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We present a numerical study of stability of two-layer isolated vortices on the f-plane with respect to
normal modes, i.e. disturbances with harmonic dependence on the azimuthal angle and time. Two types
of vortices are considered: compensated vortices (for which the lower-layer is at rest), and vortices with
uniform potential vorticity in the lower layer (for which a weak co-rotating circulation exists in the lower
layer). It is demonstrated that, if the upper-layer is thin, the numerical results agree with the earlier
asymptotic results namely, that the latter type of vortex is stable within a wide range of parameter
and, thus, can account for the observed longevity of oceanic eddies. Compensated vortices, in turn, are
typically unstable, with ageostrophic effects strengthening the instability for cyclones and weakening
it for anticyclones.
We also demonstrate that, under relatively loose assumptions, Ripa’s [Ripa, P., 1989. On the stability of
ocean vortices. In: Nihoul, J.C.J., Jamart, B.M. (Eds.), Mesoscale/Synoptic Coherent Structures in Geophys-
ical Turbulence: Proceedings of the 20th International Liège Colloquium on Ocean Hydrodynamics, Else-
vier Oceanography Series, vol. 50. Elsevier, Amsterdam, p. 167] stability criterion does not hold for
oceanic vortices with realistic parameters.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The discrepancy between theoretical and observational studies
of oceanic eddies has been identified almost 30 years ago. On the
one hand, most theoretical work on the subject (e.g. Ikeda, 1981;
Flierl, 1988; Helfrich and Send, 1988; Carton and McWilliams,
1989; Ripa, 1992; Killworth et al., 1997; Benilov et al., 1998; Baey
and Carton, 2002; Benilov, 2003; Katsman et al., 2003; Benilov,
2005) suggest that eddies are unstable with respect to small per-
turbations; on the other hand, observations (e.g. Lai and Richard-
son, 1977) indicate that eddies exist for years. A potential
solution of the paradox was put forward by Dewar and Killworth
(Dewar and Killworth, 1995), who considered a two-layer ocean
with a vortex in the upper-layer and a co-rotating circulation in
the lower-layer. It turned out that even a relatively weak ‘deep
flow’ may stabilize the eddy. This effect has been later examined
for other vortex shapes by Katsman et al. (2003), but no profile ex-
cept for the Gaussian one would become entirely stable (although,
in all examples considered, a co-rotating deep flow would reduce
the growth rate).

Note that (Dewar and Killworth, 1995; Katsman et al., 2003)
assumed that the deep circulation has the same shape as the
upper-layer vortex. A different approach was used in Benilov
(2004), where it was demonstrated that all vortices, not just the
ll rights reserved.

).
Gaussian one, are stabilized by the deep flow corresponding to uni-
form potential vorticity (PV) in the lower-layer. The following mech-
anism of stabilization was suggested: an unstable normal mode
can be interpreted as two phase-locked vorticity waves in the
upper and lower layers, existing due to the PV gradient and travel-
ling around the vortex as they grow. If, however, the lower-layer
PV field is uniform, it cannot support vorticity waves, and baroclin-
ic instability (for which both waves are needed) is inhibited.

Furthermore (Benilov, 2004) argued that deep flow with uni-
form PV arises naturally below oceanic eddies, as suggested by
the fact that most of them are shed by unstable frontal currents.
Accordingly, when a vortex moves away from the current and ar-
rives to a new location, the PV field below it cannot change and re-
mains equal to its initial, background value.

Note that the main focus of Benilov (2004) was quasigeostroph-
ic (QG) vortices, which were examined both asymptotically (for the
case of thin upper-layer) and numerically. With regards to ageo-
strophic vortices, it was only argued asymptotically that, if they
are thin, their stability properties should be similar to those of
their QG counterparts. Note, however, that the ageostrophic
approximation admits internal gravity waves, and these can cause
an instability which is simply too weak to be ‘spotted’ by the lead-
ing-order analysis presented in Benilov (2004).

The present note aims to examine the ageostrophic approxima-
tion numerically, with an accuracy guaranteeing that all instabili-
ties are detected. We use the simplest model of two-layer ocean
on the f-plane. In Section 2, the problem of vortex stability is
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formulated mathematically. In Sections 3 and 4, we examine the
stability of compensated vortices (for which the lower-layer is at
rest) and vortices with uniform PV in the lower-layer, respectively.
Finally, in Section 5, we demonstrate that, under fairly loose
assumptions, Ripa’s criterion (Ripa, 1989, 1991) does not work
for isolated ageostrophic vortices (which explains why this and
most other papers on the subject are based on the numerical,
rather than analytical, approach).

2. Formulation

Consider a two-layer ocean with rigid lid and flat bottom, where
the densities and mean depths of the layers are qj and H�j (j = 1,2
correspond to the upper and lower-layer, respectively, and aster-
isks imply that the corresponding quantity is dimensional). We
shall also introduce the upper-layer deformation radius

Ld ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g0H�1

p
f0

;

where g0 = g(q2 � q1)/q2 is the reduced acceleration due to gravity
and f0 is the Coriolis parameter.

In a two-layer ageostrophic ocean, the flow is characterized by
the layers’ depths h�j, pressures p�j, the radial velocities u�j, and the
azimuthal velocities v�j. These variables depend on the time t� and
polar coordinates (the radial variable r� and azimuthal angle h�).

Next, introduce the following non-dimensional variables:

t ¼ f0t�; r ¼ r�
Ld
; h ¼ h�;

uj ¼
u�j

f0Ld
; vj ¼

v�j
f0Ld

; hj ¼
h�j
H�j

; pj ¼
p�j

q2g0H�1
:

Then, the non-dimensional equations governing two-layer ageos-
trophic vortices on the f-plane are

ouj

ot
þ uj

ouj

or
þ 1

r
vj

ouj

oh
� vj

� �
þ

opj

or
¼ vj; ð1Þ

ovj

ot
þ uj

ovj

or
þ 1

r
vj

ovj

oh
þ uj

� �
þ 1

r
opj

oh
¼ �uj; ð2Þ

r
ohj

ot
þ o

or
ðrujhjÞ þ

o

oh
ðvjhjÞ ¼ 0; ð3Þ

p2 ¼ p1 � h1; eh1 þ h2 ¼ 1þ e; ð4Þ

where

e ¼ H�1
H�2

:

In what follows, Eqs. (1)–(4) will be reduced to a simpler set
describing linear disturbances with harmonic dependence on the
azimuthal and time variables. Such sets have been derived before
(Dewar and Killworth, 1995; Baey and Carton, 2002), therefore,
we shall keep the details to a minimum.

Following the usual scheme of linear stability analysis, we con-
sider a steady vortex and small disturbance,

ujðr; h; tÞ ¼ u0jðr; h; tÞ; vjðr; h; tÞ ¼ VjðrÞ þ v0jðr; h; tÞ; ð5Þ

pjðr; h; tÞ ¼ PjðrÞ þ p0jðr; h; tÞ; hjðr; h; tÞ ¼ HjðrÞ þ h0jðr; h; tÞ; ð6Þ

where the vortex satisfies the cyclostrophic, hydrostatic, and kine-
matic relations,
dPj

dr
¼ Vj þ

1
r

V2
j ; P2 ¼ P1 � H1; eH1 þ H2 ¼ 1þ e: ð7Þ

It is also implied that

Hj ! 1; Vj ! 0 as r !1: ð8Þ
Substituting (5)–(7) into (1)–(4) and omitting nonlinear terms, we
obtain

ou0j
ot
þ 1

r
Vj

ou0j
oh
� v0j

� �
� 1

r
v0jV j þ

op0j
or
¼ v0j; ð9Þ

ov0j
ot
þ u0j

dVj

dr
þ 1

r
Vj

ov0j
oh
þ u0j

� �
þ 1

r

op0j
oh
¼ �u0j; ð10Þ

r
oh0j
ot
þ o

or
ðru0jHjÞ þ

o

oh
Vjh

0
j þ v0jHj

� �
¼ 0; ð11Þ

p02 ¼ p01 � h01; eh01 þ h02 ¼ 0: ð12Þ

We are interested in normal modes, i.e., solutions with harmonic
dependence on the time and azimuthal angle,

u0j ¼ Re½ûjðrÞeikh�ixt �; v0j ¼ Re½v̂jðrÞeikh�ixt�; ð13Þ

p0j ¼ Re½p̂jðrÞeikh�ixt �; h0j ¼ Re½ĥjðrÞeikh�ixt�; ð14Þ

where x and k are the frequency and azimuthal wavenumber. Sub-
stitution of (13) and (14) into (9)–(12) yields (hats omitted)

i
k
r

Vj � x

� �
uj � 1þ 2

r
Vj

� �
vj þ

dpj

dr
¼ 0; ð15Þ

i
k
r

Vj � x

� �
vj þ 1þ 1

r
Vj þ

dVj

dr

� �
uj þ

ik
r

pj ¼ 0; ð16Þ

i
k
r

Vj � x

� �
hj þ

1
r

d
dr

rHjuj
� �

þ ik
r

Hjvj ¼ 0; ð17Þ

p2 ¼ p1 � h1; eh1 þ h2 ¼ 0: ð18Þ

It is convenient to reduce (15)–(18) to two equations for p1,2. Using
(15) and (16) to express uj, vj through pj,

uj ¼ �i

k
r

Vj � x

� �
dpj

dr
þ 1þ 2

r
Vj

� �
k
r

pj

1þ 1
r

Vj þ
dVj

dr

� �
1þ 2

r
Vj

� �
� k

r
Vj � x

� �2 ;

vj ¼
1þ 1

r
Vj þ

dVj

dr

� �
dpj

dr
þ k

r
Vj � x

� �
k
r

pj

1þ 1
r

Vj þ
dVj

dr

� �
1þ 2

r
Vj

� �
� k

r
Vj � x

� �2 ;

we substitute these expressions into (17) and, after cumbersome
calculations, obtain

d
dr

rFj
dpj

dr

� �
þ

d
dr

k 1þ 2
r

Vj

� �
Fj

	 

k
r

Vj � x
� k2

r
Fj

8>><
>>:

9>>=
>>;pj � rhj ¼ 0; ð19Þ

where

Fj ¼
Hj

1þ 1
r

Vj þ
dVj

dr

� �
1þ 2

r
Vj

� �
� k

r
Vj � x

� �2 : ð20Þ

To ‘close’ these equations, express hj in terms of pj from (12),

h1 ¼ p1 � p2; h2 ¼ eðp2 � p1Þ: ð21Þ

Finally, we impose the usual boundary conditions at the center of
the vortex and infinity,

pj ! 0 as r ! 0;1: ð22Þ

Eqs. (19)–(22) form an eigenvalue problem, where x is the eigen-
value. If Imx > 0, the vortex is unstable.
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Observe that, for marginally stable solutions (such that
Imx = 0), Eq. (19) has a singularity at the critical level, i.e., at a
point r = rc where the angular velocity in one of the layers matches
the angular phase velocity of the eigenmode,

1
r

Vj ¼
x
k

at r ¼ rc: ð23Þ

In addition, there can be a singularity, at a point r ¼ r0c where

1þ 1
r

Vj þ
dVj

dr

� �
1þ 2

r
Vj

� �
� k

r
Vj � x

� �2

¼ 0 at r ¼ r0c; ð24Þ

and one of the functions Fj becomes infinite. Singularities of type
(24) will be referred to as critical levels of the second kind. Note that
they never occur in the QG approximation, under which jVjj �
jxj � 1, and the left-hand side of (24) never vanishes:

1þ 1
r

Vj þ
dVj

dr

� �
1þ 2

r
Vj

� �
� k

r
Vj � x

� �2

� 1:
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r
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Fig. 1. Examples of compensated Gaussian vortices (25)–(28) with DH = ±0.6, R = 2
(the cyclone/anticyclone are marked with �/+, respectively). (a) H1(r); (b) V1(r).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

0

0.5

1

1.5

2

2.5

3

R

Barotropic instability

Baroclinic instability

Stability

1

2

3

4

Fig. 2. The stability properties of Gaussian quasigeostrophic (D H ? 0) vortices. The
marginal stability curves are marked with the corresponding values of the azimu-
thal wavenumber k.
3. Compensated vortices

Let the vortex be localized in the upper-layer, with the lower-
layer being at rest,

P2 ¼ 0: ð25Þ

In this case (7) yields

P1 ¼ H1; ð26Þ

V1 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4r

dH1

dr

r
� r

 !
; V2 ¼ 0; H2 ¼ 1� eðH1 � 1Þ: ð27Þ

Thus, all parameters of the vortex are determined by a single func-
tion, H1(r).

3.1. Gaussian vortices

We shall first consider vortices with a Gaussian profile,

H1 ¼ 1þ DH exp � r2

2R2

� �
; ð28Þ

where R and DH are the non-dimensional radius and amplitude of
the vortex, normalized by the upper-layer deformation radius and
the mean thickness of the upper layer, respectively. Two examples
of Gaussian vortices, a cyclone and an anticyclone, are shown in
Fig. 1. Since we must assume H1,2 > 0 and ImV1 = 0, it follows from
(27) that the parameters of the vortex should satisfy the following
restrictions,

�1 6 DH 6
1
e
; ð29Þ

R2 P 4DH: ð30Þ

Physically, condition (30) ensures that the Coriolis force can hold
the vortex (anticyclone) together by balancing the centrifugal force
plus hydrostatic pressure gradient. Note also that, for cyclones
(DH < 0), (30) holds automatically.

Thus, the stability properties of the Gaussian vortex profile can
be characterized by the corresponding marginal stability (MS) sur-
face in the (e, R, DH) parameter space, subject to restrictions (29)
and (30). In this paper, the MS surface is described using its
cross-sections DH = const. on the (e, R)-plane.

Before examining the general case, we shall briefly review the
corresponding QG limit, DH ? 0 (examined in Benilov (2003)). In
this case, cyclones and anticyclones have identical stability proper-
ties, which are illustrated in Fig. 2. First of all, observe that, if a
vortex is stable with respect to k = 2, it is also stable with respect
to all other k – which makes the second azimuthal mode the most
important one.

In order to understand the mechanism of instability, consider a
‘reference’ vortex with, say, e = 0.1 and R = 1 (it is shown in Fig. 2 by
a black dot). In this case, horizontal and vertical shear appear to
‘cancel’ each other, preventing the vortex from being unstable
either barotropically or baroclinically. For increasing R, however,
the horizontal shear weakens and the ‘unopposed’ vertical shear
destabilizes the vortex (which is why the corresponding region
in Fig. 2 is labelled ‘‘baroclinic instability”). For smaller R, in turn,
the horizontal shear becomes too strong for the vertical shear to
contain it, and the vortex becomes unstable barotropically. Note
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also that all but the second azimuthal modes are barotropically
stable.

The aim of this subsection is to examine how the above picture
is affected by ageostrophic effects.

First, we shall illustrate the stability properties of the Gaussian
profile (28) by numerical solutions of the eigenvalue problem (19)–
(22). To compute the MS curves, we had to deal with singularities
caused by critical levels (23), which were ‘by-passed’ by extending
the path of integration into the plane of complex r (as done previ-
ously in Benilov (2003, 2004) for QG vortices).

It turns out that, for compensated cyclones (DH < 0), ageostro-
phy is a destabilizing factor. Indeed, as illustrated for k = 2 in
Fig. 3a, an increase in vortex amplitude causes rapid contraction
of the region of stability. What happens with compensated anticy-
clones, in turn, is illustrated in Fig. 3b. On the one hand, the region
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Fig. 3. The marginal stability curve for Gaussian ageostrophic vortices, for the se-
cond azimuthal mode (k = 2). The dotted line shows the corresponding quasigeos-
trophic (DH ? 0) curve. (a) DH = �0.4 (cyclones); (b) DH = 0.4 (anticyclones), the
horizontal line shows constraint (30).
of stability expands slightly towards larger vortices (which agrees
with conclusions of Baey and Carton (2002)); on the other hand, a
large area is excluded where condition (30) does not hold (i.e.,
these vortices do not exist). As a result, the region of stability for
anticyclones contracts overall, and does so even faster than that
for cyclones. Observe also that the stability properties of other azi-
muthal modes are similar, for both cyclones and anticyclones (as
illustrated for k = 1 in Fig. 4).

Finally, we shall discuss the position of upper-layer critical lev-
els for marginally stable vortices (compensated vortices do not
have critical levels in the lower-layer). The usual critical level is al-
ways located at the periphery of the vortex, and we can ‘bend’ the
path of integration into the complex plane to by-pass it. Critical
levels of the second type, in turn, normally occur on the imaginary
axis of the complex r plane – hence, they do not lie in the path of
integration and do not cause difficulties. When, however, the MS
curve intersects the ‘existence curve’ (see Fig. 3b or Fig. 4b), the
critical level of the second kind happens to coincide with the center
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Fig. 4. The same as in Fig. 3, but for k = 1.
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of the vortex (this is just a numerical observation, not a theorem).
Since one of the boundary conditions is set at the origin, we cannot
bend the path of integration around it. As a result, the singularity
associated with the critical level of the second kind does not allow
one to compute the stability properties of the corresponding
vortex.

This difficulty has been dealt with by extrapolating the MS
curve: the point where it intersects the existence curve was pre-
dicted using the results computed while approaching it.

3.2. Comparison with asymptotic results

Note that most oceanic eddies are localized in a thin layer,
either near the ocean’s surface or bottom, or in the thermocline.
Accordingly, an asymptotic theory based on the assumption
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Fig. 5. The marginal stability curve for Gaussian vortices, computed for the second
azimuthal mode (k = 2) and various values of the amplitude DH (DH = 0 corresponds
to the QG approximation). The dotted line shows the lower part of the curve or
constraint (30) (whichever is higher). (a) Cyclones (DH < 0); (b) anticyclones
(DH > 0).
e� 1 has been developed for compensated vortices, both QG and
ageostrophic (Benilov, 2003, 2005, respectively). Quite unexpect-
edly, the asymptotic criterion for baroclinic instability turned out
to be independent of the vortex’s amplitude, i.e., whether or not
a vortex is stable depends only on its shape (but the growth rate
of an unstable vortex does depend on its amplitude, of course).

In the present work, this conclusion has been verified numeri-
cally and is illustrated by Fig. 5, which shows the numerical MS
curves for k = 2 (for which the agreement between the asymptotic
and numerical results happens to be the worst) and various values
of the amplitude DH. One should keep in mind that, firstly, results
obtained in Benilov (2003, 2005) pertain to baroclinic instability
0 0.05 0.1

ε

0

1

2

3

4

5

6

7

R

Baroclinic instability

Stability

Barotropic instability

Fig. 6. The marginal stability curve for Gaussian quasigeostrophic (DH ? 0) vorti-
ces, for the second azimuthal mode (k = 2). Horizontal segments show the param-
eters of rings catalogued in Olson (1991).
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Fig. 7. Examples of compensated algebraic vortices (31) and (27) with DH = ±0.6,
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V1(r). The dotted lines correspond to the Gaussian vortices with the same
parameters.
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only described by the upper parts of the MS curves – while the
lower parts (describing barotropic instability) can, and do, depend
on DH. Secondly, the asymptotic results are applicable only to
small e.

Given these reservations, Fig. 5 confirms that, for thin vortices,
the criterion of baroclinic instability is effectively independent of
the amplitude of the vortex. Indeed, observe that, as e ? 0, the
upper parts of the MS curves with different values of DH are all
‘bunched’ together (as they should be according to the asymptotic
predictions of Benilov, 2005).

3.3. Comparison with observations

To place the above results in oceanographic context, we shall
plot the computed MS curve together with the 35 rings catalogued
in Olson (1991). Unfortunately, this paper provides no data on the
depth ratio e, so we have to assume, on a more or less ad hoc basis,
that

0:05 K e K 0:1:

Thus, each ring in Fig. 6 is represented by an interval with a fixed R,
but uncertain e. Nor does (Olson, 1991) provide explicit information
on the vortex amplitude DH, but this turns out to be unimportant.
To understand why, consider the case where the stability region
is the largest, i.e., DH ? 0 (QG vortices). However, even for this,
most ‘favorable’ value of DH, only 6 out of the 35 vortices are stable
– and we conclude that the model of compensated Gaussian vorti-
ces cannot account for the observed numbers and longevity of oce-
anic eddies.

Finally, Fig. 6 shows that none of the 29 unstable vortices fell
into the area of barotropic instability: their radii are just too large
for that.

3.4. Algebraic vortices

To clarify to which extent the above results depend on the vor-
tex’s shape, we considered several other vortex profiles, e.g. an
algebraic one,
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H1 ¼ 1þ DH 1þ r2

5R2

� ��2

; ð31Þ

where R and DH are, again, the non-dimensional radius and ampli-
tude. Examples of algebraic vortices are shown in Fig. 7. Observe
also that, for the algebraic profile, the existence restriction (29) re-
mains intact, whereas the equivalent of restriction (30) is

R2 P
16
5

DH: ð32Þ

It turns out that almost all conclusions obtained for the Gauss-
ian profile apply to the algebraic one as well, with only two excep-
tions. Firstly, the latter is barotropically stable – hence, there is no
region of barotropic instability for k = 2 and the MS curve of this
mode looks similar to those for other values of k (see Fig. 8). Sec-
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Fig. 9. The marginal stability curve for algebraic ageostrophic vortices, for the first
azimuthal mode (k = 1). The dotted line shows the corresponding quasigeostrophic
(DH ? 0) curve. (a) DH = �0.4 (cyclones); (b) DH = 0.4 (anticyclones), the horizontal
line shows constraint (32), and all vortices above it happen to be unstable (i.e., no
marginal stability curve exists).



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

R

Stab.

α = 0.0

α = 0.2

α = 0.4 α = 0.6

α = 0.8

α = 1.0

a

3

b

E.S. Benilov, J.D. Flanagan / Ocean Modelling 23 (2008) 49–58 55
ondly, the region of stability for the algebraic profile is so small
that, for DH J 0.2, no stable vortices exist due to restriction (32)
(see Fig. 9 and compare it with Fig. 4).

Thus, algebraic compensated vortices (as well as other vortex
profiles considered), cannot account for the observed longevity of
oceanic eddies.

4. Vortices with uniform PV in the lower-layer

As shown in Benilov (2005), QG vortices with a lower-layer flow
corresponding to uniform PV are much more stable than their com-
pensated counterparts. In the remainder of this paper we shall
examine how this conclusion is affected by ageostrophic effects.

The condition that the lower-layer PV is uniform is

1
r

d
dr

rV2ð Þ þ 1

H2
¼ const: ð33Þ

Then, conditions (8) indicate that const = 1, whereas (7) and (33)
yield

H2 ¼ 1� eðH1 � 1Þ; ð34Þ

d
dr
ðrV2Þ ¼ �erðH1 � 1Þ; ð35Þ

respectively. We also impose the obvious boundary condition

V2 ! 0 as r !1: ð36Þ

Eqs. (35) and (36) determine V2(r) for a given H1(r). Then, P2(r) can
be computed using

dP2

dr
¼ V2 þ

1
r

V2
2; ð37Þ

which follows from (7). Since an arbitrary constant can always be
added to pressure, the boundary condition for P2 is unimportant,
and one can simply put

P2 ¼ 0 at r ¼ 0: ð38Þ

Having solved (37) and (38), one can find

P1 ¼ P2 þ H1 ð39Þ

and, eventually,
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Fig. 10. Examples of Gaussian vortices with uniform lower-layer PV, (34)–(40),
with DH = ±0.6, R = 2, e = 0.1 (the cyclone/anticyclone are marked with �/+, respe-
ctively). (a) V1(r), dotted line shows the compensated vortex with the same para-
meters; (b) V2(r).
V1 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4r

dP1

dr

r
� r

 !
: ð40Þ

For a Gaussian H1(r), vortices with uniform PV in the lower-layer [de-
scribed by (34)–(40)] are shown in Fig. 10. One can see that, in the
‘core’ of the vortex, V2 is noticeably smaller than V1 (it follows from
(35) that the former scales with the depth ratio e, which is usually
small). At the periphery of the vortex, as follows from (34) to (40),

V1;2 ! �
eM
r

as r !1; ð41Þ

where

M ¼
Z 1

0
rðH1 � 1Þdr

is the net mass anomaly of the vortex. Thus, vortices with uniform
lower-layer PV decay at infinity much slower than their compen-
sated counterparts.
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Fig. 11. The marginal instability curves (corresponding to Imx = 10�4) for Gaussian
vortices with deep flow, for the second azimuthal mode (k = 2), for a = 0, 0.2, 0.4, 0.6
where a is defined by (42). (a) Cyclones with DH = �0.4; (b) anticyclones with
DH = 0.4.
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4.1. Numerical results and comparison with observations

In order to trace the change in MS curves with transition from
compensated vortices to those with uniform PV in the lower-layer,
assume that
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Fig. 13. The same as in Fig. 12, bu
V2 ¼ aðV2ÞuPV; ð42Þ

where (V2)uPV is the solution of the uniform PV Eqs. (35) and (36),
and a is a number between 0 (compensated vortex) and 1 (uniform
PV in the lower-layer). For the remainder of this paper, we shall
confine ourselves to Gaussian vortices, with H1(r) given by (28).
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Note that, for a 6¼ 0, the existence restriction [guaranteeing that (40)
yields a real V1(r)] has no obvious analytical representation, but can
be readily computed.

It turns out that, for a [ 0.4, the MS curves are virtually the
same as those for compensated vortices. The growth rates, how-
ever, are significantly lower, giving rise to ‘strips’ of weakly unsta-
ble vortices adjacent to the MS curves. By a � 0.5, these strips
become very wide, with the (non-dimensional) growth rate being
extremely small (�10�7 � 10�8) – as a result, the exact location
of the MS curve is very difficult to spot. Physically, such a weak
instability is indistinguishable from stability, which makes MS
curves irrelevant.

Therefore, instead of marginal stability curves, we shall use the
curves in the (e,R)-plane such that

Imx ¼ 10�4: ð43Þ
0 0.05 0.1
0

1

2

3

4

5

6

7

R

Stability

Barotropic instability

a

0 0.05 0.1
ε

0

1

2

3

4

5

6

7

R

Stability

Vortices do not exist

b

Fig. 14. The marginal instability curve for Gaussian vortices with deep flow, for the
second azimuthal mode (k = 2), for a = 0.6. Horizontal segments show the param-
eters of rings catalogued in Olson (1991). (a) Cyclones with DH = �0.4; (b) anticy-
clones with DH = 0.4.
Recalling that the time variable is non-dimensionalized using the
Coriolis parameter f0, and estimating f0 for a latitude of 45�, one
can see that (43) corresponds to the characteristic time of instability
(f0Imx)�1, being more than 3 years. Curves (43) will be referred to
as marginal instability (MI) curves.

Fig. 11 shows the MI curves for various a. Interestingly, stabil-
ization does not occur gradually over the whole interval 0 < a < 1,
but mainly between a � 0.5 and a � 0.6. This effect is illustrated
in Figs. 12 and 13, which are the two most important figures of this
paper. One can see that, by a = 0.6, the MI curves ‘unfold’ (for cy-
clones) or ‘expand’ (for anticyclones), and the stability region
‘opens up’, i.e., all vortices above the MI curves are virtually stable.

Note also that the ‘corners’ of the curves shown in Figs. 12 and
13 are of different origin. In the latter (i.e., for anticyclones), cor-
ners represent junctions of the MI curves and the existence curves.
In Fig. 12 (i.e., for cyclones), on the other hand, corners correspond
to points, where two different modes (existing for the same value
of the azimuthal wavenumber k) merge – this feature has been ob-
served only for non-compensated cyclones, and only within a nar-
row range of a.

Finally, Fig. 14 shows that, for a = 0.6, model (42) predicts that
33 out the 35 eddies catalogued in Olson (1991) are virtually sta-
ble. Note that the two unstable cyclones (shown in Fig. 14a) cannot
be stabilized by a further increase in a, as they are subject to baro-
tropic instability, which is effectively independent of the deep flow.
If, however, the MI curves in Fig. 14 were computed for a smaller
vortex amplitude, say DH = 0.2, the two unstable eddies would also
fall into the region of virtual stability. Since (Olson, 1991) does not
provide tangible information on the thicknesses of the eddies cat-
alogued there, we shall not discuss this issue in further detail.

5. Ripa’s stability criterion

When dealing with ageostrophic vortices, one can, in principle,
take advantage of a sufficient stability criterion derived by Ripa
(1989, 1991) – but, surprisingly, no-one has actually done this.
The reason for that is as follows: Ripa’s criterion turns out to be
so restrictive that it does not hold for any oceanic vortices with
realistic parameters.

Indeed, let us adapt the axisymmetric version of Ripa’s criterion
for the two-layer ocean, which yields

1
r

Vj � X

� �
dQj

dr
> 0 for all r > 0; ð44Þ

1
r V1 � X
� �2r2

H1
þ

e 1
r V2 � X
� �2r2

H2
< 1 for all r > 0; ð45Þ

where

Qj ¼
1
Hj

1þ 1
r

Vj þ
dVj

dr

� �
ð46Þ

is the non-dimensional potential vorticity of the jth layer and X is
an arbitrary constant. Note that condition (44) must hold for both
layers, i.e., j = 1,2.

First of all, observe that, as r ?1, the left-hand side of inequal-
ity (45) grows as X2r2, whereas the right-hand side remains
bounded. Hence, (45) can hold only if

X ¼ 0: ð47Þ

Then, substitution of (46) and (47) into (44) yields

Vj
1
Hj
� 1

r2 Vj þ
1
r

dVj

dr
þ d2Vj

dr2

 !
� 1

H2
j

dHj

dr
1þ 1

r
Vj þ

dVj

dr

� �" #
> 0:

ð48Þ

Now, assume that
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dH1

dr
> 0; V1 > 0 for all r > 0; ð49Þ

i.e., we consider a cyclone with a monotonic profile of the interface.
We shall also introduce the point of extreme (maximum) velocity,
r = rext, where

dV1

dr
¼ 0;

d2V1

dr2 < 0 at r ¼ rext: ð50Þ

Then, by virtue of (49) and (50), condition (48)j=1 cannot hold at
r = rext, as both terms on the left-hand side are strictly negative.

Next, assume that

dH1

dr
< 0; V1 < 0 for all r > 0; ð51Þ

i.e., we consider an anticyclone (again, with a monotonic profile). At
the point of extreme velocity, we have

dV1

dr
¼ 0;

d2V1

dr2 > 0 at r ¼ rext: ð52Þ

Then, if the flow in the upper-layer is not too strong, namely,

1
rext
jVjðrextÞj 6 1; ð53Þ

one can clearly see that, by virtue of (52) and (53), condition (48)j=1

cannot hold at r = rext.
Note that, dimensionally, condition (53) implies that the angu-

lar velocity at r = rext is smaller than the Coriolis parameter. If, for
example, the radius of maximum velocity is 30 km (which is close
to the lower estimate for this characteristic) and the latitude is 45�,
(53) requires that the dimensional velocity of the vortex is less
than 3 m/s, which holds for all conceivable oceanic vortices.

We conclude that Ripa’s stability criterion does not hold for the
Earth’s ocean (which does not imply, however, that no stable vor-
tices exist there, as this criterion is not a necessary one).

6. Concluding remarks

Thus, we have examined how ageostrophic effects influence the
stability of vortices in a two-layer ocean. Two models were exam-
ined: compensated vortices (with no flow in the lower-layer) and
those with a ‘deep’ flow such that the lower-layer PV is uniform.

The following conclusions were obtained:
– Large compensated vortices, with radii exceeding the deforma-
tion radius by a factor of 2–3, are baroclinically unstable. For
the most important limit of thin vortices, the corresponding
marginal stability (MS) curves are independent of the vortex
amplitude, i.e., ageostrophic affects are unimportant in this case.
– Small compensated cyclones, with radii smaller than the deforma-
tion radius, are unstable barotropically, and ageostrophic effects
make the instability stronger. As a result, stable compensated
cyclones exist for a fairly limited range of radii. The allowable
range of the radii of small compensated anticyclones is bounded
below by either barotropic instability (for small amplitudes) or
an existence condition guaranteeing that the Coriolis force can
hold the vortex together by balancing the centrifugal force and
pressure gradient (for large amplitudes). One way or another,
very few ‘real’ oceanic eddies, both cyclones and anticyclones, fall
into the allowable range (generally, their radii are just too large).
– The stability properties of small vortices with uniform PV in the
lower-layer are approximately the same as those of compensated
vortices, with respect to both barotropic instability and non-exis-
tence due to strong centrifugal force and/or pressure gradient.
– The stability properties of large vortices with uniform lower-
layer PV are completely different to what was observed for their
compensated counterparts, as the former are stable for all
amplitudes. As a result, most if not all observed eddies ‘fit’ into
the range of theoretically stable vortices.

Note that the above conclusions refer to linear stability of vorti-
ces and, thus, ignore nonlinear effects – which, in principle, can
provide an alternative mechanism of vortex stabilization. In the
QG case, for example, linearly unstable vortices can stabilize when
the disturbance reaches a certain amplitude (Flierl, 1988; Helfrich
and Send, 1988; Carton and McWilliams, 1996; Correard and Car-
ton, 1999). In ageostrophic models, nonlinear effects can stabilize
circular vortices as ellipses (Dewar et al., 1999) or tripoles (Baey
and Carton, 2002). It would be interesting to see how these nonlin-
ear models fare for the parameters of ‘real’ oceanic eddies cata-
logued in Olson (1991).

Another restriction of our conclusions results from the two-
layer model used to obtain them. Indeed, intra-thermocline eddies
(such as Mediterranean meddies, for example) should rather be de-
scribed by a three-layer model, with a relatively thin middle layer
(where the vortex is localized) ‘sandwiched’ by two thicker layers.
Furthermore, the problem of vortex stability should eventually be
examined using the continuous approximation of the ocean, which
combines the advantages of higher resolution of the vertical struc-
ture of the flow with proper representation of critical levels.
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