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ABSTRACT

The linear approximation of density and velocity profiles is compared to more realistic models with vertically
inhomogeneous density gradients and nonzero anomalous vorticity (i.e., the nonplanetary part of potential
vorticity). Calculations based on the parameters of ‘‘real life’’ currents in the Northern Pacific demonstrate that
these effects, acting together, can make baroclinic instability 2.5–6 times stronger and dramatically expand the
spectral range of unstable disturbances toward the short-wave region (by a factor of more than 20–30).

1. Introduction

The linear approximation of density and velocity pro-
files is widely used for the description of baroclinic
instability. Its main advantage is simplicity, as linearly
stratified flows are described by a ‘‘solvable’’ normal-
mode equation. At the same time, the linear approxi-
mation allows one to elucidate the basic physics of bar-
oclinic instability (see Charney 1947; Eady 1949; Green
1960).

Still, the linear approximation seems to have two
shortcomings. First, it reduces potential vorticity to its
planetary part, as the anomalous vorticity (i.e., the non-
planetary part) vanishes identically for all linearly strat-
ified flows. This should certainly be seen as a drawback,
as for many real-life oceanic currents anomalous vor-
ticity is considerably greater than the planetary vorticity,
and omission of the former can result in a significant
error in the parameters of baroclinic instability. Second,
the global stability of a flow is, generally, determined
by the stability of its least stable layer—thus, any per-
turbation of the homogeneous (linear) density stratifi-
cation must strengthen the instability.

In this paper, we estimate the influence of nonzero
anomalous vorticity and inhomogeneous density strat-
ification on the parameters of baroclinic instability for
a number of ‘‘real life’’ currents in the northern Pacific.
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It is demonstrated that the two effects, acting together,
may increase the growth rate by the order of magnitude
and dramatically widen the spectrum of unstable dis-
turbances. Unlike predictions of the linear model, the
‘‘modified’’ results agree with oceanic observations of
baroclinic instability (see section 5 below).

It should be mentioned that there is a large body of
work dealing with the application of the equation of
baroclinic instability to the real ocean, of which we cite
one of the earliest ones (Gill et al. 1974) and one of the
most recent ones (Killworth et al. 1997). In these papers,
the parameters of baroclinic instability were computed
for many oceanic currents. In order to emphasize the
difference between these papers and the present note,
we remark that the question we ask is not ‘‘what are
the parameters of baroclinic instability’’ but rather
‘‘which features of oceanic currents are responsible for
the parameters of baroclinic instability that we ob-
serve.’’

2. Mathematical formulation

In addition to the aforementioned shortcomings, lin-
ear profiles of density and velocity imply that the flow
penetrates down to the oceanic bottom, which clearly
contradicts observations (e.g., Roden 1975). We shall
use a model assuming that the flow is localized in an
‘‘active’’ layer of depth Ha, while in the ‘‘passive’’ layer
we have

r(z) 5 r0, u(z) 5 0 for z # 2 Ha,

where r(z) and u(z) are the density and velocity profiles,
and z is the vertical spatial variable (see Fig. 1). We
shall also assume that the ocean is horizontally homo-
geneous (no dependency on y). In the active layer, the
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FIG. 1. The (a) density and (b) velocity profiles.

stability of a normal mode with wavenumber k and
phase speed c is governed by (e.g., Pedlosky 1987, p.
514)

2 2f r (u 2 c)0 2 2f 1 [k (u 2 c) 2 b(u 2 c)] 5 0, (1)z[ ]g rz z

where g is the acceleration due to gravity, r0 is the
passive layer’s density (the Boussinesq approximation
implied), f and b are the Coriolis and beta parameters
respectively, k is the wavenumber of the disturbance, c
is its phase speed, and f(z) describes the vertical struc-
ture of the mode. The streamfunction of the disturbance
is given by

(x) (y)c(x, y, z, t) 5 f(z)[u(z) 2 c] exp[ik (x 2 ct) 1 ik y],

where (k(x), k(y)) is the horizontal wavevector of the dis-
turbance (k(x)2 1 k(y)2 5 k2). In the passive layer rz van-
ishes, and the first term in Eq. (1) becomes singular,
which makes it impossible to solve this equation nu-
merically. In order to bypass this difficulty, one should
resolve the structure of the disturbance in the passive
layer analytically and formulate a boundary condition
that ‘‘parameterizes’’ the influence of the passive layer:

2f r c0 22 f 5 (H 2 H )(k c 1 b)f at z 5 2H , (2)z 0 a ag rz

where H0 is the total depth of the ocean. Boundary
condition (2) has been derived in a more general form
by Benilov (1994, 1995); in order to make the present
paper self-contained, a simple derivation of (2) is given
in appendix A. In most cases considered in this paper,

the depth of the active layer is relatively small, and we
could, in principle, use the reduced gravity model em-
ployed previously in similar problems by Fukamachi et
al. (1995) and Beron-Vera and Ripa (1997, manuscript
submitted to J. Fluid Mech., hereafter BVR).1 However,
we shall use the exact boundary condition (2), which
is just as simple computationally. Another difference
with the paper by BVR is that the latter also includes
a velocity jump across the interface. As none of the
real-life examples (considered below) includes a rapid
change of velocity in/near its passive layer, we shall
assume that the velocity profile is continuous; that is,

u(2Ha) 5 0.

Finally, at the surface of the ocean, we impose the rigid-
lid condition:

fz 5 0 at z 5 0. (3)

Equations (1)–(3) form an eigenvalue problem for c. If
Imc ± 0, the disturbance with the corresponding value
of k is unstable with the growth rate (k(x) Imc). Equation
(1) was solved using the eighth-order Dormand–Prince
method with automatic adjustment of the step length
(Dormand and Prince 1980; see also Hairer et al. 1993).
If the complex part of c was small and the critical level
was located close to the real axis of the complex z plane

1 Within the framework of this model, the active layer–passive layer
interface is replaced by a free surface, which enables one to consider
the boundary value for normal modes only in the upper (active) layer
of the ocean.
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FIG. 2. The path of integration (dashed line) of Eq. (1) on the
complex z plane for the cases where the critical level is located close
to the real axis.

TABLE 1. Parameters of frontal currents in the northern Pacific: u
is the latitude, H0* is the total depth of the ocean, Ha* is the depth
of the active layer. (dr/r0)* 5 [r*(2Ha*) 2 r*(0)]/r0* is the relative
density change through the active layer, usur* 5 u*(0) is the surface
velocity, L* is the width of the current, and dHa* is the corresponding
(transverse) variation of the depth of the active layer.

K SA ST1 ST2 ST3

u (8N)
H0* (m)
Ha* (m)
(dr/r0)* 3 103

usur* (m s21)
L* (km)
dHa* (m)

38
5500

600
1.7

0.55
145
200

42
5500

500
1.3

0.40
200
300

30
5500

350
1.3

0.20
210
140

29
5500

350
1.3

20.15
120

260

28
5500

500
1.8

0.45
150
140(say, from above), the path of integration was shifted

(downward) to bypass the singularity and thus improve
the accuracy (see Fig. 2). The solution was ‘‘shot’’ from
the lower boundary condition (2) and the value of fz(0)
was fed to the root-finding routine based on the Newton–
Raphson method, yielding a solution for c.

3. Physical formulation

Consider a model of stratification with quadratic ap-
proximation of density and velocity fields:

r 2 r0 25 s (z 1 H ) 1 s (z 1 H ) ,1 a 2 ar0

2u 5 u (z 1 H ) 1 u (z 1 H ) . (4)1 a 2 a

The undetermined constants s1,2 and u1,2 will be adjusted
to describe certain real-life currents in the northern Pa-
cific. In what follows, we shall use the following no-
tation:

K: Kuroshio;
SA: subarctic frontal current;
ST1: subtropical frontal current, northern jet;
ST2: subtropical frontal current, middle jet; and
ST3: subtropical frontal current, southern jet.

The parameters of these currents, extracted from Roden
(1975), are shown in Table 1.

The simplest model of the kind (4) assumes both r(z)
and u(z) to be linear, which will be referred to as the
LL model. In this case,

s2 5 0, u2 5 0, (5)

and s1 and u1 were determined using the measured depth
of the active layer Ha*, the surface (maximum) value
usur* of the velocity, and the density change (dr/r0)*
through the active layer

(dr/r ) u0 sur* *s 5 2 , u 5 , (6)1 1H Ha a* *

where the asterisk marks the ‘‘real life’’ (observed by
Roden 1975) parameters. The LL model is relatively
crude and, in particular, fails to provide the ‘‘correct’’
value of the slope of the active layer–passive layer in-
terface. This important characteristic of the flow is given
by the formula

f r u (2H )0 z as 5 2 , (7)
g r (2H )z a

derived in appendix B. For the LL model,

f u1s 5 2 ,
g s1

which does not necessarily match the observed value

dHa*s 5 ,* L*

where L* is the observed width of the current and dHa*
is the corresponding (transverse) change in the depth of
the active layer. For the Kuroshio Current, for example,
the LL model gives s 5 2.96 3 1023, while the actual
value (following from Roden’s data, see Table 1) is s*
5 1.38 3 1023.

In order to obviate this drawback, we also considered
a model with a linear approximation of density and qua-
dratic approximation of velocity (which will be referred
to as the LQ model). The density stratification remained
the same as in the LL model:

(dr/r )0 *s 5 2 , s 5 0, (8)1 2Ha*

while the velocity profile was adjusted to provide the
‘‘correct’’ values for both usur* and s*:

gs s u u1 sur 1* *u 5 2 , u 5 2 . (9)1 2 2f H Ha a

Finally, we considered the general case of quadratic
approximation for both r(z) and u(z) (which will be
referred to as the QQ model). In comparison with the
LQ model, this approximation has an extra degree of
freedom (s2), which cannot be fixed using the ‘‘global’’
characteristics of the flow (i.e., parameters in Table 1).
Unfortunately, Roden (1975) supplied no precise infor-
mation on the vertical structure of the density field (in
which case s2 could have been adjusted through a least
squares fit). Thus, we had to model the inhomogeneity
of density gradient in the active layer on a more or less
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FIG. 3. The three models of stratification for the Kuroshio frontal current: 1) 5 LL model (5)–(6), 2) 5 LQ model (8)–(9), and 3) 5 QQ
model (10)–(11); (a) density stratification (observe that the LL and LQ models coincide), and (b) velocity stratification.

TABLE 2b. The wavelengths of maximum growth of frontal currents
in the northern Pacific computed through the LL model (5)–(6), LQ
model (8)–(9), and QQ model (10)–(11).

K SA ST1 ST2 ST3

(lm)LL (km)
(lm)LQ (km)
(lm)QQ (km)

300
105

70

230
80
55

stable
90
60

230
95
70

370
140

90

TABLE 2a. The e-folding times of frontal currents in the northern
Pacific, computed through the LL model (5)–(6), LQ model (8)–(9),
and QQ model (10)–(11).

K SA ST1 ST2 ST3

tLL (days)
tLQ (days)
tQQ (days)

9
5
3

10
5
4

stable
15
10

27
17
12

34
9
6

ad hoc basis. We assumed that the density gradient at
the lower boundary of the active layer was, say, three
times greater than that at the surface of the ocean:

3 (dr/r ) 1 (dr/r )0 0* *s 5 2 , s 5 , (10)1 2 22 H 2 Ha a* *

(which was supposed to model weakening of the density
stratification in the upper mixed layer). Adjusting u1,2

to provide the correct values of usur* and s*, we obtain

gs s u u1 sur 1* *u 5 2 , u 5 2 . (11)1 2 2f H Ha a

Thus, we have three different models of stratification:
(5)–(6), (8)–(9), and (10)–(11). In what follows, we shall
apply them to the currents represented in Table 1 and
compare the results.

Interestingly enough, the three models do not look
significantly different (see Fig. 3), yet they result in
completely different parameters of baroclinic instability.

4. Results

The main characteristic of a hydrodynamic instability
is its maximum growth rate:

g 5 max{k(x) Imc(k)},

and the corresponding wavenumber km (or, equivalently,
the e-folding time t 5 1/g and the wavelength lm 5
2p/km). The values of these parameters computed for
the aforementioned currents and models are presented
in Tables 2a,b. Another important parameter of baro-
clinic instability is its spectral range, usually charac-
terized by long/short-wave cutoffs. In our case, however,
the long-wave cutoff corresponds to unrealistically long
waves (longer than 400–600 km); that is, we can safely
assume that all long waves are weakly unstable. The
short-wave cutoff, in turn, simply does not exist, as c(k)
approaches zero asymptotically as k → `. Thus, we shall
assume that the cutoffs correspond to the disturbances
with growth rates, say, three times smaller than the max-
imum growth rate:

1
k Imc(k ) 5 g, k , k , k ,6 6 2 m 13

(see the schematic in Fig. 4). The corresponding wave-
lengths l6 5 2p/k6 computed for the aforementioned
currents and models are presented in Table 3.

The results in Tables 2 and 3 can be summarized as
follows:
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FIG. 4. Characteristics of baroclinic instability: g and km are the
maximum growth rate and the corresponding wavenumber and k2

and k1 are the long/short-wave boundaries of the instability.

TABLE 3. The spectral ranges (wavelengths) of unstable disturbances for frontal currents in the northern Pacific, computed through the LL
model (5)–(6), LQ model (8)–(9), and QQ model (10)–(11). The asterisk indicates that the corresponding short-wave cutoff is less than
15 km.

K SA ST1 ST2 ST3

(l1 2 l2)LL (km)
(l1 2 l2)LQ (km)
(l1 2 l2)QQ (km)

210–600
30–440
*–290

170–500
20–350
*–210

stable
20–230
*–190

180–370
22–320
*–320

320–450
35–360
*–300

(i) Nonzero anomalous vorticity (which makes the dif-
ference between the LL and LQ models)

R increases the maximum growth rate of the insta-
bility by a factor of approximately 1.5–4 (see
Table 2a),

R shifts the most unstable harmonic toward the
short-wave region by a factor of approximately
2.5–4 (see Table 2b),

R shifts the long-wave boundary of the instability
toward the short-wave region by a factor of ap-
proximately 1.2–1.5 (see Table 3),

R shifts the short-wave boundary of the instability
toward the short-wave region by a factor of ap-
proximately 7–9 (see Table 3).

(ii) Vertical inhomogeneity of density stratification
(which makes the difference between the LQ and
QQ models)

R increases the maximum growth rate of the insta-
bility by a factor of approximately 1.5 (see Table
2a),

R shifts the most unstable harmonic toward the

short-wave region by a factor of approximately
1.5 (see Table 2b),

R shifts the long-wave boundary of the instability
toward the short-wave region by a factor of ap-
proximately 1–1.5 (see Table 3),

R shifts the short-wave boundary of the instability
toward the short-wave region by a factor of more
than 2–4 (see Table 3).

Thus, the combined effect of nonzero anomalous vor-
ticity and inhomogeneous density stratification makes
baroclinic instability 2.5–6 times stronger and dramat-
ically expands the spectral range of unstable distur-
bances toward the short-wave region (by a factor of
more than 20–30).

This conclusion is illustrated by Fig. 5, where we
show the growth rates of baroclinic instability of the
Kuroshio Current (as an example of an eastward flow)
and the subtropical front’s middle jet ST2 (as an example
of a westward flow). In both cases, the growth rate
computed using the most realistic QQ model seems to
have no spectral gap between the Rossby wave and
internal-wave ranges of disturbances.

5. Discussion

1) The main reason for such a strong difference be-
tween the linear (LL) and nonlinear (LQ, QQ) models
of stratification lies in the structure of potential vorticity:

2f r C0 z 1 by, (12)1 2g rz z

where C is the streamfunction of the basic flow. Taking
into account that, for currents without horizontal shear,

C 5 2yu(z), (13)

we estimate the ratio of the first (anomalous vorticity)
term in (12) to the second (planetary vorticity) term:

anomalous vorticity usur*m ; ; , (14)
2planetary vorticity bRd

where usur* is the surface (maximum) velocity and Rd

is the deformation radius based on the depth of the active
layer:

Ï(dr/r ) gH0 a* *R 5 . (15)d f

Estimating m for the aforementioned currents in the
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FIG. 5. Growth rate of baroclinic instability. 1) 5 LL model (5)–(6), 2) 5 LQ model (8)–(9), and 3) 5 QQ model (10)–(11). (a) Kuroshio
frontal current (dashed lines show the ‘‘reference values’’ of 5 days for the e-folding time and 50 km for the wavelength of disturbance),
and (b) subtropical frontal current (dashed lines show the reference values of 20 days for the e-folding time and 50 km for the wavelength
of disturbance).

TABLE 4. The effective ratio (14) of the anomalous and planetary
vorticities for frontal currents in the northern Pacific.

K SA ST1 ST2 ST3

m 25 34 12 8 11

northern Pacific, we see that the anomalous vorticity is,
typically, 10–30 times greater than the planetary vor-
ticity (see Table 4). Thus, it comes as no surprise that
the LL model, having zero anomalous vorticity,2 differs
significantly from the (more realistic) nonlinear ap-
proximations having nonzero anomalous vorticity.

Finally, we shall compare the deformation radius Rd

(see Table 5) with the wavelength of maximum growth
computed through the (most realistic) QQ model (Table
2b, the last row). It turned out that, for all currents
considered, the latter is almost precisely two times larger
than the former. This agrees with the generally accepted
hypothesis that the spatial scale of baroclinic instability
is of the order of Rd. At the same time, the linear model
of stratification produces a much larger than Rd spatial
scale.

2) We shall also test the results obtained here against
observations. Generally speaking, there is no reason for
the real ocean to be linearly stratified, hence the LQ and
QQ models should fare better than the LL model. We
shall compare theoretical results to those obtained by

2 Observe that the first term in (12) vanishes for the LL model [i.e.,
for (13), (4) with s2 5 0, u2 5 0].

Lee and Eriksen (1996), who estimated the characteristic
timescale of variability of subtropical fronts to be about
10 days. Evidently, this estimate agrees with the QQ
model better than with either of the other two (see col-
umns ST1–3 in Table 2a). At the same time, the LL model
is completely off the mark. Unfortunately, neither Lee
and Eriksen (1996) nor other authors provide much in-
formation on the spatial structure of disturbances in mi-
docean fronts, thus we were unable to compare our re-
sults in Table 2b with observations. We were able, how-
ever, to make an indirect comparison between theoret-
ically predicted wavelengths and the size of oceanic
rings (which are a product of frontal instability and thus
should inherit its spatial scale). We used the data col-
lected by Olson (1991), including three rings observed
in the Kuroshio frontal current. Their radii were 60, 75,
and 105 km, which again suggests that the two nonlinear
models fare better than the linear one.

We have also made some estimates for near-coastal
fronts. Following Fukamachi et al. (1995), we assumed
that

u 5 438, H 5 250 m, H 5 50 m,0 a* *

dr
23 215 0.75 3 10 , u 5 0.5 m s .

r0

Using these parameters, the LL model yields

tLL ø 1 day, (lm)LL ø 60 km.

These results agree well with the predictions of the two-
layer model (Phillips 1954), but at the same time dis-
agree with observations. Specifically, the spatial scale
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TABLE 5. The deformation radius (15) for frontal currents in the
northern Pacific.

K SA ST1 ST2 ST3

Rd (km) 35 25 30 30 45

(lm)LL is 2–3 times larger than a typical observed value
(see Fukamachi et al. 1995 and references therein). The
e-folding time tLL does agree with observations, but we
cannot trust it, as it is comparable to f21—which indi-
cates that the instability is ageostrophic. (Note that the
LQ and QQ models give more realistic results, which
cannot be trusted, however, for the same reason as the
LL results.) The instability of fronts with steeply tilted
isopycnals, like those in the above example, should be
examined using the ageostrophic (primitive) equa-
tions—as has been done by Fukamachi et al. (1995). It
would be interesting to examine if the nonlinearity of
velocity and density profiles affects ageostrophic fronts
as much as it does quasigeostrophic flows.

6. Conclusions

It has been demonstrated that the nonplanetary part
of potential vorticity (anomalous vorticity) of oceanic
currents is, typically, much greater than the planetary
vorticity and, as a result, affects strongly the stability
properties of the flow.

Vertical inhomogeneity of density stratification also
affects baroclinic instability. Generally speaking, the
stability properties of a flow are determined by its least
stable layer (i.e., the layer with the weakest density
gradient). Thus, global parameters (e.g., vertical den-
sity/velocity change through the active layer) are not
representative of the stability properties of the flow, and
the models ignoring its fine structure are too crude to
capture the essential physics of instability.

Calculations based on the parameters of real-life cur-
rents in the northern Pacific demonstrate that the com-
bined effect of nonzero anomalous vorticity and inho-
mogeneous density stratification can make baroclinic
instability 2.5–6 times stronger and dramatically expand
the spectral range of unstable disturbances toward the
short-wave region (by a factor of more than 20–30). As
a result, the parameters of baroclinic instability com-
puted using linear approximation of density and velocity
profiles (corresponding to constant density gradient and
zero anomalous vorticity) differ considerably from those
obtained through more realistic approximations.
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APPENDIX A

Derivation of (2)

It is worth noting that, when examining the eigen-
function in the homogeneous part of the basic flow, one

should resist the temptation to assume that it is deter-
mined by the hydrostatic pressure gradient and thus has
a linear profile (this is, of course, correct for the basic
flow, but not for the disturbance). Instead, we shall de-
rive the structure of the disturbance from the standard
boundary value problem for disturbances in a parallel
flow on a b plane:

2 2f r (u 2 c)0 2 2f 1 [k (u 2 c) 2 b(u 2 c)]f 5 0,z[ ]g rz z

(A1)

f 5 0 at z 5 0, 2H , (A2)z 0

where the notation is explained in section 2. In order
to derive a boundary condition describing a homoge-
neous passive layer, the simplest option would be to
consider a uniformly stratified layer:

u(z) 5 0, rz(z) 5 r9 for z # 2 Ha

and then take the limit r9 → 0. We shall choose, how-
ever, a more complicated but more general approach
(which yields, of course, exactly the same result).

First, we shall rewrite Eq. (A1) in a form that would
make the limit rz → 0 regular (in the equation’s present
form, this limit is singular). We shall integrate (A1) from
z 5 2H0 to z 5 z9 and take into account (A2):

2 2f r [u(z9) 2 c]0 f (z9)z9gr (z9)z9

z9

2 21 {k [u(z) 2 c] 2 b[u(z) 2 c]}f(z) dz 5 0. (A3)E
2H0

Next we multiply (A3) by grz9(z9)/f 2r0[u(z9) 2 c]2 and
integrate from z9 5 2H0 to z9 5 z0:

z0 gr (z9)z9f(z0) 5 A 2 E 2 2f r [u(z9) 2 c]02H0

z9

2 23 {k [u(z) 2 c] 2 b[u(z) 2 c]}f(z) dz dz9,E
2H0

(A4)

where A 5 f(2H0) (observe that, in view of linearity
of the problem at hand, A plays the role of normalizing
constant and, in principle, can be replaced with any
particular number). Now our equation has become reg-
ular with respect to u → 0, rz → 0. We shall take this
limit in two steps: first we shall assume that, in the
passive layer, u and rz are small but finite, then we shall
put u 5 0, rz 5 0. Observe that, in the former case, the
second term on the right-hand side of Eq. (A4) is small,
while the first one remains finite. Thus, we can solve
(A4) by iterations:
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z0 gr (z9)z9f(z0) 5 A 2 E 2 2f r [u(z9) 2 c]02H0

z9

2 23 {k [u(z) 2 c] 2 b[u(z) 2 c]}A dz dz9E
2H0

1 · · · . (A5)

In order to match (A5) to the solution in the active layer,
the continuity of the pressure and vertical velocity
should be required. Calculating these quantities at the
interface, we obtain

f(2H ) 5 A 2 · · · ,a

f (2H ) gz a 5
2 2r (2H ) f r [u(2H ) 2 c]z a 0 0

Ha

2 23 {k [u(z) 2 c] 2 b[u(z) 2 c]}A dzE
2H0

1 · · · .

Finally, putting u 5 0, rz 5 0 and using the first equation
to eliminate A, in the second equation, we obtain the
desired boundary condition (2).

APPENDIX B

Derivation of (7)

The active layer–passive layer interface will be treat-
ed here as an isopycnal surface. In order to derive an
expression for the slope of isopycnal surfaces in a steady
parallel flow, observe that the velocity, density, and
pressure fields in it satisfy

1
p 5 2 f u, (B1)yr0

p 5 2gṙ. (B2)z

We shall need an expression for ry. To derive it, we
differentiate (B2) with respect to y and take into account
(B1):

f r0r 5 u . (B3)y zg

The isopycnal surfaces are determined by

r(y, z) 5 const,

and their slope is given by

ryz 5 2 . (B4)y rz

Substituting (B3) into (B4), we obtain

f r u0 zz 5 2y g rz

as required.
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