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The nonlinear wave propagation in random media seems to be very im­
portant physical phenomenon having a long and rich history. The scope 
of this paper is to highlight the main ideas of the new approach to 
this problem and to give an up-to-date view of the theory. The paper 
is organized in the following way. "We start with the description and 
discussion of the so-called "mean field method" /1-3/. Then in Section 
2 an exactly solvable model describing nonlinear wave propagation in 
the medium with fluctuating parameters /4/ is considered in order to 
demonstrate that the "mean field method" is correct. In Section 3 a 
specific asymptotic procedure of obtaining the equations for a mean 
wave form /5/ is presented. As an ex~ple, in Section 4 the description 
of the effect of nonlinear wave amplification in the medium with tem­
poral fluctuations is given. In this case the amplification takes the 
form of an explosive instability. 

1. THE MEAN FIELD METHOD 

Let us consider briefly the mean field method (see /1-3/). We start 

with the following basic system taken in the operator form 

(1) 

where Land M are the linear deterministic operators, N is the nonlinear 

operator, a is the random function with a zero mean value «a> = 0) and 
£ is the small parameter. 

Let us present the wave field as the sum of the mean and fluctuating 
components 

u = U + u', <u> = u. (2) 

Then the initial system (1) can be splitted into two different parts, 

Indeed: for the mean wave field 

(3) 

and for the fluctuating component 

Lu' = £aMu + £2 [aMu' - <aMu'>] + £2 [N{u'} - <N{u'}>]. (4) 

As it follows from system (4), the scattered field is proportional 

to the small parameter £. Therefore, two approximations are used: 

- the first is the Bourret' approximation in which multiple scattering 
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is neglected (the terrrsin the first square brackets in (4) are neglect­

ed) ; 

- the second is the Howe approKimation in which nonlinearity of the 

scattered field is supposed to be neglible (the terms in the second 

square brackets in (4) and the last term in (3) are neglected). 

After utilizing both these approximations (suppose for a while that 

they both are valid), system (4) becomes trivial and can be integrated 

easily. This approach permits to close the mean field Eq. (3), Finally, 

the governing equation for the mean field is as follows: 

(5) 

The main feature of this equation is that it includes the nonlinear 

effects and linear scattering as the additive terms, So this equation 

can be obtained by the combination of the results of the linear random 

wave theory on the one hand and the nonlinear wave theory .in determinist­

ic media on the other hand, Equation (5) leads to the correct results 

in the linear theory. It was a common opinion that such an approach can 

be applied to the nonlinear as well as to linear problems. 

2. EXACTLY SOLVABLE MODEL OF NONLINEAR WAVE SCATTERING 

In fact, the situation is more complicated. In /4/ an exactly solvable 

nonlinear model for the wave scattering in random media has been ana~ 

lysed. This model is based on the Korteweg-de Vries equation 

dU au dU a 3 u 
at + a (t) ax + uq-x + ~ = 0, (6) 

where a is the random function. Substitution 

y x - fa(t)dt (7) 

permits to transform the stochastic equation (6) into the deterministic 

Korteweg-de Vries equation 

(8) 

The solutions of this equation are well known, In the result we can ob­

tain the solution of the initial stochastic equation (6) in the form of 

the deterministic function with a stochastic argument 

u(x,t) = U[x - fa(t)dt,t]. (9) 

On the basis of (9) all moments of function u, including the mean field, 

can be easily calculated. 

However, the mean field obtained by such a method does not coincide 

with the solution of mean field equation (5) which follows from the 
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Howe approximation. Equation (5) in our case takes the form of the Korte­

weg-de Vries-Burgers equation (for details see /4/) 

a<u> a<u> a 3 <u> oa~<u> - 0 at + <u>-ax + --axr- - ~ - . (10) 

The reason of such differences between the solutions is associated with 

phase fluctuations of a wave in the medium with slowly fluctuating para­

meters (in "'l:r.he statistical language" it means incorrect description 

of the "forward-scattering"). For the sake of simplicity let us consider 

field realizations with different (but constant within each realization) 

wave propagation velocity ~. It is evident that the wave impulses run 

off in different realizations because of the difference between propa­

gation velocities. So the mean field decays while the wave energy and 

the i,orm of the pulse are preserved. 

The important fact is that in such a case the magnitude of the scat­

tered field appears not to be small in comparison with the mean field. 

Consequently, we must treat the scattered field as a nonlinear one, 

All this leads to the situation where the conditions of validity of the 

mean field equation (5) are not met. 

Moreover, we consider that the mean field is not an adequate charac­

teristic of the process. The form of an impulse is much more interest­

ing and thus it is necessary to obtain the corresponding equations for 

the mean form of the wave and not for the mean field. 

3. THE MEAN WAVE ?ORM METHOD 

We use the asymptotic method to find the equation for the mean wave 

form /5/. Let us consider a model wave equation with quadratic non­

linearity and temporal fluctuation 

2 a2 u a2 u 2 
1 + EU(t) aiT = E2~ ( 11> 

The main idea of our approach is to eliminate phase fluctuations by 

means of transition to the reference system, which m.oves with unfixed 

fluctuating speed cIt) 

x' = x - fc(t)dt, t' = t. ( 12) 

In terms of new variables, Eq. (11) has the form 

a 2 u a 2 u dc au 
ae - 2c atax - dt ax + o (13 ) 

where primes are omitted, 

To analyse (13) we use the asymptotic method of multiple scales. 

After introducing a hierarchy of fast t and slow (T=E 2 t, T1=E 3 t, etc.) 
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times, we present the solution of (13) in the form of an asymptotic 

expansion 

u .u (0) (x,T, ... ) (1) ( t T ) + EU X", ... + ••• , 

c = (1 ) 
1 + EC (t,T, •.. ) + ',' • (14 ) 

The main terms of expansion (14) describe the wave propagating to 

the right with a near-sonic speed. The zeroth order equation obtained 

by the perturbation theory is satisfied trivially. In the first order 

we obtain the equation for the scattered field 

(15 ) 

One can easily see that the scattered field is not increasing under the 

following condition 

(t 6) 

This condition eliminates the phase fluctuations. Then the integration 

of Eq. (15) yields 

00 (0) 
u(1) = f~ (x+2T,T)a(t-T)dT. 

Oox 
(17) 

In the second order we have the inhomogeneous linear equation for 
u (2) 

a du(2) du(2) 
ot[~ - 2~]= F(x,t,T), (1Sa) 

F 

Oc (2) Clu (0) 

+~~ ( 18b) 

One can see that u(2) is not increasing if the mean value of F is equal 

to zero 

<F> 
1 t::, 

lim 2K f F(x,t,T)dt 
t::,+oo -t::, 

O. (19 ) 

After substituting F to (19), we finally find the desired equation for 

the slow evolution of the nonlinear field in the random medium. It has 

the following form: 
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au 0 2 dU Clu oofCl 2 U 
ClT + ~ ox + u ox + a-> (x+2T,T)W(T)dT o x 

WeT) = <a(t)a(t+T», 0 2 = W(O), 

0, (20) 



where index "zero" is omitted and W is the correlation function of the 

fluctuations. 

Equation (20) is the main result of our approach. Its coefficients 

are determined quantities - this property is the main advantage of Eq. 

(20) in comparison with the initial equation. The field averaging is 

performed in the reference system moving at unfiKed speed and follow~ 

ing the fluctuations of the wave phase. Therefore, function u describes 

the mean form of a wave rather than the mean field. 

Note also that the averaging over fast time arises as a natural 

condition of the absence of secular terms in asymptotic expansion, In 

this sense it differs considerably from the averaging over the ensemble 

of realizations usually used in this kind of problems. Besides this, 

the averaging over fast time fits better the experimental situation 

where just time averaging is typical. 

4. AMPLIFICATION OF NONLINEAR WAVES IN MEDIUM WITH TEMPORA.L 

FLUCTUATIONS 

We apply this approach to investigate the effects of wave amplifi­

cation in the medium with temporal fluctuations. In linear approximation 

we assume that u is a monochromatic wave which leads to the dispersion 

relation 

0 2 ik2 
W = rk - -2 -q, (2k) , ( 21) 

where q, is the Fourier-spectrum of fluctuations. NOW we can derive two 

important conclusions: 

- if W decreases monotonically with the argument increasing (Re q, > 0), 

the dispersion relation is of an active character, i.e the imaginary 

part of the frequency is negative (1m w < 0). This property corresponds 

to the parametrical energy transformation from random fluctuations to 

the coherent wave field~ 

- amplification of the wave depends upon the amplitude of the Fourier­

component of fluctuations at double frequency. Such-a situation is very 

similar to the Bragg scattering of waves over spatial inhomogeneities. 

The only difference is the sign 1m w, since the scattering over spatial 

irregularities always leads to damping. In our case of temporal fluctu­

ations, scattering may lead to amplification. 

Let us return now to the mean wave form equation and discuss the 

limiting cases of high- and low-frequency fluctuations. In the first 

case the mean wave form equation reduces to the Burgers equation with 

negative viscosity 
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au au a 2u 
at + u ax + aax2 = 0, 8 = fW('r)dT > 0. 

° 
(22) 

This equation can be solved exactly by the means of the Hopf transform­

ation. The main result of solving (22) is the "explosion" for the arbi+­

trary Cauchy data during a finite time /6/. For example, a quasi-sinu­

soidal wave with a small Reynolds number (Re = uO/ok) 

8k 2 t U o ok 2 t 1 
u(x,t) = (uOe sin kx) (1 + 28k e cos kx)- (23) 

explodes during the finite time 

1 U c 
= ok' In 20k (24) 

Let us consider a case of low-frequency fluctuations, Then the mean 

wave form equation reduces to the Ostrovsky equation 

~ (au + u Qu ) + au = 0, a = -81 dd2T~(0). 
ax at ax (25) 

This equation is conservative and corresponds to the adiabatic ap­

proximation. So the wave amplification is absent. Note that OST;ROVSKY 

has obtained (25) for internal waves in a rotating fluid of a constant 

depth and he has found some interesting solutions of (25) including 

waves with pOinted crests /7/. 

In conclusion we should like to note that our approach gives the 

possibility to eliminate phase fluctuations, if the motion is one-dimen~ 

sional. The cases of two- and three-dimensional fluctuations need 

special investigation. 
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