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Abstract. We discuss the well known problem of long-wave divergences in the perturbation 
theory based on the inverse scattering transform. We outline a feasible way to remedy this 
shortcoming. 

The problem of divergences in perturbation theory (FT) for systems close to the 
Korteveg-de Vries (Kdv) equation is well known (see, e.g., Karpman and Maslov 1977, 
Newell 1980). Let us consider it for the following perturbed equation: 

(1) 
where [ E [ < <  1 and a and /3 are auxiliary parameters -1. Equation (1) has important 
applications in the particular case /3 = -2a when the resultant perturbation 3a.m in 
the RHS of (1) accounts for dissipation ( ( Y E  < 0) or pumping ( ( Y E  > 0) in a corresponding 
physical system. Traditional PT for nearly integrable systems (Karpman and Maslov 
1977, Newell 1980) is based on constructing 'a perturbed ( L ,  A) pair', i.e. an overdeter- 
mined system of equations for an axiliary function "(x, t ) ,  all the perturbation being 
included into the second (time-evolution) equation: 

U, - ~ u u ,  + U,, = - E [  a( U + ~ x u , )  + p ( 2 ~  + XU,)] 

ICY = -VIxx +(U - E)* = 0 

AY 'rr! -2( U +2E)'rr, + u,T = &(U, 'rr) 
( 2 a )  

(2b) 
where the functional F corresponds to the perturbation in (1). The direct and inverse 
scattering problems for the Schrodinger equation (2a) establish the one-to-one mapping 
of the 'potential' u(x) into the scattering data consisting of a reflection coefficient T ( E )  
and certain characteristics of bound states (if any). Note that T satisfies the inequality 

The evolution of the scattering data in time is determined by the equation (2b) which 
can be solved asymptotically, using I E ~ K  1. 

The main difficulty of FT for systems close to the Kdv equation is the presence of 
integrals over the spectral parameter E, divergent in the 'long-wave' region (at E + 0). 
Nevertheless, some kinds of perturbations do not give rise to the divergence. In 
particular, in the case a = 0 the divergences are absent at least in the first order of PT 
(Karpman 1978). Another remarkable property of this particular case is its exact 
integrability (Calogero and Degasperis 1982): equation (1) with a = 0 has the exact 
(L ,A)  pair: 

W)I < 1. (3) 

-VI, + [U - E exp( -2pr)l'rr = 0 

VI, - 2[ U -&PX + 2~ exp( - 2 p r ) ] ~ 1 ,  + (U, - ~ E P ) V I  = 0. 
(4a) 
(46) 
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There is another integrable case: f3 = O t  (Calogero and Degasperis 1982), the cone- 
sponding (L,A) pair being 

- Y = + [ u - f e a x - E  exp(2sat)]Y=O (5a)  

Y, - 2 [ u + 2 E  exp(2~c~t)]Y~+u,Y’=O. (5b) 

Nevertheless, formal application of the standard PT to the latter case entails appearance 
of the divergences. 

The starting point of the present paper is the following observation: in the case 
p = O  the form of the scattering data defined by the unperturbed L equation ( 2 a )  is 
drastically distinct from that defined by the ‘perturbed’ one (5a),  namely, due to infinite 
increase of the effective potential ueff = U + ~ a x / 2  in (5a)  at x + fa, a discrete spectrum 
is absent and the reflection coefficient satisfies the equality 

) ~ ( E ) l s  1 ( 6 )  

(this follows from the quantum mechanical interpretation of the Schrodinger equation 
(5a)S). On the other hand, treating the ‘integrable’ perturbation E a ( u + x u , )  in the 
spirit of usual PT, one would employ the unperturbed L equation and, consequently, 
quite inadequate approximation of the ‘genuine’ scattering data (compare (3) with 
(6)). We deem that this is the cause of appearance of the divergences in this case. 
Note also that, when a = 0 (another integrable case), the effective potential in the 
‘perturbed’ (L ,A)  pair (4a) does not grow at x +  fa and, accordingly, no divergences 
appear in PT. 

Of course, in the integrable cases a = 0 or p = 0, PT is not needed at all. Let us 
consider how to construct a divergence-free PT for a general (non-integrable) perturba- 
tion of the type (1). The above observation suggests that in this case, on a level with 
the A equation, the L equation should be properly modified as well. A natural way 
to realise this idea is to construct a (L,A) pair for (1) in the form of a power series in 
E (such an approach is not new: something similar was discussed by Kodama (1986) 
and Menyuk (1986)): 

m 

m m 

(7b) 

Straightforward calculations yield the following expressions for the two lowest terms 
of the series: 

U1 = 2 E ( P  - a)t  - ;ax  

w l = 4 E ( a - f 3 ) t - i f 3 x  (86) 

~ z = - 2 E ( f 3  - a ) 2 t 2 + $ a f 3 t ~ + ~  (9a) 
W Z  =4E(a - f3 )Zt2+&f3tX + v (9b) 

ut +6(uu), + U, = h $ t ( x u ) , .  (9c) 

where u(x,  t )  satisfies the linear equation 

t In both the integrable cases a = 0 or p =0, equation ( 1 )  can be reduced to the unperturbed Kdv equation 
by means of simple transforms of variables. 
$All the information about u(x) is mapped into the phase of the reflection coefficient arg T ( E ) .  
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It is easy to see that the effective potential in (7a) contains the term -x  already in 
the first order of FT (see ( 8 a ) ) .  The only exception is the case a = 0 (the same pertains 
to the second order; see (9a)). It is remarkable that, as mentioned above, this is 
actually the only case when divergences do not appear in the standard PT. 

We remark that a correct version of PT can be based upon the truncation of the 
series in (7). However, due to the secular dependence of U, and w, on t (see (8) and 
(9)), such truncated expansions cease to be applicable at the times t 3 E - ' .  On the 
other hand, comparison of the expressions (7)-(9) in the exactly integrable cases with 
the corresponding exact (&A) pairs (4) and ( 5 )  demonstrates that one may hope to 
sum up all the secular terms into something like exp{Ef(a, r ) t } .  Another approach 
can be based on the fact that (1) does not depend explicitly upon the time t. Hence, 
we can solve it with the aid of the truncated (L ,A)  pair by steps, i.e. several times for 
the time interval 0 < t C A ( A  - l ) ,  the initial data for each step being determined by 
the 'final' data of the preceding step: 

urn I t  =o = urn- 11 ( = A .  

The count of time in each step begins from zero, thus, the secular effects do not 
accumulate, the step's number playing the role of a slow time variable. Efforts to 
construct such a technique are in progress. 

At the same time, there is a more simple approach to the problem. It is easy to 
see that the transformation 

r +  i= (3/3~)-'[1 -exp(-3/3~t)] 

x + 1 = x exp( - / 3 ~ t )  (10) 
U + U' = U exp( - 2 p ~ r )  

eliminates the second term in the RHS of (1): 

Contrary to (1) with p = 0, equation (1 1) is not exactly integrable due to the presence 
of the time-dependent coefficient y. Nevertheless, if a characteristic timescale of a 
solution that we are interested in is much smaller than a characteristic time during 
which the coefficient y ( t )  significantly alters, we may treat ( l l a )  in the adiabatic 
approximation, i.e. first assume y = constant and write a corresponding exact solution 
and then formally insert into it the function ( l l b )  instead of the constant. 

To illustrate this scheme, let us apply it to the following exact solution of ( l l a )  
with y = constant (Calogero and Degasperis 1982): 

U'= ( t y ) ' / 3 U ( ( f y ) ' / 3 ~ - Z ( i ) ,  p ( i ) )  (12a) 

W Y ,  P )  = 2P[2Aif(Y)Ai(Y) + P ( A ~ ( Y ) ) ~ G ( Y ) I G ( Y )  

G(Y) = [1 +P(Ai'(Y))2-PY(Ai(Y))21-' (12c) 

(12b) 

where A i ( y )  is the Airy function, and z(  f) = zo exp(-2y?), p(  i) = po exp(-2yi). 
Replacing in the latter expressions the constant y by the function (1 1 b), we obtain 

z ( i )  = zo(l - 3 E p f ) - 2 4 3 p  

p(i)=po(l-3Epf)-Z"'3~ 
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The formulae (12) give an approximate solution to ( l l a )  provided Islf>> 1. According 
to (lo), this condition has sense only for the case PE <0, i.e. for the pumping type 
perturbation, when it means simply [ E l f  >> 1. So, on the contraty to the standard 
perturbative technique (Newell 1980) which is relevant for the early stage of evolution 
( l ~ l t s  l ) ,  our approach works at the late stage and is meaningful only for the pumping 
case. In particular, the approximate solution (12) may be interpreted as that describing 
generation of an infinite number of new solitons (see a graph of the function U ( y ,  p )  
in Calogero and Degasperis (1982)) at the late stage of evolution of an initial profile 
uo(x) .  Note, however, that due to the property jym U ( y ,  p )  dy = 0 this may pertain 
only to profiles restricted by the constraint j:m uo( x)  dx = 0. Earlier the singularity of 
PT was interpreted by Wright (1980) as just a manifestation of birth of new solitons. 
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