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A B S T R A C T

This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL)
and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this
assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends
only on the PL’s depth, whereas its Väisälä–Brunt frequency turns out to be unimportant (as long as it is small).
Under an additional assumption—that the potential vorticity field in the PL is well-diffused and, thus, uni-
form—the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL
interface, after which the PL can be excluded from consideration.

1. Introduction

Oceanic currents and density stratification are often confined to an
upper active layer (AL) of the ocean, which does not, however, mean
that the response of the lower passive layer (PL) can be neglected. As a
result, a significant proportion of computer resources in numerical si-
mulations has to be spent on the PL—even if/when nothing significant
occurs there in the problem at hand.

The high cost of resolving the PL is not the only difficulty when
modeling a layered ocean. Since little is known about the Väisälä–Brunt
frequency N in the ocean’s deeper parts (except that N is small), mod-
eling the PL poses problems even if one has resources for resolving it.
An additional difficulty arises when one uses the quasigeostrophic (QG)
model, which becomes singular in the limit N→ 0. To avoid all these
problems, many assume the Väisälä–Brunt frequency to be con-
stant—which is, however, not the case near the AL/PL interface and,
thus, may give rise to an error which is impossible to estimate.

In this work, a model is presented, parameterizing the effect of the
passive layer on the active layer under the QG approximation. The
problem is formulated in Section 2, solved asymptotically in Section 3,
and Section 4 addresses the practical issue of how one can subdivide a
continuously stratified ocean into an AL and PL. In Section 5, the general
asymptotic model is adapted for the case where the potential vorticity
field in the PL is uniform.

2. The governing equations

Consider a mesoscale flow in the ocean characterized by the Coriolis

parameter f and the Väisälä–Brunt frequency N(z), where z is the ver-
tical coordinate (with (x, y) and t being the horizontal coordinates and
time). Let the flow be described by the QG equation for the stream
function ψ (for the applicability of the QG theory, see Pedlosky, 1987),
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where the (horizontal) Laplacian and Jacobian are
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Under the rigid-lid approximation, the boundary conditions at the
ocean’s surface and bottom are
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where H is the ocean’s depth.

3. The analysis

Assume that the ocean can be subdivided into an active and passive
layers, of depths Ha and = −H H H ,p a with the corresponding scales of
the Väisälä–Brunt frequency being such that Na≫Np. Introduce also the
horizontal spatial scale L of the flow (the same for both AL and PL).

https://doi.org/10.1016/j.ocemod.2018.03.003
Received 7 December 2017; Received in revised form 5 March 2018; Accepted 22 March 2018

1 http://www.staff.ul.ie/eugenebenilov/hpage/.
E-mail address: Eugene.Benilov@ul.ie.

Ocean Modelling 125 (2018) 39–44

Available online 30 March 2018
1463-5003/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/14635003
https://www.elsevier.com/locate/ocemod
https://doi.org/10.1016/j.ocemod.2018.03.003
https://doi.org/10.1016/j.ocemod.2018.03.003
http://www.staff.ul.ie/eugenebenilov/hpage/
mailto:Eugene.Benilov@ul.ie
https://doi.org/10.1016/j.ocemod.2018.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2018.03.003&domain=pdf


Now, two Burger numbers can be introduced,
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The only assumption used in this work is that Bup is small2 (mainly due
to the smallness of Np), whereas Bua remains unrestricted.

The following derivation is straightforward, so there is no need to
nondimensionalize the governing equations. If Bup≪ 1, the terms in-
volving 1/N2 dominate Eq. (1) in the PL, so that the solution of (1) can
be sought in the form of a series,
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Note that a two-layer, beta-plane equivalent of Eq. (4) has been pre-
viously derived by Dewar and Gailliard (1994).

The boundary condition (3), in turn, yields
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Next, to match the PL and AL solutions, one should require the con-
tinuity of the pressure and isopycnal displacement. Under the QG ap-
proximation, this amounts to
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Since the PL part of the streamfunction is now subdivided into ψ(0) and
ψ(1), (8) should also be subdivided into two pairs of matching condi-
tions, for ψ(0) and ψ(1),
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Observe that the AL pressure (which can be large) is matched to ψ(0),
whereas the AL isopycnal displacement (which is relatively small as Ha/
Hp≪ 1) is matched to ψ(1). This way, the ‘subdivided’ matching con-
ditions are balanced, i.e., involve terms of the same order.

It turns out that ψ(1) can be eliminated. Integrating Eq. (5) with
respect to z from − H to − −H 0a and integrating by parts the terms
that involve both ψ(0) and ψ(1), one can verify that the bulk (integral)
terms involving ψ(1) cancel out and (5) becomes
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Now, taking into account the boundary/matching conditions (6)–(7)
and (9)–(10), one obtains
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The leading-order solution ψ(0), in turn, cannot be eliminated. Note,
however, that the passive layer is not supposed to have independent
dynamics, but should be driven by the active layer—i.e. the pressure
field in the former, ψ(0), should be fully determined by the pressure
applied at the interface—hence,

=ψ x y tΨ( , , ).(0) (14)

Subject to (14), Eqs. (4) and (6) are satisfied identically, whereas (12)
yields
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Note that letting ψ(0) be independent of z makes the PL flow barotropic,
but the isopycnal displacement—determined by (f2/N2)(∂ψ(1)/
∂z)—does depend on z and is order-one (due to the presence of the
factor 1/N2).

Thus, the complete governing set comprises:

1. the AL Eqs. (1)–(2),
2. the PL Eq. (15), and
3. the matching conditions (13), where the “ ± 0” can be omitted:
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Items (2)–(3) are the main results of this work. Note that an approx-
imation similar to (15)–(16) has been derived by Benilov (1995) for the
particular case of normal modes in a baroclinic current. The possibility
of an extension to arbitrary QG flows, however, was overlooked.

4. Examples

The asymptotic model developed above is valid when the ocean can
be subdivided into an AL and PL. The real ocean, however, is con-
tinuously stratified, with no clear-cut inter-layer boundary—leaving us
with a question: what is the optimal choice for the AL/PL interface?

This issue is clarified below by applying the general model
(15)–(16) to the example of baroclinic instability of a vertically sheared
but horizontally uniform flow. The asymptotic results for different va-
lues of Ha are then compared to the exact solution.

It is convenient to nondimensionalize the problem by introducing

2 Note that, despite the smallness of Bup (which often signals that the QG approx-
imation should be replaced with the frontal-geostrophic one), the deviation of the iso-
pycnals in the PL is assumed small—hence, the QG still holds.
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where Na is the maximum Väisälä–Brunt frequency, Va is the maximum
velocity, and =L Hf N/ a. Rewriting the exact Eqs. (1)–(3) in terms of
the non-dimensional variables and omitting the subscript nd, one ob-
tains
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Next, let
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where V(z) is the base flow and
∼ψ is a small perturbation. Linearizing

Eqs. (17)–(19) and letting
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where k and c are the perturbation’s wavenumber and phase speed, one
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Repeating the same procedure (linearization, etc.) for the asymp-
totic equations (15)–(16) and eliminating Ψ and Φ, one obtains
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where =D H H/a p a p, , . Condition (23) is the asymptotic alternative to the
exact boundary condition (22).

Numerous examples of V(z) and N(z) have been examined, yielding
more or less the same results. Below are described those for

⎜ ⎟=
− ⎛

⎝

− + ⎞
⎠

+N z
n z

w
n( )

1
2

tanh Δ 1 ,p N

N
p

2
2

2

(24)

where =n N N/ ,p p a and ΔN and wN are the non-dimensional depth and
width of the transitional region between the main thermocline and the
weakly-stratified part of the ocean (the seasonal thermocline is ne-
glected). Assuming that the main thermocline is m800 deep and the
transitional region is about two times thinner (see, for example,
Pedlosky, 1987, Fig. 1.3.1), then recalling that the ocean’s mean depth
is 4 km and finally choosing a small value for np on a more or less ad hoc
basis, one obtains
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The following velocity profile will be assumed:
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where ΔV is the flow’s ‘penetration depth’. The following two examples
have been examined: a “thin” flow (confined to the thermocline) and a
‘thick’ one (partly penetrating the weakly-stratified part of the ocean),
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N(z) and both versions of V(z) are shown in Fig. 1. The corresponding
slope ηy(z) of isopycnal surfaces and the horizontal gradient Qy(z) of
potential vorticity (PV),
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are plotted in Fig. 2. Observe that, for both examples of V(z), the iso-
pycnal displacement penetrates noticeably deeper than the flow and
stratification themselves.

The solution of the exact eigenvalue problem (20)–(22) and that of
the asymptotic problem (20)–(21), (23) were computed using the
shooting method. To avoid the singularity arising in neutrally stable
cases, Eq. (20) was integrated along a path in the complex-z plane
bypassing the critical level (for more details, see Boyd, 1985; Benilov
and Sakov, 1999). For all values of the wavenumber k, no more than
one unstable ( >k cIm 0) eigenvalue has been found, for both exact and
asymptotic problems.

In Figs. 3 and 4, the asymptotic phase speed cRe and growth rate

Fig. 1. The Väisälä–Brunt frequency N and velocity V vs. the depth z, for flows (24)–(27). The curves corresponding to the ‘thin’ and ‘thick’ flows are marked with (n)
and (k), respectively. The dotted lines show potential positions of the AL/PL interface (the lower three are illustrated in Fig. 3, the upper two in Fig. 4).
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k cIm are compared to the corresponding exact results. As one might
expect, a sufficiently accurate asymptotic model for the thick flow
turned out to require a larger Da than that for the thin one.

Less expectedly, the two flows turned out to differ in how the
asymptotic model’s accuracy improves with growing Da. For the thick
flow, it does so gradually – but for the thin one, the solution becomes
accurate abruptly as soon as Da passes a threshold of 0.3. To understand
why the value of =D 0.3a is special, note that the AL/PL interface in
this case is located just below the level of the extreme PV gradient—see
Fig. 2 b.

More broadly, numerous examples of thin flows have been ex-
amined and the following conclusions have been drawn:

• If, for a certain choice of Da, the AL does not include the extremum
of Qy(z), the accuracy of the asymptotic model (in application to a
thin flow) is poor.

• If Da is large enough for the AL to include the extremum of Qy(z), the
asymptotic model is sufficiently accurate (despite the fact that the
AL may still not include the decaying portion of Qy(z) and the
maximum of the isopycnal slope ηy(z)—see Fig. 2).

In the latter case, there is no point in increasing Da beyond this
threshold, as this results in wasting computational resources on a minor
accuracy improvement.

For thick flows, in turn, the following ‘rule of thumb’ has been es-
tablished: the inter-layer boundary can be drawn below the deepest

Fig. 2. The slope ηy(z) of isopycnal surfaces and the transverse gradient Qy(z) of PV, for flows shown in Fig. 1. The labels (n) and (k) correspond to these in Fig. 1.

Fig. 3. The solution of the exact eigenvalue problem (20)–(22) (solid line) and that of the asymptotic problem (20)–(21), (23) with (1) =D 0.3,A (2) =D 0.4,A (3)
=D 0.5A (dotted lines). The Väisälä–Brunt frequency N and velocity V are given by (24)–(26) with =Δ 0.12V (thick flow). cRe is the phase speed of the disturbance

and k cIm , the growth rate.
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extremum of the PV gradient Qy, at the depth where Qy has decayed by
a factor of 3 by comparison with that extremum. The same rule would
work for thin flows as well, but it would not deliver the optimal choice
in this case.

Finally, Fig. 5 illustrates the potential dangers of an often-used
approach consisting in assuming N(z) to be constant in the whole ocean
(i.e., ignoring the PL). For thick flows, it produces noticeably less

‘fitting’ results than those obtained through the asymptotic model
proposed. For thin flows, in turn, the two approaches produce similar
results (but the asymptotic one is still ‘cheaper’ computationally).

5. A reduced asymptotic model

Observe that the asymptotic Eq. (15) is satisfied if

Fig. 4. The same as in Fig. 3, but for =Δ 0.07V (thin flow) and (1) =D 0.29,A (2) =D 0.3A .

Fig. 5. The solution of the exact eigenvalue problem (20)–(22) (solid line) and that of the asymptotic problem (20)–(21), (23) with =D 0.5A (dotted line). N(z) and V
(z) are given by (24)–(26) with =Δ 0.12V (thick flow). The dashed line shows the solution of the exact problem (20)–(22) with =N z( ) 1.
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= − ∇HΦ Ψ.p
2 (28)

Reduction (28) implies that the PV anomaly in the PL is zero, i.e., the
PV field itself is well-diffused—which it indeed is in the deep ocean
unless up- or down-welling has recently occurred.

Substituting (28) into (16) and eliminating Ψ, one obtains
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Now, one can exclude the PL from consideration and solve the (self-
contained) boundary-value problem (1)–(2), (29) for the AL.

Note also that the boundary condition (29) imposes a constraint on
the allowable initial condition. Consider, for example, a vertically
sheared but horizontally homogeneous flow described by

= −ψ yV z( )—which expression satisfies (29) only if

= = −V
z

z Hd
d

0 at .a

Another example is the so-called columnar vortices (e.g. Dritschel and
de la Torre Juárez, 1996). In this case, =ψ ψ r( ) which satisfies (29)
only if =ψ r (unrestricted solid-body rotation), which is meaningless
physically. In both cases, the constraint originates from the requirement
of uniform potential vorticity in the PL, used to obtain the boundary
condition (29).

Still, despite the constraint, the boundary condition (29) has im-
portant physical applications—e.g., near-surface oceanic vortices,
which are both abundant in the ocean and crucial for its dynamics
(Olson, 1991; Chelton et al., 2011). At the same time, the PV field
beneath such vortices can indeed be conjectured to be uniform
(Benilov, 2004; Benilov and Flanagan, 2008). In addition, a lot of work
has been done on vortices submerged in a fluid with uniform PV (e.g.
Dritschel et al., 2005), and (29) would be useful for extending these
results to the real-ocean conditions (involving a passive layer).

It should be emphasized that the general model (15)–(16) does not
impose any constraints on the AL initial condition.

6. Summary and concluding remarks

Thus, two models parameterizing the ocean’s passive layer have
been derived: the general model (15)–(16) and the reduced model (29)

assuming that the PV field in the passive layer is uniform. The latter is
particular simple, as it allows to fully exclude the passive layer from
consideration. The former model, in turn, implies solving a partial
differential equation for the passive layer—which, however, involves
only horizontal spatial variables and, thus, is much simpler than the
original three-dimensional QG equation. In both models, one still has to
compute the solution in the active layer—but this is, of course,
‘cheaper’ than solving the QG equation in the whole domain.

In order to subdivide the real (continuously stratified) ocean into an
AL and PL, the following ‘rule of thumb’ has been established: the
passive layer can be assumed to begin at the depth where the horizontal
PV gradient has decayed by a factor of 3 by comparison with its deepest
extremum. This typically implies a reduction of the computational
domain at least by 50%, and sometimes by up to 70%.
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