i t i o n .  In  all  cases  the  osc i l l a to ry  tail  

g r ew  o n l y  in f r o n t  of  the  so l i ta ry  wave  (see fig. 

3a).  Fig.  3b ,  in  its t u r n ,  d e m o n s t r a t e s  tha t  the  

a s y m p t o t i c  e x p r e s s i o n  (7)  for  the  w a v e n u m b e r  k 

of  the  osc i l l a to ry  w a v e  agrees  wel l  wi th  the  

n u m e r i c a l  resul t s .  
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