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The stability of continuously stratified vortices with large displacement of isopycnal
surfaces on the f-plane is examined both analytically and numerically. Using an
appropriate asymptotic set of equations, we demonstrated that sufficiently large
vortices (i.e. those with small values of the Rossby number) are unstable. Remarkably,
the growth rate of the unstable disturbance is a function of the spatial coordinates. At
the same time, the corresponding boundary-value problem for normal modes has no
smooth square-integrable solutions, which would normally be regarded as stability.

We conclude that (potentially) stable vortices can be found only among ageostrophic
vortices. Since this assumption cannot be verified analytically due to complexity of the
primitive equations, we verify it numerically for the particular case of two-layer
stratification.

1. Introduction

One of the most puzzling features of oceanic rings and lenses is their longevity ; they
often persist for years (Lai & Richardson 1977; Olson 1991). The theoretical studies of
Paldor & Nof (1989) and Ripa (1992), on the other hand, indicate that large-amplitude
circular vortices are unstable (these results were obtained for a two-layer ocean with
the lower layer at rest). In order to resolve the apparent contradiction between
observation and theory, Dewar & Killworth (1995) considered two-layered vortices
with a non-zero circulation in the lower layer and observed that unstable modes
disappear for co-rotating vortices. Remarkably, the instability disappeared for very
low values of the deep-flow velocity, so the vertical shear was, in fact, strong.

However, this result does not seem to be applicable to geostrophic vortices, i.e.
vortices with small Rossby number, which are clearly unstable with respect to short-
wave disturbances. Indeed, short waves may not be sensitive to the horizontal shear
and therefore ‘perceive ’ a vortex as a parallel quasi-geostrophic flow, and parallel
quasi-geostrophic flows in a two-layer fluid on the f-plane are unstable (Phillips 1954).
Thus, Dewar & Killworth’s (1995) result resolves the old contradiction at the price of
introducing a new one.

The main aim of the present paper is this new contradiction. It will be demonstrated
that, although geostrophic‡ vortices with co-rotating deep flow may be stable with
respect to harmonic normal modes, they are still unstable with respect to non-harmonic
disturbances. This conclusion will be obtained for geostrophic vortices of arbitrary

† Present address : Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK.
‡ Here and hereinafter, the term ‘geostrophic’ will exclude ‘quasi-geostrophic’, i.e. the

displacement of isopycnal surfaces will always be assumed large.
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shape and stratification. It will also be demonstrated that ageostrophic vortices can be
stable even if their Rossby number is as low as 0.3.

In §2 we shall derive a relatively simple set of equations describing large-amplitude
geostrophic flows on the f-plane, and in §§3–5 we shall use it to examine the stability
of vortices. In §6, we shall examine numerically the stability of two-layer ageostrophic
vortices.

2. Basic equations

Consider a flow of continuously stratified fluid bounded by two horizontal rigid
planes, on the f-plane. The equations, governing the pressure p, velocity (u, �, w) and
density ρ, are

u
t
uu

x
�u

y
wu

z


1

ρ
!

p
x
¯ f�, (2.1a)

�
t
u�

x
��

y
w�

z


1

ρ
!

p
y
¯®fu, (2.1b)

1

ρ
p
z
¯®g, (2.1c)

ρ
t
uρ

x
�ρ

y
wρ

z
¯ 0, (2.1d )

u
x
�

y
w

z
¯ 0, (2.1e)

where (x, y, z) and t are the spatial coordinates and time, f is the Coriolis parameter,
g is the acceleration due to gravity and ρ

!
is the mean density of the fluid (the

Boussinesq approximation implied). Instead of the continuity equation (2.1e), we shall
derive the vorticity equation according to
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Following routine calculations, we obtain
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Equations (2.1a–d ) and (2.2) should be supplemented by the no-flow condition at the
rigid boundaries

w¯ 0 at z¯®H
!
, 0, (2.3)

where H
!

is the total depth of the ocean.
In order to scale the governing equations, we shall assume that the displacement of

isopycnal surfaces is comparable to the depth of the ‘active ’ layer. With respect to the
latter, we shall consider the general case, i.e. assume that it is comparable to the total
depth of the ocean. Thus, the density anomaly (ρ®ρ

!
) will be scaled by the global

density variation ∆ρ, and z will be scaled by H
!
. The hydrostatic approximation then

implies that
P¯ g∆ρH

!
, (2.4a)

where P is the pressure scale. We shall also assume that the flow is near geostrophic
balance, i.e.
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where U, T and L are the velocity, time and spatial scales, respectively. The scale W
of the vertical velocity can be determined by comparing the advection terms and right-
hand side in the vorticity equation (2.2) :
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Now we can introduce the non-dimensional variables :
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Substituting (2.4) and (2.5) in the governing equations (2.1a–d ) and (2.2), (2.3), and
omitting the asterisks, we have
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w¯ 0 at z¯®1, 0, (2.8)
where
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is the Burger}Rossby number (for flows with large displacement of isopycnals, Ro and
Bu always coincide). We shall assume that the flow is geostrophic, i.e.

ε' 1. (2.9b)

Omitting terms proportional to ε in (2.6)–(2.8), we obtain
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w¯ 0 at z¯®1, 0. (2.13)

Equations (2.10)–(2.13) are the desired asymptotic equations. They can be rewritten
in a more convenient form, if (2.12) is integrated with respect to z over (®1, 0). Taking
into account the boundary conditions (2.13), one obtains
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Finally, we substitute the geostrophic}hydrostatic conditions (2.10) into (2.11), (2.14)
and obtain

p
zt
J(p, p

z
)¯ 0, &!

−"

[~ #p
t
J(p,~ #p)] dz¯ 0, (2.15)

where J(p, q)¯ p
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. Equations similar to (2.15) were derived by Benilov

(1993), Young (1994) and Ripa (1998). It is worth mentioning that, if the displacement
of isopycnal surfaces is small, (2.15) coincides with the long-wave limit of the quasi-
geostrophic equation.

3. Equations for linear disturbances

In this section, asymptotic equations (2.15) will be used for describing harmonic
disturbances (normal modes) and, also, disturbances with arbitrary dependence on
time.

Equation (2.15) admits the following steady solution describing a radially symmetric
vortex:

p¯P(r, z), (3.1)

where r¯ (x#y#)"/#. We shall consider isolated vortices in an unbounded ocean, i.e.
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The stability of solution (3.1) will be examined within the framework of asymptotic
equations (2.15).

First, we rewrite (2.15) in the cylindrical variables
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where φ is the polar angle. We assume that the vortex is perturbed by a small
disturbance:

p(t, r,φ, z)¯P(r, z)p«(t, r,φ, z). (3.3)

Substituting (3.3) into (2.15) and omitting nonlinear terms, we obtain

p!
zt


1

r
P
r
p!
zφ

®
1

r
p!φ P

zr
¯ 0,

&!

−"

0~ #p!
t


1

r
P
r
~ #p!φ®

1

r
p!φ ~ #P

r1dz¯ 0.

5

6

7

8

(3.4)

First, we shall consider harmonic disturbances

p«(t, r,φ, z)¯ q(r, z) eiωt−inφ, (3.5)

where ω is the frequency, and n is the azimuthal wavenumber. Substitution of (3.5) into
(3.4) yields
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where

Ω(r, z)¯
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P
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is the angular velocity of the fluid. It follows from (3.2) that

ΩU 0 as rU¢. (3.7)

Equation (3.6a) can be readily solved:

q(r, z)¯ [ω®nΩ(r, z)]ψ(r), (3.8)

where the undetermined function ψ(r) describes the horizontal structure of the
disturbance.† Substitution of (3.8) into (3.6b) yields the following equation for ψ(r) :
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An equation similar to (3.9) has been derived for parallel flows by Tai & Niiler (1985)
and Benilov (1993).

It is convenient to introduce the barotropic and baroclinic components of the vortex,
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At the centre of the vortex ψ satisfies the standard condition

ψ¯ 0 at r¯ 0. (3.12)

We shall also require that disturbances have finite kinetic energy:
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Taking into account (3.5), (3.8) and (3.7), one can reduce this constraint to
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Equations (3.9), and (3.11)–(3.13) form a boundary-value problem for normal modes
described by ω and ψ(r).

In addition to the harmonic disturbances (normal modes), we shall consider non-
harmonic disturbances, i.e. replace (3.5) with

p«(t, r,φ, z)¯ q(t, r, z) e−inφ.

† In contrast to the exact primitive equations, the asymptotic set (2.15) always allows one to find
the vertical structure of the disturbance explicitly.
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Routine calculations, similar to the harmonic case, resolve the vertical structure of the
solution:

q(t, r, z)¯®9i ¥
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(observe that the horizontal profile of the disturbance ψ(t, r) now depends on time).
Eventually, we obtain the following governing equation:
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(recall that U and V are the barotropic and baroclinic components of the vortex,
respectively). The conditions guaranteeing that the energy is finite are
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Similar to the harmonic case, ψ should vanish at the centre of the vortex (i.e. satisfy
condition (3.12)).

4. Evolution of linear disturbances

In this section, we shall compare the solution to the normal mode problem (3.9),
(3.11)–(3.13) the solution to the initial-value problem (3.14)–(3.16), (3.12). Although
we shall, in some instances, consider the case of arbitrary azimuthal wavenumber n, it
turns out that many meaningful results can be extracted from the simplest particular
case n¯ 1.

4.1. Harmonic disturbances

It is convenient to rewrite (3.9), (3.11)–(3.13) in terms of χ(r)¯ (1}r)ψ(r) :
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Observe that, if n¯ 0 (radially symmetric disturbance), equation (4.1a) is satisfied by

ω¯ 0, χ¯ arbitrary,

which corresponds to steady infinitesimal change of the vortex’s form. Thus, we shall
assume that n& 1.

It can be readily demonstrated (see Appendix A) that, for a vortex with non-zero
baroclinic component (V1 0), equations (4.1) have no stable solutions. This result,
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however, does not prove instability, because (4.1) may have no unstable solutions
either. For example, if n¯ 1 and U(r) and V(r) are continuous functions, the
fundamental solution of (4.1a)

χ¯ c
"
c

#& dr

r$S

does not satisfy conditions (4.1c, d ) for any values of the constants c
",#

. Thus, it
appears logical to conclude that geostrophic vortices are stable with respect to
disturbances of the first azimuthal mode.

In the next subsection we shall demonstrate that the non-existence of unstable
harmonic disturbances does not guarantee stability.

4.2. Non-harmonic disturbances

First, we rewrite (3.14)–(3.16), (3.12) in terms of χ(t, r)¯ (1}r)ψ(t, r) :
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As before, we consider the simplest case n¯ 1, where (4.2a) can be reduced to
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Equation (4.2d ) implies that const¯ 0, and the solution to (4.3) becomes

χ
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¯A(r) exp²[iU(r)V(r)] t´B(r) exp²[iU(r)®V(r)] t´, (4.4)

where A(r) and B(r) are determined by the initial conditions. Evidently, the first term
in (4.4) grows exponentially (the baroclinic component V(r) of the flow is assumed
positive) which means instability. In contrast to harmonic disturbances, the growth
rate

Imω¯V(r)
and azimuthal phase speed

Reω

n
¯U(r)

of disturbance (4.4) depend on the spatial coordinate r !
We conclude that the non-existence of harmonic normal modes does not guarantee

(at least, in this case) the non-existence of exponentially growing disturbances.

5. Discussion

(i) We have demonstrated that large-amplitude geostrophic vortices are unstable
with respect to disturbances with n¯ 1. It should emphasized, however, that the first
azimuthal mode is not necessarily the fastest growing. In fact, there is numerical
evidence (see below) that the instability is dominated by short disturbances.
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(ii) It is worth noting that the asymptotic equations (2.2) are also applicable to quasi-
geostrophic (small-amplitude) motion with spatial scale much larger than the
deformation radius. Accordingly, we conclude that large-scale quasi-geostrophic
vortices are also unstable, which agrees with conclusions of Helfrich & Send (1988) and
Flierl (1988).

(iii) Observe that, in principle, disturbance (4.4) can be made harmonic. Indeed,
choosing a point r¯ r

!
such that V(r

!
)1 0, we put

A(r)¯ δ(r®r
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), B(r)¯ 0,

where δ(r) is the Dirac delta-function. Equation (4.4) then becomes
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This solution, however, has infinite energy and therefore does not satisfy conditions
(4.1c). Nevertheless, we can use (5.1) in rewriting solution (4.4) as a Fourier integral :

χ
r
¯&

¢

!

A(r
!
) δ(r®r

!
) exp²[iU(r

!
)V(r

!
)] t´dr

!

&
¢

!

B(r
!
) δ(r®r

!
) exp ²[iU(r

!
)®V(r

!
)] t´dr

!
.

This equality shows that an arbitrary disturbance of the first azimuthal mode (n¯ 1)
can be represented by a superposition of ‘elemental ’ disturbances localized in
infinitesimal ‘rings ’ of radius r

!
.

(iv) Equation (5.1) may also be interpreted as an eigenfunction of the continuous
spectrum similar to that of Rayleigh’s equation (describing plane Poiseuille flow, e.g.
Dikiy 1976). Both have δ-function irregularities and both correspond to critical levels.
The only difference is that, in the problem at hand, the critical levels occur at complex
values of the phase velocity and therefore cause instability.

(v) It should be mentioned that disturbances like (4.4), with growth rates depending
on spatial coordinates, are by no means new: similar solutions have been examined by
Orr (1907) and Boyd (1983) for unbounded Couette flow, by Farrel (1982, 1984, 1985,
1989) for baroclinic flows, by Farrel (1987) for barotropic flows, and by Farrel (1988),
Gustavsson (1991) and Butler & Farrel (1992) for Poiseuille flow. It was demonstrated
that there exists a large class of non-modal disturbances that can grow to finite
amplitudes within the framework of linearized equations. Although these disturbances
eventually decay, the transient amplification can be very vigorous (by a factor of 1000)
and can ‘destroy’ the flow through nonlinear effects (neglected by the linearized
theory).

The difference between the ‘ transient ’ disturbances considered in the above-
mentioned papers and solution (4.4) is that the latter keeps growing at tU¢ and never
decays.

It is interesting to speculate on what is the equivalent of (4.4) and (5.1) within the
framework of the exact primitive equations. There seems to be three possibilities :

(a) Equation (5.1) may correspond to a ‘normal’ (square-integrable) unstable
eigenmode with spatial scale much smaller than the radius of the vortex (similar
examples for parallel flows were examined by Killworth 1980).

(b) The linearized primitive equations may admit a non-modal solution similar to
(4.4) (i.e. one that exponentially grows at tU¢ and never decays).

(c) Equation (4.4) may correspond to a ‘transient ’ solution (i.e. one that grows for
a long time, but eventually decays).
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Possibility (a) implies that Dewar & Killworth (1995) missed some of the
eigenfunctions of the linearized primitive equations, which seems unlikely. Possibility
(b) seems unlikely because the primitive equations describe free gravity waves, which
would not stay on the infinitesimal ‘ring’ corresponding to the δ-function irregularity.
Thus, possibility (c) seems to be the only probable one. We note that, whichever
possibility is true, all geostrophic vortices are unstable anyway (with respect to either
modal or non-modal disturbances).

6. Ageostrophic vortices in a two-layer fluid

In §5 we have demonstrated that all geostrophic vortices are unstable. The inevitable
conclusion to be drawn is that stable vortices, if any, must be ageostrophic or,
equivalently, must be of radius comparable to the deformation radius (see constraint
(2.9)). In this case, however, we cannot use our asymptotic equations (2.15), and no
analytic results were obtained for ageostrophic vortices. Instead, we examined them
numerically for the (simplest) case of two-layer stratification. Since the normal-mode
analysis cannot be relied upon in our case (as demonstrated in §4), we simulated the
evolution of vortices using the primitive equations. Apart from modelling ageostrophic
vortices, we tried to verify the analytic solution (4.4) for geostrophic vortices – which,
however, turned out to be impossible (see §5, point (iv)).

We used the following non-dimensional variables :
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which are typical for the open ocean at mid latitudes (say, 30°).
In terms of the non-dimensional variables, the two-layer primitive equations are

(asterisks omitted)
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(6.2)

The initial conditions for the vortex are discussed in Appendix B, §B.1. Roughly
speaking, a steady vortex is determined by three main parameters : the effective radius
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Run no. r
!

A
"

A
#

α

1 5 0.17 0 0.027 Unstable
2 5 ®0.17 0 0.023 Unstable
3 5 0.187 0.017 0.029 Unstable
4 5 ®0.017 ®0.017 0.024 Unstable
5 2.5 0.17 0 0.028 Unstable
6 2.5 ®0.17 0 0.020 Unstable
7 1.5 0.17 0 0.034 Stable
8 1.5 ®0.17 0 0.020 Unstable
9 1 ®0.17 0 0.017 Unstable

10 0.5 ®0.17 0 0.012 Unstable

T 1. Parameters of the two-layer vortices simulated using primitive equations: r
!

is the non-
dimensional radius of the vortex (scaled by the deformation radius R

d
based on the total depth of the

ocean); A
",#

are the non-dimensional amplitudes of the pressure anomalies ; α is the non-dimensional
amplitude of the disturbance.

r
!
and the amplitudes A

",#
of the pressure anomalies in the layers (the amplitude of the

displacement of the interface is given by ∆h
"
¯A

"
®A

#
). The ‘background’ ocean is

characterized by a single parameter, the mean depth h
"b

of the upper layer.
The initial condition for the disturbance superposed on the vortex is discussed in

Appendix B, §B.2. Generally, it was 10 times weaker than the flow of the vortex.
Equations (6.2) were simulated using the pseudospectral method with Fourier series

and a tenth-order high-wavenumber filter. The time derivatives were evaluated using
the fourth-order Runge–Kutta scheme. In order to control the accuracy, we monitored
conservation of the extreme values of potential vorticity in each layer and the net
energy and mass. The simulations were run for 123.2 days, or as long as the error in
potential vorticity stayed under 5%. The errors in conservation of net energy and mass
were always below 0.1%. In most cases, the resolution of 512¬512 gridpoints had to
be used, but for smaller vortices, it was sufficient to use 256¬256 gridpoints.

6.1. Results

Ten initial-value simulations of vortices of various radii and amplitudes were
performed on a Cray J90 – see table 1. The physical characteristics of the vortices
(calculated using the values of H

!
, f and R

d
determined by (6.1)) are given in table 2.

In all our simulations, we used the following non-dimensional values of the mean depth
of the upper layer and the amplitude of the interfacial displacement:

h
"b

¯ 0.25, ∆h
"
¯³0.17.

This means that the upper layer was four times thinner than the total depth of the
ocean, and the displacement of the interface was 68% of the depth of the active layer.
Given (6.1), this corresponds to

h
"b

* ¯ 1 km, ∆h
"
* ¯³680 m.

(∆h
"
* seems too large, but that is what we had to assume to obtain the ‘correct ’

(typical) values of the swirl velocity of oceanic rings.) Runs 5–8 were intended to model
moderate to strong (but not the strongest) oceanic rings, whereas runs 1–4 and 9–10
are included to illustrate how an increase or decrease in the vortex’s radius affects its
stability.
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Run no. Core Ro
max

r
!
* (km) r

u* (km) u
max* (m s−") T

turn
(days)

1 Cold 0.028 300 175 0.20 63 Unstable
2 Warm 0.026 300 175 0.20 63 Unstable
3 Cold 0.031 300 175 0.23 56 Unstable
4 Warm 0.028 300 175 0.22 58 Unstable
5 Cold 0.119 150 86 0.43 14 Unstable
6 Warm 0.096 150 88 0.38 17 Unstable
7 Cold 0.438 90 48 0.89 4 Stable
8 Warm 0.247 90 54 0.58 7 Unstable
9 Warm 0.480 60 38 0.78 3 Unstable

10 Warm 1.327 30 19 1.10 1 Unstable

T 2. Physical parameters of the two-layer vortices simulated using primitive equations: Ro is the
Rossby number based on the maximum velocity shear at t¯ 0; r

!
* is the radius where the interfacial

displacement decays by the factor 10; r
u* is the radius of maximum velocity ; u

max* is the maximum
velocity ; T

turn
is the turnaround time.

Figure 1 shows the evolution of warm- and cold-core vortices with r
!
¯ 5 and

confirms our analytic result that geostrophic vortices are unstable.
The vortices shown in figure 2 are of the same vertical shear as those in figure 1, but

have a weak co-rotating circulation in the lower layer. The fact that the co-rotating and
non-co-rotating vortices are unstable approximately to the same extent suggests that
co-rotation in the lower layer does not inhibit instability (see more on this below).

Figure 3 shows the evolution of warm- and cold-core vortices with r
!
¯ 2.5, which,

however, can still be treated as geostrophic (RoE 0.1, see table 2). Observe that the
instability does not reduce the vortices to ‘rubble ’ (which it did in the previous two
cases), but just breaks them up into several, apparently stable, smaller eddies.

Figure 4 shows the evolution of warm- and cold-core vortices with r
!
¯ 1.5. The

warm-core vortex is evidently stable, whereas the cold-core vortex is still unstable. We
emphasize that this behaviour does not contradict our analytical conclusions, which
predict that some (but not necessarily all ageostrophic vortices may be stable.
Moreover, the two separate eddies ‘produced’ by the instability of the warm-core
vortex eventually merge and form a stable vortex of about the same radius as the
original one, although apparently of a different profile.

In order to pinpoint the stability threshold, we performed simulations for warm-core
vortices with radii in between r

!
¯ 1.5 and r

!
¯ 2.5. The results suggest that the

stability occurs for vortices with r
!
C 2, i.e. RoC 0.3.

We also ran several simulations for smaller cold-core vortices (their warm-core
counterparts do not exist due to the limitation imposed by the cyclostrophic condition
– (see Appendix B, §B.1). The evolution of the vortex with r

!
¯ 1 was very similar to

that of the cold-core vortex with r
!
¯ 1.5, but the vortex with r

!
¯ 0.5 behaved

somewhat differently. The two smaller eddies which split from it – in contrast to the
previous two cases – did not merge, but stabilized and steadily rotated around each
other (see figure 5a).

Finally, in order to emphasize the importance of high accuracy in the simulation of
vortex instability, we performed a lower-resolution (128¬128 gridpoints) simulation
of the warm-core vortex with r

!
¯ 0.5. Although the computational error in this run

was relatively low (9.9%), it looks both quantitatively and qualitatively different from
the higher-resolution (256¬256 gridpoints) run – compare figures 5(a) and 5(b). Apart
from the wrong positions of the eddies which split from the original vortex, the lower-
accuracy simulation shows that these eddies eventually merge!
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(a)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days 123.2 days

(b)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days 123.2 days

F 1. Evolution of the vortices with r
!
¯ 5 (for dimensional parameters see table 2,

runs 1 and 2) : (a) warm-core vortex, (b) cold-core vortex.
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(a)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days

(b)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days 123.2 days

F 2. Evolution of the vortices with r
!
¯ 5 and co-rotation in the lower layer (for dimensional

parameters see table 2, runs 3 and 4) : (a) warm-core vortex, (b) cold-core vortex.
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(a)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days

(b)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

F 3. Evolution of the vortices with r
!
¯ 2.5 (for dimensional parameters see table 2,

runs 5 and 6) : (a) warm-core vortex, (b) cold-core vortex.

6.2. Discussion

In addition to the above figures (which provide a good qualitative description of the
instability), we also ‘measured’ the following quantitative characteristic :

µ(t)¯
net kinetic energy of the upper layer

total net kinetic energy
. (6.4)
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(a)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days 123.2 days

(b)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days 112.0 days 123.2 days

F 4. Evolution of the vortices with r
!
¯ 1.5 (for dimensional parameters see table 2,

runs 7 and 8) : (a) warm-core vortex, (b) cold-core vortex.
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(a)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days

(b)

0 days 11.2 days 22.4 days 33.6 days

56.0 days 67.2 days 78.4 days44.8 days

100.8 days89.6 days

F 5. Evolution of the cold-core vortex with r
!
¯ 0.5 (for dimensional parameters see table 2,

run 10) : (a) high-resolution run, (b) low-resolution run.
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1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120

t (days)

l

1
2

F 6. Comparison of vortices with co-rotation in the lower layer (curve 1), and vortices without
co-rotation in the lower layer (curve 2). For the definition of µ, see (6.4). For dimensional parameters
of the vortices, see table 2, runs 2 and 4.

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120

t (days)

l

1

2

F 7. Comparison of warm-core vortices (curve 1), and cold-core vortices (curve 2).
For dimensional parameters of the vortices, see table 2, runs 1 and 2.

This parameter will be used as an indicator of instability : if it changes, the instability
is clearly taking place.

(i) µ was used to illustrate our conclusion that co-rotation in the lower layer does
not inhibit instability. Figure 6 shows that the unstable disturbances on the co-rotating
vortex develop slower than those on the non-co-rotating vortex only at the initial stage
of instability (which agrees with the predictions of the linear theory of Dewar &
Killworth 1995). When the disturbances grow to a certain amplitude, the instability of
the co-rotating vortex catches up with that of the non-co-rotating vortex, and even



156 E. S. Benilo�, D. Broutman and E. P. Kuznetso�a

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120

t (days)

l

1

2

3

4

5

F 8. Comparison of cold-core vortices of different radii : r
!
¯ 5 (curve 1), r

!
¯ 2.5 (curve 2),

r
!
¯ 1.5 (curve 3), r

!
¯ 1 (curve 4), r

!
¯ 0.55 (curve 5). For dimensional parameters of the vortices,

see table 2, runs 2, 6 and 8–10. The black circle indicates that the corresponding simulation exceeded
the accuracy threshold (5%).

becomes stronger. In any case, one way or the other, the difference between the two
vortices is very slight.

(ii) It is interesting to compare the growth rates of instabilities of warm- and cold-
core vortices (of the same radii and amplitudes). It turns out that, in all cases where
both vortices were unstable, the cold-core vortex was marginally more unstable than
its counterpart – see figure 7.

(iii) It is also interesting to compare the growth rates of instabilities of vortices
of the same ‘sign’ but different r

!
. The evolution of µ for cold-core vortices with

r
!
¯ 0.5–5 is shown in figure 8. The features worth observing are:
(a) one can clearly see that the case where the instability reduces the original vortex

to a turbulent patch is the odd one out – in all other cases the vortex breaks up into
several smaller stable eddies (compare graph 1 with graphs 2–5) ;

(b) the instability of the smallest vortex r
!
¯ 0.5 takes place almost exclusively in the

upper layer ;
(c) the shorter the vortex, the faster the instability.

It should be emphasized, however, that the last conclusion holds only if the time is
measured in the absolute terms. If we redraw each graph in figure 8 for t scaled by the
turnaround time of the corresponding vortex (see table 2), this conclusion will change
to the opposite : smaller vortices require a lot more turnarounds to break apart.

(iv) Figure 9 shows the evolution of the Rossby number defined as

Ro(t)¯max 9¥u(x, y, t)

¥y :
for the warm- and cold-core vortices with r

!
¯ 5. Observe that in both cases the Rossby

number grows with time. This indicates that the instability of geostrophic vortices
takes place at wavelengths that are shorter than the radius of the vortex. There are
three different aspects to this important conclusion.
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0.3

0.4

0.2

0 20 40 60 80 100 120

t (days)

Ro

1

2
0.1

F 9. Evolution of the Rossby number of the vortices with r
!
¯ 5 for warm-core vortices

(curve 1) and cold-core vortices (curve 2). For dimensional parameters of the vortices, see table 2,
runs 1 and 2.

(a) First, it is in apparent contradiction with (4.4), which predicts instability on the
scale of the vortex. In order to resolve the discrepancy, we note that (4.4) is just a
particular solution with n¯ 1. Clearly, short disturbances (with n( 1) can also be
unstable, which, in fact, agrees with a similar result for parallel flows (where the spatial
scale of instability is comparable to the deformation radius – see Benilov & Reznik
1996).

(b) It should also be noted that the generation of short disturbances violates the
applicability condition (2.9) of the asymptotic system (2.15) used in the analytical part
of this paper. Thus, (2.15) only allows us to establish the fact of instability (with respect
to long, geostrophic disturbances), but provides no means of investigating the long-
term evolution of the unstable vortices (which is dominated by short waves). The latter
task requires use of the primitive equations.

(c) Finally, the short-wave character of the instability explains why we have been
unable to observe the analytic solution (4.4) in numerical simulations of geostrophic
two-layer vortices. Given that short waves grow faster than the smooth component of
the disturbance (described by (4.4)), the latter is virtually invisible in the solution. No
matter how we filtered the initial condition, the numerical error always contaminated
the simulation with short disturbances. We also tried to filter those continuously
(which, in fact produced a reasonable agreement with the analytical solution), but this
filtering also affected the accuracy, which made the results untrustworthy.

7. Conclusions

(i) Physically, our main result is the demonstration of instability of all geostrophic
large-amplitude vortices on the f-plane regardless of their profile or stratification. We
conclude that, theoretically, an oceanic ring may be stable only if it is ageostrophic (i.e.
if its effective radius is of the order of the deformation radius). The stabilization occurs
for vortices with Rossby number of the order of 0.3. For comparison, Olson (1991)
reported rings with Ro as large as 0.77.
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(ii) Our second conclusion is a methodological one: normal-mode analysis may not
be representative, in some cases, of the stability properties of vortices. We have
demonstrated that the normal-mode boundary-value problem, describing harmonic
disturbances on a geostrophic vortex, has no smooth finite-energy solutions (stable or
unstable). At the same time, the initial-value problem for non-harmonic disturbances
does have an exponentially growing solution (the growth rate depending on the spatial
variables). It is possible, however, to reduce such a solution to a harmonic disturbance,
but the latter will have a δ-function singularity.

Finally, we should make it clear that conclusion (ii) was obtained using an
asymptotic set of equations, which describes geostrophic disturbances on a geostrophic
vortex (i.e. the wavelength of the former and the radius of the latter were assumed to
be large in comparison with the deformation radius). It is not clear if the non-harmonic
disturbances exist within the framework of the exact primitive equations.

This work was supported by Large Grant No. A39530698 of the Australian
Research Council. We are grateful to Referee A for two valuable remarks and to
Referee B, who drew our attention to transient modes.

Appendix A. Non-existence of stable solutions to equations (4.1) with V(r)10

We multiply (4.1a) by the complex conjugate of χ and integrate by parts with respect
to r over (0,¢). Using (4.1b, c) and substituting (2.22), we obtain

&
¢

!

[(nU®ω)#n#V #] [r$ rχ
r
r#(n#®1) r rχr#] dr¯ 0. (A 1)

Clearly, ω may not be real for n& 1.
Observe that this conclusion implies that

V(r)1 0.

Indeed, let us assume that there exists a point r¯ r
!
such that the baroclinic component

of the flow vanishes: V(r
!
)¯ 0. It can be readily demonstrated that, if

ω¯ nU(r
!
),

the eigenfunction may be singular

χ¯
const

r®r
!

O(1),

and the integral in (A 1) diverges, which makes it invalid.

Appendix B. Initial conditions for numerical simulation of two-layer
vortices

It is convenient to split the initial condition into two parts corresponding to the
vortex and disturbance:

u
j
¯ ua

j
u!

j
, �

j
¯ �a

j
�!

j
, h

j
¯ ha

j
h!

j
at t¯ 0, (B 1)

where the bars}primes correspond to the vortex}disturbance.

B.1. Vortex

The most common type of vortex considered in the literature is the Gaussian vortex:

ha
"
¯ h

"b
∆h

"
exp(®γr#), (B 2)
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where h
"b

is the unperturbed depth of the upper layer, ∆h
"

is the amplitude of the
interfacial displacement, and γ characterizes the radius of the vortex. We shall define
the radius r

!
as the distance over which the amplitude of the vortex drops by the

factor 10:
γr#

!
¯ ln 10,

after which (B 2) becomes

ha
"
¯ h

"b
∆h

"
exp 9®(ln 10) 0 r

r
!

1#: . (B 3)

It turns out, however, that the Gaussian profile limits severely the amplitude of possible
warm-core eddies. In order to illustrate this, we shall first consider the simplest case of
vortices localized in the upper layer :

p
#
¯ 0.

The swirl velocity s
"
(r) in the upper layer satisfies the cyclostrophic relation

dh
"

dr
¯ s

"


1

r
s#
"
,

and, in order to guarantee that s is real for all r, dh
"
}dr must satisfy

r4
dh

"

dr
" 0 for all r. (B 4)

This condition severely restricts the allowable amplitude of vortex (B 3) :

∆h
"
!

r#
!

8 ln 10
.

Assuming that r
!
¯ 1 (given (6.1), this amounts to r

!
* ¯ 60 km, where r

!
* is the

dimensional radius of the vortex), the maximum amplitude of a moderate-size warm-
core Gaussian eddy localized in the upper layer, in an ocean 4 km deep, is just 217 m.

In order to model large-amplitude vortices, we used the following profile :

pa
j
¯

A
j

11.23(r}r
!
)%

exp 9®1.50 0 r

r
!

1#: , (B 5)

where A
j
( j¯ 1, 2) are the amplitudes of the pressure anomalies in the layers. The depth

of the interface is given by

ha
"
¯ h

"b


∆h
"

11.23(r}r
!
)%

exp 9®1.50 0 r

r
!

1#: , (B 6)

where ∆h
"
¯A

"
®A

#
. The swirl velocities sa

"
and sa

#
are assumed to satisfy the condition

of cyclostrophic balance:

dpa
j

dr
¯ sa

j


1

r
sa #
j
. (B 7a)

Then, the components of the Cartesian velocities are determined by

ua
j
¯®sa

j
sinφ, �a

j
¯ sa

j
cosφ. (B 7b)

Formulae (B 5)–(B 7) determine the initial condition for the vortex.
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F 10. Comparison of the Gaussian vortex with vortex (B 6), (B 7) : (a) displacement of the
interface, (b) swirl velocity in the upper layer.

In order to compare the Gaussian vortex with the vortex given by (B 6), (B 7), we
assume that the latter has no flow in the lower layer and plot the interfacial
displacement and swirl velocity of the two vortices for

r
!
¯ 1.5, A

"
¯ 0.12, A

#
¯ 0

(see figure 10). One can see that the profiles of the interfacial displacements of the two
vortices are fairly similar – see figure 10(a). The swirl velocity profiles, in turn, are
different : the inner slope of vortex (B 6), (B 7) is less steep (see figure 10b), which
allows it to reach a bigger amplitude before the velocity field becomes complex. For
example, the limiting amplitude of warm-core vortex (B 6), (B 7) of radius 60 km and
no flow in the lower layer, in an ocean 4 km deep, is 336 m (recall that the
corresponding value for the Gaussian vortex is only 217 m).
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B.2. Disturbance

Observe that allowable initial conditions for equations (6.2) must satisfy

¥
¥x

(u
"
h
"
u

#
h
#
)

¥
¥y

(�
"
h�

#
h
#
)¯ 0, (B 8)

which follows from (6.2) (physically, (B 8) is a result of incompressibility of the fluid
and its boundedness by horizontal rigid planes). The simplest way to ensure the validity
of (B 8) is to introduce the barotropic streamfunction Ψ :

u
"
h
"
u

#
h
#
¯®

¥Ψ
¥y

, �
"
h
"
�

#
h
#
¯

¥Ψ
¥x

. (B 9)

As before, it is convenient to split the initial condition for Ψ into the vortex and
disturbance parts :

Ψ
j
¯Ψ{

j
Ψ!

j
at t¯ 0. (B 10)

Substituting (B 1) and (B 10) into (B 9), and taking into account that

ua
"
ha
"
ua

#
ha
#
¯®

¥Ψ{

¥y
, �a

"
ha
"
�a

#
ha
#
¯

¥Ψ{

¥x
,

we obtain

u!

"
ha
"
ua

"
h!

"
u!

#
ha
#
ua

#
h!

#
¯®

¥Ψ «
¥y

,

�!
"
ha
"
�a

"
h!

"
�!

#
ha
#
�a

#
h!

#
¯

¥Ψ «
¥x

.

5

6

7

8

(B 11)

We assume, for simplicity, that the interface and the lower-layer flow are not initially
perturbed:

h!

"
¯ 0, u!

#
¯ 0, �!

#
¯ 0. (B 12)

(It can be demonstrated that at t" 0 the disturbance immediately penetrates the lower
layer.) Thus, (B 11) yields

u!

"
¯®

1

ha
"

¥Ψ «
¥y

, �!
"
¯

1

ha
"

¥Ψ «
¥x

. (B 13a)

We used the following expression for Ψ « :

Ψ «¯α(ha
"
®h

"b
) ha

" 0cos
2πx

r
!

®cos
2πy

r
!

1 , (B 13b)

where the factor α(ha
"
®h

"b
) ha

"
(α is a small number) guarantees that the disturbance is

weaker than the vortex at all points). α was chosen such that the velocity of the
disturbance would be 10 times weaker than that of the vortex:

max u«
max ua

¯ 0.1.

Typically, α was in the range 0.01–0.04 (see table 1).
Formulae (B 12)–(B 13) determine the initial condition for the disturbance. It can be

demonstrated that it contributes to all azimuthal modes and is thus sufficient to
comprehensively test the stability of the vortex.
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