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Abstract.  The Enskog–Vlasov (EV) equation is a semi-empiric kinetic model 
describing gas–liquid phase transitions. In the framework of the EV equation, 
these correspond to an instability with respect to infinitely long perturbations, 
developing in a gas state when the temperature drops below (or density rises 
above) a certain threshold. In this paper, we show that the EV equation describes 
one more instability, with respect to perturbations with a finite wavelength and 
occurring at a higher density. This instability corresponds to fluid-solid phase 
transition and the perturbations’ wavelength is essentially the characteristic 
scale of the emerging crystal structure. Thus, even though the EV model does 
not describe the fundamental physics of the solid state, it can ‘mimic’ it—and, 
thus, be used in applications involving both evaporation and solidification of 
liquids. Our results also predict to which extent a pure fluid can be overcooled 
before it definitely turns into a solid.
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1.  Introduction

The Enskog–Vlasov (EV) kinetic equation comprises the Enskog collision integral for 
dense fluids [1] and a Vlasov term describing the van-der-Waals force. The first version 
of the EV equation [2] was based on the original form of the Enskog integral—which, as 
shown in [3], does not comply with the Onsager relations. [4] proposed a modification 
of the Enskog integral free from this shortcoming, which was incorporated in the EV 
model in [5, 6]. Grmela and Garcia-Colin [7] showed that an H-theorem holds for the 
EV equation only subject to a certain restriction of its coecients, and [8] proposed a 
version of the EV equation that satisfies this restriction and conserves energy as well 
(all of the previous versions do not).

Note that, in kinetic models, phase transitions correspond to instabilities. For the 
original version of the EV equation, the presence of an instability has been shown in 
[9], and it was interpreted as gas–liquid phase transition.

In the present paper, we report the results of a more detailed study. Using the EV 
equation that conserves energy and satisfies an H-theorem, we find two instabilities, 
with respect to infinite- and finite-wavelength perturbations—interpreted as gas–liquid 
and fluid-solid transitions, respectively. The latter result comes as a surprise, as the EV 
equation was conceived as a tool for modeling of fluids only. We show, however, that 
it admits periodic solutions capable of ‘mimicking’ the solid phase.

The present paper has the following structure. In section  2, we introduce the 
Enskog–Vlasov equation and, in section 3, carry out the stability analysis of its spa-
tially homogeneous solutions. The general results are illustrated by applying them to 
noble gases in sections 4 and 5.

https://doi.org/10.1088/1742-5468/ab3ccf
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2. The Enskog–Vlasov model

2.1. The EV equation

Consider a fluid of hard spheres of diameter D, characterized by the one-particle distri-
bution function f(r,v, t) where r is the position vector, v the velocity, and t the time.

Let the molecules exert on each other a force with a pair-wise potential Φ(r), model-
ing physically the van der Waals interaction of molecules. Let Φ(r) be a monotonically 
growing function of r, so that the van der Waals force is attractive at all distances. 
Letting also, without loss of generality, Φ → 0 as r → ∞, we can assume that Φ(r) < 0 
for all r.

As seen later, the main characteristic of Φ—one that aects the fluid’s macroscopic 
properties—is

E = −
∫

Φ(r) d3r.� (1)

Using E, D, the molecular mass m, and the Boltzmann constant kB, we introduce the 
following nondimensional variables:

rnd =
r

D
, vnd =

( m

ED3

)1/2

v, tnd =

(
ED

m

)1/2

t,

fnd =
kBE

1/2D3/2

m3/2
f , Φnd =

Φ

ED3
.

Note that, due to (1), the nondimensional potential Φnd satisfies (the subscript nd 
omitted) ∫

Φ(r) d3r = −1.� (2)

In terms of the nondimensional variables, the Enskog–Vlasov equation has the form (nd 
omitted)

∂f(r,v, t)

∂t
+ v ·∇f(r,v, t) + F(r, t) · ∂f(r,v, t)

∂v

=

∫ ∫
[η(r, r+ κ, t) f(r,v′, t) f(r+ κ,v′

1, t)

− η(r, r− κ, t) f(r,v, t) f(r− κ,v1, t)]g · κH(g · κ) d2κ d3v1,
� (3)

where H is the Heaviside function,

F(r, t) = −∇
∫

n(r1, t) Φ(|r− r1|) d3r1� (4)

is the collective van der Waals force,

n(r, t) =

∫
f(r,v, t) d3v� (5)

https://doi.org/10.1088/1742-5468/ab3ccf
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is the number density, κ is a unit vector parameterizing all possible orientations of a 
pair of spheres (molecules) at the moment of collision, and the post-collision velocities 
(v′,v′

1) are related to the pre-collision ones, (v,v1), by

v′ = v + κ (g · κ) , v′
1 = v1 − κ (g · κ) , g = v1 − v.� (6)

The coecient η(r, r1, t) which appears in the collision integral is, generally, a func-
tional of n(r, t). It originates from the main assumption of the EV theory that the 
two-particle distribution function f (2)(r,v, r1,v1, t) is related to the singlet f(r,v, t) by

f (2)(r,v, r1,v1, t) = η(r, r1, t) f(r,v, t) f(r1,v1, t).

Given a specific expressions for η, equations (3)–(6) fully determine the evolution of f .
There are three approaches to choosing η(r, r1, t):

	 (i)	� In the original Enskog theory [1], η is a function of the number density evaluated 

at the midpoint between the colliding molecules, i.e. n(1
2
(r+ r1), t). This function 

is supposed to be such that the EV model describes the equation of state (EoS) 
of the fluid under consideration with the best possible accuracy.

	 (ii)	� The authors of [4] derived η from a hypothesis that the n-particle distribution 
function is represented by a product of singlet distributions and (sic!) a factor 
excluding all states where the hard spheres overlap. This hypothesis does hold 
at equilibrium, but should be considered as approximate otherwise. Another 
diculty associated with this approach is that the resulting η is defined through 
a limiting procedure involving multiple integrals of increasing order, making it 
impossible to solve the EV equation numerically.

	 (iii)	� The authors of [8] assumed

η(r, r1, t) = 1 +
L∑
l=2

cl

∫ l
[

l∏
i=2

n(ri, t) H(1− |r− ri|) H(1− |r1 − ri|)

]

×

[
l−1∏
i=2

l∏
j=i+1

H(1− |ri − rj|)

]
l∏

i=1

d3ri,

�

(7)

		 where 
∫ l

 denotes l repeated integrals, and the coecients c2, c3, c4...cL are to 

be chosen to fit the properties of the fluid under consideration. Note that the 
‘proper’ hard-sphere η derived in [4] is a particular case of (7)—one with L = ∞ 
and certain values of cl (which are not easy to calculate).

It turns out that the choice of η aects the fundamental properties of the EV equation.
Consider, for example, the entropy of the system, which is traditionally assumed [2, 

7, 10, 11] to have the form

S = −
∫ ∫

f(r,v, t) ln f(r,v, t) d3v d3r+Q[n],

https://doi.org/10.1088/1742-5468/ab3ccf
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where the non-ideal contribution Q[n] is a functional depending on n(r, t)4. Then, the 
H-theorem holds if and only if Q[n] and η are inter-related by

∇ δQ[n]

δn(r, t)
= −

∫
η(r, r1, t)n(r1, t) (r1 − r) δ(|r− r1| − 1) d3r1� (8)

(see [7] and, for more detail, appendix A of [8]). The question of existence of Q[n] as 
a solution of equation (8) for a given η is not trivial. If, for example, η is a function of 

n
(
1
2
(r+ r1), t

)
—as in the original Enskog’s theory—(8) does not seem to have a solu-

tion ofr Q. For the versions of η suggested in [4, 8], on the other hand, it does. In the 
latter case, an explicit expression for Q can be found,

Q[n] = −1

2

∫ ∫
n(r)n(r1) H(1− |r− r1|) d3r d3r1

−
L∑
l=2

cl
l (l + 1)

∫ l ∫
n(r)

[
l∏

i=1

n(ri) H(1− |r− ri|)

]

×

[
l−1∏
i=1

l∏
j=i+1

H(1− |ri − rj|)

]
d3r

l∏
i=1

d3ri,

�

(9)

where the coecients cl are the same as in expression (7) for η.
In this paper, we shall use η and Q given by (7) and (9), respectively.
We shall also need the function Θ(n) related to the functional Q[n] by

Θ(n) = − 1

n
(Q[n])n=const ,

so that (9) yields

Θ(n) =
2π

3
n+

L∑
l=2

clAl

l (l + 1)
nl,� (10)

where

Al =

∫ l
[

l∏
i=1

H(1− |ri|)

][
l−1∏
i=1

l∏
j=i+1

H(1− |ri − rj|)

]
l∏

i=1

d3ri� (11)

are numeric constants.
Θ(n) plays an important role in the thermodynamics of EV fluids: in particular, 

their EoS is [8]

p = nT [1 + nΘ′(n)]− 1

2
n2

� (12)

where Θ′ = dΘ/dn.

4 The fact that Q depends only on n and not on f  reflects the hard-sphere nature of the EV model.
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2.2. Steady solutions of the EV equation

Physically, steady (time independent) solutions of the EV equation must have spatially 
uniform temperature and zero fluxes of mass, momentum, and energy—which means 
that they must be equilibrium states.

To find these, observe that the scattering cross-section in the Enskog integral does 
not depend on v—as a result, the EV equation is consistent with the following ansatz:

f(r,v, t) =
n(r)

(2πT )3/2
exp

(
−|v|2

2T

)
,

where T is the temperature. Substituting this ansatz into the EV equation and carrying 
out straightforward algebra (see [9]), we obtain the following equation for n(r):

∇
[
lnn(r) +

1

T

∫
n(r1) Φ(|r− r1| ) d3r1

]
� (13)

+

∫
η(r, r1)n(r1) (r1 − r) δ(|r1 − r| − 1) d3r1 = 0.� (14)

Subject to (8), this equation can be integrated,

lnn(r) +
1

T

∫
n(r1) Φ(|r− r1| ) d3r1 −

δQ[n]

δn(r)
= const.� (15)

This equation coincides with the Euler equation from density functional theory and also 
arises in equilibrium statistical mechanics (grand ensemble), where the term involving 
Φ is the functional derivative of the mean field contribution to the free energy, the 
const is the nondimensional chemical potential divided by T, and Q[n] is the excess free 
energy. The present derivation shows that Q[n] can also be interpreted as the excess 
contribution to, or non-ideal part of, the entropy.

3. The stability analysis

Consider the spatially uniform Maxwellian distribution fM(v). To examine its stability 
within the framework of the EV equation, one should let

f(r,v, t) = fM(v) + f̃(r,v, t),

where f̃(r,v, t) is a small perturbation. It is usually sucient to examine harmonic 
perturbations only,

f̃(r,v, t) = f̂(v) eikz+λt,� (16)

where k is the perturbation’s wavenumber, λ is its growth/decay rate, and z is one of 
the spatial coordinates. Substituting (16) into the linearized EV equation, one obtains 

an eigenvalue problem, where f̂(v) is the eigenfunction and λ the eigenvalue. If, for 
some k, an eigenvalue exists such that Reλ > 0, the base state is unstable.

https://doi.org/10.1088/1742-5468/ab3ccf
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Unfortunately, the outlined procedure implies solving a two-dimensional integral 
equation involving the z and normal-to-z components of v. This equation cannot be 
solved analytically, and it is even dicult to be solved numerically.

Instead, we shall only examine ‘frozen waves’, i.e. perturbations with zero growth/
decay rate, λ = 0. They are excellent stability indicators: if a frozen wave with a 
wavenumber k exists for a certain state, either a small increase or a small decrease of 
k should make it unstable. Thus, the parameter values for which the first frozen wave 
bifurcates from the base state corresponds to the onset of instability.

Admittedly, if Reλ changes sign while Imλ �= 0, this approach fails to detect desta-
bilization—but in similar kinetic equations examined for stability so far [12, 13], this 
kind of destabilization does not occur. In the worst-case scenario, one finds some, albeit 
not all, of the unstable states.

Most importantly, frozen waves in the problem at hand can be found analytically—
which is incomparably simpler than dealing with the general perturbations (16). For 
the same reason, this kind of stability analysis is often used in fluid mechanics, in par
ticular, for liquid bridges (for example, [14, 15]).

Since frozen waves are steady, we can search for them using the steady-state reduc-
tion (15) of the full EV equation. To do so, let

n(r) = n̄+ ñ(r),

where n̄ is the density of the base state and ñ(r) is a perturbation. Substituting expres-
sion (10) for Q[n] into equation (15), linearizing it, and letting ñ(r) = eikz, we obtain 
an equation  inter-relating k, T, and n̄—which can be written in the form (overbars 
omitted)

T = − n Φ̂(k)

1 + nF1(k) +
∑L

l=2cln
lFl(k)

,� (17)

where

Fl(k) =

∫ l
[

l∏
j=1

H(1− |rj|)

][
l−1∏
j=1

l∏
i=j+1

H(1− |rj − ri|)

]
cos kzl

l∏
j=1

d3rj,� (18)

and

Φ̂(k) =

∫
Φ(r) cos kz d3r.

Note that, due to constraint (2),

Φ̂(0) = −1.� (19)

Functions Fl(k) do not involve any parameters. The first two can be calculated analyti-
cally, and another three have been computed using the Monte-Carlo method. All five 
are depicted in figure 1.

Equality (17) is, essentially, an instability criterion: if a value of k exists such that 
(17) is satisfied for a state (n,T ), this state is unstable.

https://doi.org/10.1088/1742-5468/ab3ccf
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4. The results

In what follows, we shall illustrate criterion (17) using the values for the coecients cl, 
obtained in [16] for noble gases. The series representing Q was truncated at L  =  5, and

c2 = −1.3207, c3 = 9.9308,
� (20)
c4 = −18.7526, c5 = 13.1406.� (21)

As seen later, the shape of the Vlasov potential is of little importance, so we assume, 
on a more or less ad hoc basis,

Φ̂(k) = − 1

1 + (Rk)4
,� (22)

where R is, physically, the ratio of the spatial scale of the van der Waals force to the 
molecule’s size. Evidently, expression (22) complies with restriction (19).

The stability criterion (17), (20)–(22) describes a one-parameter family of curves 
T = T (n) with k being the parameter. The behavior of these curves depends on whether 
or not the fifth-order polynomial in n in the denominator of (17) has positive roots. 
Computations show that no more than one such root exists, and it (dis)appear only 
if F5(k) changes sign—which it does do for infinite sequence of values of k tending to 
infinity (see figure 1). Denoting these values by k1, k2, k3..., we have computed

k1 ≈ 6.2042, k2 ≈ 8.0354, k3 ≈ 11.6014.

A straightforward analysis of expression (17) shows that, in the range

0 < k < k1,� (23)
the denominator of expression (17) does not have positive roots. As a result—and due 

to quick decay of Φ̂(k) as k increases—the curves T (n) ‘recede’ within range (23)—see 

Figure 1.  The functions Fl (k) defined by (18). The curves are marked with the 
corresponding value of l.

https://doi.org/10.1088/1742-5468/ab3ccf
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figure 2. Thus, the curve with k  =  0 determines the boundary of an instability region, 
which will be referred to as IR1.

Another instability region (IR2) arises for the range k1 < k < k2—which can be con-
veniently subdivided into two subranges,

k1 < k < k1.5,� (24)
with k1.5 ≈ 7.129, and

k1.5 < k < k2.� (25)
As k changes from k1 to k1.5, the (real positive) root n0 of the denominator of (17) ‘trav-
els’ from +∞ to n0 ≈ 1.230. Then, when k changes from k1.5 to k2, n0 travels back to 
+∞—i.e. the boundary of IR2 corresponds to k  =  k1.5. The corresponding curve T (n) 
is shown in figure 2 together with examples of curves for k from ranges (24) and (25).

A basic analysis of expression (17) and computations show that the instability 
regions corresponding to (k2, k3), (k3, k4), etc are all inside IR1 and IR2 and, thus, are 
physically unimportant.

Finally, if n � 1 (diluted gas), the stability criterion (17) agrees with the corre
sponding results obtained in [12, 17] for the BGK–Vlasov and Boltzmann–Vlasov mod-
els, respectively.

Figure 2.  Existence of frozen waves on the (n,T ) plane. The curves T (n) are 
determined by (17), (20)–(22) with R  =  1. Dotted curves within ranges (1)–(3) 
correspond to k being within ranges (23)–(25), respectively. The boundaries of the 
instability regions are shown by solid lines.

https://doi.org/10.1088/1742-5468/ab3ccf
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Figure 3.  The dependence of the boundary of IR2 on the parameter R of the 
Fourier transform (22) of the Vlasov potential. The inset shows a blow-up of the 
shaded region of the main panel. The curves are marked with the corresponding 
values of R.

5. Discussion

For k  =  0 (the boundary of IR1), (17) and (19) reduce to

T =
n

1 + 4π
3
nA1 +

∑L
l=2cln

lAl

,

where constants Al are given by (11). The above expression can be rewritten in terms 
of the function Θ(n) (given by (10)),

T =
n

1 + [n2Θ′(n)]′
.� (26)

This representation of the boundary of IR1 turns out to be very useful.

	 (1)	� Equation (26) implies that IR1 does not depend on the specific shape of the 
Vlasov potential Φ.

	 (2)	� As for IR2, it does depend on Φ, but this dependence is weak—which we illustrate 
by computing the boundary of IR2 for dierent values of the parameter R (which 
appears in expression (22)) and plotting the results in figure 3. One can see that, 
for R � 2, the boundary of IR2 is virtually indistinguishable from a vertical line. 

This eect is even more pronounced if Φ̂(k) decays exponentially as k → ∞.
		 Given that the van der Waals force is supposed to be long-range (by comparison 

with the molecule size), one can assume that R � 1, and thus replace the boundary 
of IR2 by a vertical line. Physically, this means that a fluid cannot be compressed 
beyond a certain density value no matter what the temperature is.

https://doi.org/10.1088/1742-5468/ab3ccf
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	 (3)	� Using EoS (12), one can show that the maximum of the function T (n) given by 
(26) corresponds to the critical point.

	 (4)	� Not all of the stable states are physically meaningful, as some of them correspond 
to negative pressure. These can be detected using EoS (12). For the case (20)–(22) 
with R  =  1, the full diagram of stable and physically meaningful fluid states is 
shown in figure 4.

	 (5)	� As stated in most thermodynamics texts, a non-ideal gas becomes unstable if
(
∂p

∂n

)

T=const

< 0,� (27)

		  i.e. if an increase of density gives rise to a decrease of pressure. Applying this 
argument to EoS (12), we recover equation (26) describing the boundary of IR1.

		  IR2, in turn, is located in high-density region—hence, it may only describe 
fluid-solid transitions. Most importantly, the whole boundary of IR2 corresponds 
to a single value of the perturbation wavenumber, k1.5—so that 2π/k1.5 can be 
identified with the spatial scale of the emerging crystal. This agrees with the fact 
that that crystal structure does not depend on the temperature or density of the 
fluid state where the transition takes place.

	 (6)	� It is well-known that gas–liquid transition typically occurs before criterion (27) 
predicts it. The threshold where the actual transition occurs is determined by 
the so-called evaporation curve describing the gas–liquid equilibrium. It is still 
possible, however, to overcool a gas or overheat a liquid beyond this threshold, 
provided they are suciently pure. Thus, the boundaries of the instability regions 

Figure 4.  The stable, physically meaningful fluid states in the (n,T ) parameter 
plane. IR1 and IR2 stand for instability regions 1 and 2, respectively. The black 
dot marks the critical point.

https://doi.org/10.1088/1742-5468/ab3ccf
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are essentially the limits to which one can overcool or overheat a fluid before 
phase transition occurs.

To illustrate this interpretation, we have redrawn figure 4 on the (T , p) plane, thus 
turning it into a phase diagram—see figure 5. We have also added empirically-derived 
evaporation, melting, and sublimation curves (the last two describe the solid–liquid and 
solid–gas equilibria, respectively).

The following features of figure 5 can be observed:

	•	 �There are two single-phase regions: in the one marked ‘S’, only solid phase 
exists—and in the one whose parts are marked ‘L’ or ‘G’, one of the two fluid 
phases exists (gas and liquid are dicult to separate in the latter case, as they 
can be continuously transformed one into another).

	•	 �In the transitional zone marked ‘S/ocL’, either solid or overcooled liquid can 
exist—and in the zone ‘S/ocL/ocG’, it is either solid or overcooled liquid, or 
overcooled gas.

	•	 �In the remaining two zones, ‘L/ocG’ and ‘G/ohL’, either of the two fluid phases 
can exist.

Figure 5.  The phase diagram for argon in the nondimensional (T , p) plane. Solid 
lines correspond to the boundaries of the instability regions computed using the 
EV model; dashed lines show the empiric evaporation, melting, and sublimation 
curves [18]. The critical and triple points are marked by a black dot and small 
circle, respectively. ‘ G’, ‘L’, and ‘S’ mark the regions where gas, liquid, and solid 
may exist; the prefixes ‘oc’ and ‘oh’ mean ‘ overcooled’ and ‘overheated’.

https://doi.org/10.1088/1742-5468/ab3ccf
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6. Concluding remarks

In this work, we have used the Enskog–Vlasov model to examine when fluids are unsta-
ble, and with respect to which perturbations. The parameter range of the instability is 
illustrated in figure 4 on the nondimensional (n,T ) plane, and in figure 5, on the (T , p) 
plane. These figures are the main results of this work.

Note that, in figure 5, we have calculated only the solid curves, whereas the dashed 
ones have been obtained by methods of statistical thermodynamics [18]. This does not 
mean that the EV model cannot be used to calculate the latter: in fact, it has been 
used for calculating the evaporation curve, producing a result with an error of only sev-
eral percent [16]. Before calculating the melting and sublimation curves, however, one 
should explore periodic solutions of the EV equation which describe the solid (crystal) 
state; these solutions bifurcate from the spatially uniform (fluid) solutions as frozen 
waves. That is, we do not claim that the EV model can describe the fundamental phys-
ics of the solid state—but we do hope that it can ‘mimic’ it given a suitable choice 
of the functional Q[n] and the Vlasov potential Φ. In fact, the Enskog approach to 
dense fluids has been successfully used for describing hard-sphere crystals [19, 20] and 
studying equilibrium properties of the liquid–solid phase transitions [21, 22] (for recent 
developments in the latter theory, see [23–26]).

Once the EV model is calibrated to deal with all three phases, it would become an 
invaluable tool for modeling complex physical problems (e.g. evolution of liquid films 
with evaporation and solidification). This is an important point, as several version of 
the Enskog–Vlasov kinetic equation have been used for applications (see [27, 28] and 
references therein).
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