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This work examines free-surface flows down an inclined substrate. The slope of
the free surface and that of the substrate are both assumed small, whereas the
Reynolds number Re remains unrestricted. A set of asymptotic equations is derived,
which includes the lubrication and shallow-water approximations as limiting cases
(as Re→ 0 and Re→∞, respectively). The set is used to examine hydraulic jumps
(bores) in a two-dimensional flow down an inclined substrate. An existence criterion
for steadily propagating bores is obtained for the (η, s) parameter space, where η is
the bore’s downstream-to-upstream depth ratio, and s is a non-dimensional parameter
characterising the substrate’s slope. The criterion reflects two different mechanisms
restricting bores. If s is sufficiently large, a ‘corner’ develops at the foot of the
bore’s front – which, physically, causes overturning. If, in turn, η is sufficiently small
(i.e. the bore’s relative amplitude is sufficiently large), the non-existence of bores is
caused by a stagnation point emerging in the flow.

Key words: interfacial flows (free surface), wave breaking

1. Introduction
Liquid films and shallow flows are often examined in the limit where the Reynolds

number Re and the slope ε of the free surface are both small, in which case the
problem can be simplified using the lubrication approximation (LA). In particular,
the LA was applied to hydraulic jumps (bores) developing in flows down an inclined
substrate when the upstream depth h− exceeds the downstream depth h+ (Benney
1966; Mei 1966; Homsy 1974; Lin 1974; Bertozzi & Brenner 1997; Bertozzi et al.
1998, 2001; Bertozzi & Shearer 2000; Chang & Demekhin 2002; Mavromoustaki,
Matar & Craster 2010). Note that, in all lubrication models, solutions describing
steadily propagating bores exist for all values of h± and the substrate’s inclination
angle α.

A different situation has been reported for bores with an order-one slope of the
free surface (but still small Re): if α is sufficiently large and/or h+/h− is sufficiently
small, all bores overturn and no steady solution exists (Benilov & Lapin 2011, 2015;
Benilov 2014). A similar conclusion has been drawn for flows on the inside of a
horizontal rotating cylinder (Benilov, Lapin & O’Brien 2012). Note, however, that
the small-Re assumption used to obtain these results restricts their applicability to
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FIGURE 1. The setting: a hydraulic jump (bore) on an inclined plate.

small-scale phenomena. Medium/large-scale flows, such as sufficiently deep rivulets
or flash floods in rivers, usually have Re & 1.

The present paper examines liquid films and flows with a small slope of
the free surface, but an unrestricted Reynolds number. Since we are targeting
medium/large-scale phenomena, surface tension is not taken into account. A set
of asymptotic equations is derived under the sole assumption that ε� 1. In the limits
Re→ 0 and Re→∞, the set reduces to the lubrication model and Benney’s (1973)
model, respectively (the latter is an extension of the usual shallow-water ideal-fluid
model to sheared flows).

The asymptotic equations derived are used to explore hydraulic jumps (bores)
propagating in a viscous flow down a slightly inclined substrate. The attention is
focused on the existence of steady bores in the (α, h+/h−) parameters space and the
physical mechanisms eliminating them.

In § 2, we formulate the problem and derive an asymptotic model for flows with a
small slope of the free surface and unrestricted Reynolds number. In § 3, the model
is used to obtain an existence criterion for solutions describing steady bores. In § 4,
the physical aspects of the criterion are illustrated by numerical solutions. In § 5, the
results obtained are summarised and expressed in terms of measurable parameters.

2. Formulation of the problem

Consider a two-dimensional layer of liquid (see figure 1) of density ρ and kinematic
viscosity ν, on a substrate inclined at an angle α. Let the x and z axes be directed
along, and perpendicular to, the substrate. The liquid’s free surface is described by
the equation z = h(x, t), where h is the layer’s depth and t is the time. We also
introduce the parallel-to-the-substrate and perpendicular-to-the-substrate components of
the velocity, u(x, z, t) and w(x, z, t), the pressure p(x, z, t), and the acceleration due
to gravity g.

Let H be the liquid’s characteristic depth, and L and U be the spatial scale and
velocity (both in the x direction). The following non-dimensional variables will be
used:

x∗ = x
L
, z∗ = z

H
, t∗ = U

L
t, (2.1a−c)

u∗ = u
U
, w∗ = L

UH
w, p∗ = p

ρHg cos α
, h∗ = h

H
. (2.2a−d)

We assume the stream-wise pressure gradient and viscosity to be of the same order,
i.e.

Hg cos α
L

= νU
H2
. (2.3)
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The problem is governed by three non-dimensional parameters: the characteristic ratio
Re of inertia and viscosity, the slope ε of the free surface and the substrate’s non-
dimensional slope s,

Re= UH2

Lν
, ε= H

L
, s= tan α

ε
. (2.4a−c)

Note that, in the context of shallow-water theories such as ours, Re is often referred
to as the ‘reduced Reynolds number’, emphasising the fact that it is equal to the
‘standard’ Reynolds number UH/ν multiplied by the small-slope parameter H/L.

In terms of the non-dimensional variables (2.1)–(2.3), the Navier–Stokes equations
for incompressible liquids are (asterisks omitted)

Re
(
∂u
∂t
+ u

∂u
∂x
+w

∂u
∂z

)
+ ∂p
∂x
= s+ ε2 ∂

2u
∂x2
+ ∂

2u
∂z2

, (2.5)

ε2Re
(
∂w
∂t
+ u

∂w
∂x
+w

∂w
∂z

)
+ ∂p
∂z
=−1+ ε4 ∂

2w
∂x2
+ ε2 ∂

2w
∂z2

, (2.6)

∂u
∂x
+ ∂w
∂z
= 0. (2.7)

At the substrate, the no-slip, no-through-flow conditions are applied,

u= 0, w= 0 at z= 0. (2.8a,b)

At the free surface we impose the standard dynamic and kinematic conditions,

∂u
∂z
+ ε2 ∂w

∂x
−
(

2ε2 ∂u
∂x
− p
)
∂h
∂x
= 0 at z= h, (2.9)

2ε2 ∂w
∂z
− p− ε2

(
∂u
∂z
+ ε2 ∂w

∂x

)
∂h
∂x
= 0 at z= h, (2.10)

∂h
∂t
+ u

∂h
∂x
=w at z= h. (2.11)

Following numerous previous papers (see the references given in the Introduction), this
work examines the limit of small slope of the free surface, i.e.

ε2→ 0. (2.12)

The inclination angle is assumed to be comparably small, α =O(ε) – in which case
the definition of s (see (2.4)) implies

s=O(1). (2.13)

Physically, the smallness of α is required because an order-one slope of the substrate
usually gives rise to an order-one slope of the free surface (the only exception is the
limit where the elevation of the free surface is much smaller than the mean depth).
Finally, we assume

Re=O(1). (2.14)
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As seen later, this assumption includes the limiting cases Re→ 0 and Re→∞ as
well.

Now, letting ε2→ 0 in (2.6) and (2.10), we obtain

∂p
∂z
=−1, (2.15)

p= 0 at z= h, (2.16)

yielding
p= h− z. (2.17)

Using (2.17) to eliminate p in the rest of the governing equations and taking the limit
ε2→ 0, we obtain an asymptotic set of equations governing u, w and h.

Before we present these equations, however, it is convenient to reduce the number
of the parameters involved by setting

Re= 1. (2.18)

Note that this equality is applied after all small terms have been omitted from the
governing equations – hence, it does not amount to an extra assumption or cause loss
of generality. To see what it does do, substitute the definition of Re (2.4) into (2.18)
and take into account (2.3), which yields

L2 = H5g cos α
ν2

. (2.19)

Thus, (2.18) relates the non-dimensionalisation scale L to the other parameters.
Now, given (2.17)–(2.18), the limiting (ε2 → 0) form of (2.5), (2.7)–(2.9), (2.11)

becomes

∂u
∂t
+ u

∂u
∂x
+w

∂u
∂z
+ ∂h
∂x
= s+ ∂

2u
∂z2

, (2.20)

∂u
∂x
+ ∂w
∂z
= 0, (2.21)

u= 0, w= 0 at z= 0, (2.22a,b)
∂u
∂z
= 0 at z= h, (2.23)

∂h
∂t
+ u

∂h
∂x
=w at z= h. (2.24)

This asymptotic model is the basis for all results obtained in this work.
To place (2.20)–(2.24) in the context of the existing models, we mention that:

(1) The Benney (1973) model for ideal fluids can be recovered from (2.20) to (2.24)
by omitting the right-hand side of (2.20) (i.e. the viscous and inclination
terms) and the first (no-slip) boundary condition in (2.22). Asymptotically, this
corresponds to the limit Re→∞.
Note also that, if u is independent of z and

w=−z
∂u
∂x
, (2.25)

the Benny model reduces to the standard shallow-water equations.
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(2) The lubrication approximation for flows on a slightly inclined plate can be
recovered from (2.20) to (2.24) by omitting the first three (inertial) terms in
(2.20). Asymptotically, this corresponds to the limit Re→ 0.

(3) Equations similar to (2.20)–(2.24) have been used by Bohr, Putkaradze &
Watanabe (1997) for stationary, radially symmetric jumps created by a vertical
jet falling onto a horizontal substrate. Both models can be viewed as free-surface
extensions of the classical boundary layer theory (see Schlichting 1979).

3. Existence of steady bores

Hydraulic jumps (bores) are described by the following boundary conditions:

h→ h± as x→±∞, (3.1)

where h− (h+) is the liquid’s upstream (downstream) depth, such that h− > h+.
Let c be the bore’s non-dimensional speed relative to the substrate. To make the

bore steady, assume that the substrate is moving in the opposite direction with the
same speed, i.e. replace the boundary condition (2.22) with

u=−c, w= 0 at z= 0. (3.2a,b)

Now the time derivatives in equations (2.20) and (2.24) can be omitted,

u
∂u
∂x
+w

∂u
∂z
+ ∂h
∂x
= s+ ∂

2u
∂z2

, (3.3)

u
∂h
∂x
=w at z= h. (3.4)

Letting x → ±∞ in (3.2)–(3.4), (2.21)–(2.23) and applying conditions (3.1), one
obtains

u→−c+ s(zh± − 1
2 z2), w→ 0 as x→±∞. (3.5a,b)

It can be shown that the boundary-value problem (3.2)–(3.4), (2.21)–(2.23) complies
with the mass conservation law, which implies

lim
x→−∞

∫ h

0
u dz= lim

x→+∞

∫ h

0
u dz. (3.6)

Substituting into this equality the boundary conditions (3.1) and (3.5), one obtains

c= 1
3 s(h2

− + h−h+ + h2
+). (3.7)

Without loss of generality, one can set h− = 1 (which implies that the scale H used
in non-dimensionalisation (2.1)–(2.3) is the dimensional upstream depth). Thus, the
problem at hand is fully determined by two parameters: s and the downstream-to-
upstream depth ratio η (if h− = 1, then η= h+).
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3.1. The approach
A lot of information about steady bores can be extracted by examining the large-
distance asymptotics of problem (3.2)–(3.4), (2.17)–(2.20). To do so, let

u=−c+ s(zh± − 1
2 z2)+ ũ(x, z), w= w̃(x, z), h= h± + h̃(x), (3.8a−c)

where the tilded variables represent the deviations of the fields from their large-
distance limits (3.1) and (3.5). Substituting (3.8) into (3.2)–(3.4) and (2.17)–(2.20),
we linearise these with respect to ũ, w̃ and h̃. Then we let

ũ= û(z) exp(λx), w̃= ŵ(z) exp(λx), h̃= ĥ exp(λx) (3.9a−c)

and, eliminating û and ĥ, obtain

1
λ

d3ŵ
dz3
+
[

c− s
(

h±z− z2

2

)]
dŵ
dz
+ s(h± − z)ŵ= 1

s

(
d2ŵ
dz2

)
z=h±

, (3.10)

ŵ= 0,
dŵ
dz
= 0 at z= 0, (3.11a,b)

1
s

(
c− sh2

±
2

)
d2ŵ
dz2
− ŵ= 0 at z= h±. (3.12)

Equations (3.10)–(3.12) form an eigenvalue problem – or, to be precise, two problems:
one involving h− and the other involving h+. The two versions of (3.10)–(3.12) will be
referred to as the upstream and downstream problems, with their eigenvalues denoted
by λ− and λ+.

The large-distance expressions (3.8)–(3.9) comply with the boundary condition (3.1)
only if

Reλ− > 0, Reλ+ < 0, (3.13a,b)

so such eigenvalues will be referred to as ‘good’.
It turns out that the existence criterion for steady bores can be derived by counting

the ‘good’ and ‘bad’ eigenvalues of (3.10)–(3.12). In fact, it is sufficient to consider
just two particular cases.

Case 1. If the downstream problem (i.e. (3.10)–(3.12) with h+) has no ‘good’
eigenvalues, no steady bores exist.

In this case, the governing equations simply do not have solutions such that h→ h+
as x→+∞.

Next, let the downstream problem have one good eigenvalue λ+, so that the
downstream behaviour of, say, h is

h∼ h+ + ĥ exp(λ+x) as x→+∞, (3.14)

where ĥ is a constant. Asymptotic (3.14) fixes a certain global solution, and we claim
that it represents a steady bore (i.e. approaches h− as x→−∞) only if all eigenvalues
of the upstream problem are good. Indeed, even a single bad eigenvalue would drive
the solution away from h−, and there are no ‘adjustment parameters’ to eliminate its
contribution (changing ĥ→ ĥnew in (3.14) just shifts the solution along the x axis as
a whole by a distance of ln ĥ/ĥnew).
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The above argument amounts to the following claim:
Case 2. If the downstream problem has one ‘good’ eigenvalue, and its upstream

counterpart has one or more ‘bad’ eigenvalues, no steady bores exist.
In general, if the downstream (upstream) problem has n+ (m−) good (bad)

eigenvalues, and m− > n+, then no steady solutions exist.
We emphasise that Cases 1–2 should not be viewed as theorems, as they imply

certain properties of the governing equations, which we have not proved. Asymptotic
(3.8)–(3.9), for example, implies that the unknowns decay towards their limiting values
exponentially, and no other decaying solutions exist – which is, strictly speaking, only
an assumption.

Given that this work is mostly concerned with physical aspects of the bore
dynamics, few rigorous proofs are presented. Our conclusions are supported by
numerical and/or asymptotic solutions.

3.2. Properties of the eigenvalue problem (3.10)–(3.12)
In this subsection, seven propositions are formulated. The numbers of five of them
are followed by the words ‘numerical’ or ‘asymptotic’, or both, implying that the
corresponding proposition is supported by numerical and/or asymptotic evidence. The
remaining two propositions are either proved rigorously or follow from the other
propositions.

PROPOSITION 1 (Numerical, asymptotic). All eigenvalues of both up- and downstream
problems are real.

This proposition has been verified numerically (using the shooting method) by a
thorough parameter sweep of the (η, s) plane. Only real eigenvalues have been found,
and the Cauchy’s argument principle on the complex λ plane was used to make sure
that none of moderately large eigenvalues (|λ|< 500) was missed. Large eigenvalues,
in turn, were found asymptotically using the WKB method (see appendix A), and they
also turned out to be real.

PROPOSITION 2. Both up- and downstream problems with η< 1 never admit the zero
eigenvalue.

This proposition can be proved by observing that, in the limit λ→ 0, (3.10) can
be easily solved. Its solution satisfies the boundary conditions (3.11)–(3.12) only for
η= 1.

Propositions 1 and 2 imply that a finite change of η or s cannot ‘push’ a good
eigenvalue through zero and thus make it bad, or vice versa. Good eigenvalues can
only disappear (appear) by exiting through (coming from) infinity.

3.2.1. The downstream problem
PROPOSITION 3 (Numerical, asymptotic). The downflow problem has at most one

‘good’ eigenvalue.
This proposition has been verified numerically and by the WKB method. The latter

yields (see appendix A)

λ+ =π2

(
n+ 1

2

)2
[∫ h+

0

√
c− s

(
h+z− 1

2
z2

)
dz

]−2

, (3.15)

where n is an integer. Equation (3.15) is formally applicable for n� 1, but in reality
it agrees well with the numerical results for n > 3.
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FIGURE 2. The solutions of the upstream (a) and downstream (b) versions of the
eigenvalue problem (3.10)–(3.12), on the (η, s) plane. η is the downstream-to-upstream
depth ratio, s is the substrate’s non-dimensional slope. The implications for the existence
of bores are illustrated in panel (c). The solid curve in panels (b) and (c) correspond to
criterion (3.16), the dotted straight lines in panels (a) and (c) correspond to the condition
η= (√3− 1)/2. The solid curve in panel (a) corresponds to criterion (3.19), but since this
curve lies above the solid curve in panel (b), it does not affect the existence of bores.

PROPOSITION 4 (Asymptotic). If

s2 >
(2a+ − 1)1/2 + 2a+ arctan[(2a+ − 1)−1/2]

h3+(2a+ − 1)3/2a+
, (3.16)

where a+ = c/sh2
+ all eigenvalues of the downflow problem are ‘bad’.

According to Propositions 1 and 2, good eigenvalues of the downflow problem can
(dis)appear only by passing through the negative infinity. Thus, Proposition 4 can be
proved by examining the limit λ→−∞. It can be readily shown (see appendix B)
that a large negative eigenvalue exists when s2 is close to, but still smaller than,
the threshold determined by the right-hand side of (3.16). When s2 reaches the
threshold, the eigenvalue goes to negative infinity and disappears. Finally, by virtue
of Proposition 3, no more than one good eigenvalue can exist – so when it is gone,
none is left.

Proposition 4 is illustrated in figure 2(b) (where the ‘+’ indicates that this figure
applies to the downstream problem, arising as x→+∞).

3.2.2. The upstream problem
It turns out that the properties of the upstream problem depend on whether or not

η is smaller than a certain critical value,

ηcr = 1
2(
√

3− 1). (3.17)
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To understand the significance of ηcr, observe that, if η > ηcr, the upstream velocity
profile (3.5) is sign-definite. If, on the other hand, η < ηcr, a level of zero velocity z0
exists in the upstream region, i.e.

c− s(h−z0 − 1
2 z2

0)= 0, z0 ∈ (0, h−). (3.18)

PROPOSITION 5 (Numerical, asymptotic). If η>ηcr, all eigenvalues of the upstream
problem are.‘good’ except, maybe, one. The only bad eigenvalue exists if and only if

s2 >
(2a− − 1)1/2 + 2a− arctan[(2a− − 1)−1/2]

h3−(2a− − 1)3/2a−
, (3.19)

where a− = c/sh2
−.

This proposition has been verified by solving (3.10)–(3.12) numerically and
asymptotically via the WKB method (see appendix A.2). Condition (3.19) can be
verified in a similar way to its downflow counterpart (3.16) (the latter is examined in
appendix B). It turns out, however, that condition (3.19) is unimportant, as it is less
strict than (3.16). As a result, when a bad λ− emerges, all of λ+ are already bad –
so no bores exists anyway according to Case 1.

PROPOSITION 6 (Asymptotic). If

η < ηcr, (3.20)

the upflow problem has infinitely many ‘bad’ eigenvalues.
This proposition has been verified through the WKB method, which yields two

infinite sequences of eigenvalues – one going to positive infinity and the other to
negative infinity. As shown in appendix A.2, the latter (bad) eigenvalues are

λ+ =−π2

(
n+ 1

4

)2
[∫ h−

z0

√
c− s

(
h−z− 1

2
z2

)
dz

]−2

. (3.21)

Propositions 5 and 6 are illustrated in figure 2(a).

3.3. The non-existence conditions for bores
The implications of the properties of the up- and downflow problems (3.10)–(3.12) for
existence of steady bores can be summarised as follows:

PROPOSITION 7. If either of conditions (3.16) or (3.20) holds, the governing
equations (2.20)–(2.24) do not have solutions for steady bores.

This proposition is illustrated in figure 2(c), where the results presented in
figures 2(a) and 2(b) are merged.

4. Examples and discussion
Recall that all results obtained so far apply to the non-existence of steady bores

in various regions of the (η, s) plane, and it remains unclear whether they exist in
the rest of the plane. This question has been clarified numerically, with the results
suggesting that bores do exist unless there is a ‘reason’ for them not to. Numerical
results will also help us to determine the physical mechanisms eliminating bores as
steady solutions.

In what follows, we shall first rewrite the asymptotic equations (2.20)–(2.24) in
terms of the (more convenient) semi-Lagrangian variables. Then we shall present and
discuss the numerical results obtained.
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4.1. Semi-Lagrangian variables
The main difficulty when simulating free-surface flows stems from the fact that the
computational domain has an a priori unknown, moving boundary. This difficulty can
be bypassed by using semi-Lagrangian variables, such that the perpendicular-to-the-
substrate coordinate is replaced by a Lagrangian marker, whereas the parallel-to-the-
substrate coordinate remains Eulerian. These variables have been previously used by
Odulo (1979) and Zakharov (1981) for analyses of shallow-water models similar to
ours.

Let (tnew, xnew, ξ) be new variables related to the Eulerian coordinates (t, x, z) by

t= tnew, x= xnew, z= z(tnew, xnew, ξ), (4.1a−c)

with z satisfying (the subscript new omitted)

∂z
∂t
+ u

∂z
∂x
−w= 0, (4.2)

z= 0 at ξ = 0, (4.3)
z= h at ξ = 1. (4.4)

Physically, ξ is the Lagrangian marker corresponding to the Eulerian coordinate z.
Conditions (4.3)–(4.4) make the substrate and free surface correspond to ξ = 0 and
ξ = 1. Observe that (4.2)ξ=1 coincides with (2.24) – hence, the latter can be omitted.

Rewriting (2.20)–(2.23) in terms of (tnew, xnew, ξ) and taking into account (4.2), we
obtain (the subscript new omitted)

∂u
∂t
+ u

∂u
∂x
+ ∂

∂x

∫ 1

0
z′ dξ = s+ 1

z′
∂

∂ξ

(
1
z′
∂u
∂ξ

)
, (4.5)

∂u
∂x

z′ + ∂w
∂y

z′ − ∂z
∂x
∂u
∂ξ
− ∂z
∂y
∂w
∂ξ
+ ∂w
∂ξ
= 0, (4.6)

u= 0 at ξ = 0, (4.7)
∂u
∂ξ
= 0 at ξ = 1, (4.8)

where
z′ = ∂z

∂ξ
. (4.9)

Now, differentiate (4.2) with respect to ξ and add the result to (4.6), which yields

∂z′

∂t
+ ∂(uz′)

∂x
= 0. (4.10)

Equations (4.5) and (4.10) and the boundary conditions (4.7)–(4.8) govern u and z′
(w and z have been eliminated). As expected, the unknowns are to be determined in
a fixed domain, (x, ξ) ∈ (−∞,+∞)× (0, 1).

For steady solutions, (4.5) and (4.10) yield

∂

∂x

(
u2

2
+
∫ 1

0
z′ dξ

)
= s+ 1

z′
∂

∂ξ

(
1
z′
∂u
∂ξ

)
, (4.11)

u z′ = F, (4.12)
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where the function F(ξ) is, physically, the flux along the streamlines. It can be fixed
by taking the limit x → +∞. Exploiting the fact that Lagrangian markers can be
assigned arbitrarily at the ‘entrance’ of the flow, let

z= h+ξ as x→+∞ (4.13)

and thus rewrite the downstream version of (3.5) in the form

u→−c+ sh2
+(ξ − 1

2ξ
2) as x→+∞. (4.14)

Equations (4.9) and (4.12)–(4.14) yield

F= h+[−c+ sh2
+(ξ − 1

2ξ
2)]. (4.15)

Equations (4.11)–(4.12), (4.15) and conditions (4.7)–(4.8), (4.14) fully determine u
and z′.

Observe that the set of equations to be solved is of the first order in x. Hence, it
can be integrated with respect to x ‘in a single sweep’ from +∞ to −∞, with (4.14)
playing the role of the initial condition.

4.2. The numerical method
Solutions of the steady problem (4.11)–(4.12), (4.14)–(4.15) and (4.7)–(4.8) were
computed using a simple finite-difference scheme, based on a two-point implicit
approximation of the x derivative in (4.11), three-point central approximation of the
ξ derivative and the trapezoid rule for the integral. For η close to ηcr, an extra fine
mesh was used near ξ = 1. This was necessary because the solution is expected to
have the following property:

(z′)ξ=1,x=−∞→∞ as η→ ηcr. (4.16)

Equation (4.16) follows from (4.12), (4.15) and the fact that (u)ξ=1,x=−∞ → 0 as
η→ ηcr.

4.3. The results
A thorough sweep of the (η, s) plane was carried out, and solutions were found in the
whole of the region where their existence was not ruled out (see figure 2(c)). Some
typical examples of bores are shown in figure 3.

Figure 3(a) shows three bores with increasing values of the substrate’s non-
dimensional slope s, but the same upflow-to-downflow depth ratio η. One can see
that a ‘corner’ develops at the foot of the bore’s front, and the tangent there becomes
vertical. It can be assumed that, for steeper slopes, all bores overturn.

Figure 3(b), in turn, shows three bores with the same s, but decreasing values of
η (i.e. with increasing relative amplitudes). Interestingly, the free surface in this case
remains smooth no matter how close η is to ηcr. Note also that singularity (4.16) is
an artefact of the semi-Lagrangian variables, and in terms of the original Eulerian
coordinates all fields are smooth. Thus, the bores do not disappear due to a singularity
of the solution.

We shall not discuss this issue in further detail, but refer the reader to Benilov &
Lapin (2015), who examined steady bores in the limit Re�1, ε∼1. It was shown that,
in this case, bores disappear at exactly the same critical value ηcr (given by (3.17)),
due to a stagnation point emerging at x=−∞. Exactly the same effect occurs in the
present setting as well.
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FIGURE 3. Examples of steady bores: (a) a sequence of bores approaching the upper
boundary of the existence region (shown in figure 2(c)) (s= 0.4, 0.8, 1.4; η= 0.55); (b) a
sequence of bores approaching the left boundary of the existence region. The dotted line
in panel (b) corresponds to the limiting value of h+ below which no solutions exist for
the given h− (s= 0.8, η= 0.7, 0.55, 0.38).

Several other features of bores are worth observing:

(i) In the framework of the lubrication approximation (LA), steady bores exist for
all values of s and h± – which clearly contradicts our results. To explain the
contradiction, observe that the non-existence region described by condition (3.16)
corresponds to order-one Reynolds number and, thus, the LA is not applicable
there. As for the non-existence region described by condition (3.17), the LA is
applicable to its small-s part and, thus, predicts ‘ghost’ (non-existing) solutions
there. This occurs because it does not capture the essential dynamics near
stagnation points (for more details, see Benilov & Lapin 2015).
One has probably a better chance of capturing this dynamics using a model with
a more refined approximation than the LA approximation of the flow’s vertical
structure (Bohr et al. 1997; Ruyer-Quil & Manneville 2000, 2002; Weinstein
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& Ruschak 2004; Luchini & Charru 2010; Rojas et al. 2010). It would be
interesting to explore the existence of steady bores governed by these models.

(ii) Recall that our asymptotic model requires that the slope of the free surface
be small – which, clearly, does not hold near the ‘corner’ emerging when s
approaches its limiting value. Note, however, even though the computed shapes
of near-limiting solutions cannot be trusted, the (intuitively correct) tendency of
bore steepening for steeper inclines should still be.

(iii) Evidently, the solutions presented in figure 3 are monotonic (as well as all
examples computed for, but not included in, the paper) – whereas bores computed
by Bertozzi et al. (2001) and Benilov & Lapin (2011) have oscillatory structure.
To resolve the discrepancy, recall that the latter authors observed oscillatory bores
only for order-one inclination angles, whereas for slight angles the solution was
monotonic. The ripples in the solution of Bertozzi et al. (2001), in turn, were
due to capillary effects (which we neglect).

(iv) Given the above, we shall quantify the negligibility of capillary effects.
Rederiving (2.20)–(2.24) with surface tension included, one obtains (details
omitted) the following generalisation of (2.20):

∂u
∂t
+ u

∂u
∂x
+w

∂u
∂z
+ ∂

∂x

(
h− γ ∂

2h
∂x2

)
= s+ ∂

2u
∂z2

, (4.17)

with
γ = σ

ρL2g cos α
, (4.18)

where σ is the surface tension and L is the stream-wise spatial scale. The
inequality γ � 1 can be viewed as the condition that capillary effects are
negligible, and it holds for most liquids if L exceeds 4–6 mm.
Note, however, that, even if the bore’s global horizontal scale is large, the
local scale near a ‘corner’ is infinitely small. Hence, surface tension is always
important for near-limiting solutions.
In principle, capillary effects can prevent the bore from overturning, but the
results of Benilov & Lapin (2011) (obtained for the small-Re limit) suggest that,
no matter how large γ is, bores still overturn for a sufficiently steep incline.
Thus, surface tension can ‘delay’ overturning, but cannot stop it altogether.
Either way, the effect of surface tension on overturning bores is worth further
investigation.

5. Summary and concluding remarks
Thus, we have examined the existence of hydraulic jumps (bores) with a small slope

of the free surface and unrestricted Reynolds number, in a flow down an slightly
inclined substrate. Our main result is Proposition 7 in § 3.3, illustrated in figure 2(c).
We have also clarified the physical mechanisms eliminating bores (§ 4.3 and figure 3).

It is worth rewriting our main result in terms of measurable (dimensional)
parameters.

To do so, let the depth scale H be the dimensional upstream depth H−. Then use
(2.3) to express U in terms of the other parameters and substitute it and (2.19) into
the definitions of s (2.4), which yields

s2 = (H−)
3g sin2 α

ν2 cos α
. (5.1)
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The downflow-to-upflow depth ratio should also be expressed in terms of the
dimensional parameters,

η= H+
H−
, (5.2)

where H+ is the flow’s downstream depth.
Note that our results have been so far formulated as conditions of non-existence of

steady bores. Since it is more convenient to work with existence conditions, we shall
replace inequalities (3.16) and (3.20) with their opposites.

Rewriting the opposite of condition (3.16) using (5.1)–(5.2), we obtain

(H+)3g sin2 α

ν2 cos α
<
(2a+ − 1)1/2 + 2a+ arctan[(2a+ − 1)−1/2]

(2a+ − 1)3/2a+
, (5.3)

where

a+ = 1
3

[(
H−
H+

)2

+ H−
H+
+ 1

]
. (5.4)

The opposite of condition (3.20), (3.17), in turn, can be rewritten in the form

H+
H−

>
1
2
(
√

3− 1). (5.5)

Conditions (5.3)–(5.5) form the desired necessary and sufficient criterion of existence
of steady bores.

Note that our asymptotic equations (2.20)–(2.24), as well as their semi-Lagrangian
counterparts, can be readily extended to three-dimensional flows with surface tension
and bottom topography.
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Appendix A. The WKB analysis of (3.10)–(3.12)

In what follows, we assume that the solutions of the eigenvalue problem (3.10)–
(3.12) are such that (d2ŵ/dz2)z=h± 6= 0 (which has been verified numerically, through
a thorough parameter sweep of the (η, s) plane). Then, in view of the homogeneity
of the problem, we can set (d2ŵ/dz2)z=h± = 1 and, thus, rewrite (3.10)–(3.12) as (the
subscripts and hats omitted)

1
λ

d3w
dz3
+
[

c− s
(

hz− z2

2

)]
dw
dz
+ s(h− z)w= 1

s
, (A 1)

w= 0,
dw
dz
= 0 at z= 0, (A 2a,b)

1
s

(
c− sh2

2

)
−w= 0,

d2w
dz2
= 1 at z= h. (A 3a,b)
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It turns out that the solution depends on whether or not there exists a level of zero
velocity z0, such that

c− s(hz0 − 1
2 z2

0)= 0. (A 4)

z0 is, essentially, a turning point, and it gives rise to two families of solutions. One
consists of eigenfunctions that oscillate in the interval (0, z0) and are smooth in (z0, h),
with the corresponding eigenvalues being positive. The eigenfunctions from the other
family, in turn, oscillate only in (z0, h) and have λ < 0. Finally, in the absence of
the turning point, the eigenfunctions oscillate in the whole interval (0, h) and all
eigenvalues are positive.

We shall first examine flows without a level of zero velocity – i.e. upstream flows
with η>ηcr= (

√
3−1)/2 and all of the downstream flows. Then we examine upstream

flows with η < ηcr for which z0 does exist.

A.1. Flows without a level of zero velocity
Unlike the WKB solutions of second-order equations, those of the (third-order)
problem (A 1)–(A 3) include both ‘fast’ and ‘slow’ components,

w=W +w1. (A 5)

In the limit |λ| � 1, the slow component w1 satisfies the following approximation
of (A 1):

O(λ−1)+
[

c− s
(

hz− 1
2
ξ 2

)]
dw
dz
+ s(h− z)w= 1

s
, (A 6)

which yields

w1 =
[

c− s
(

hz− 1
2

z2

)]{
D+

∫ z

0

dξ
s[c− s(hξ − 1

2ξ
2)]2
}
+O(λ−1), (A 7)

where D is a constant of integration.
The fast component will be sought in the form

W =Q(z) cos
[
λ1/2

∫ z

0
P(ξ) dξ + B

]
+O(λ−1), (A 8)

where B is an undetermined constant and λ is implied to be real and positive (as
we assumed for flows without a level of zero velocity). Substituting (A 5) into the
homogeneous version of (A 1) and taking into account the zeroth and first orders of
the expansion in λ−1/2, we obtain

P= [c− s(hz− 1
2 z2)]1/2, Q= A[c− s(hz− 1

2 z2)]−5/2, (A 9a,b)

where A is an arbitrary constant.
Substitution of solution (A 5)–(A 9) into the boundary conditions (A 2)–(A 3) yields

four equations for D, B, A and λ, and it can be readily shown that, to leading order,
λ is given by (3.15).
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FIGURE 4. The eigenvalues of the downflow problem (3.10)–(3.12) versus η for s= 0.8.
The numerical solution and WKB solutions (the latter obtained in appendix A.1) are
shown in solid and dotted lines. The curves are marked by the mode number (the zeroth
mode not shown).

The asymptotic solution (3.15) is compared to the numerical solution of the exact
eigenvalue problem in figure 4. One can see that (3.15) is fairly accurate even for the
third eigenvalue (for higher eigenvalues, its accuracy can only improve).

A.2. Flows with a level of zero velocity
As mentioned above, there are two families of eigenfunctions in this case: those with
λ> 0 and those with λ< 0. The former will be examined first.

For the case λ> 0, seek a solution in the form

w=
[

c− s
(

hz− 1
2
ξ 2

)]{
D1 +

∫ z

0

dξ
s[c− s(hξ − 1

2ξ
2)]2
}
+ W +O(λ−1) if z< z0,

(A 10)

w=
[

c− s
(

hz− 1
2
ξ 2

)]{
D2 −

∫ h

z

dξ
s[c− s(hξ − 1

2ξ
2)]2
}
+O(λ−1) if z> z0,

(A 11)

where the fast component W is given by formulae (A 8)–(A 9). Substitution of (A 10)
into the boundary conditions (A 1) yields

B= 0, D1 =−Ac−9/4. (A 12a,b)

Solution (A 11), in turn, cannot satisfy both boundary conditions (A 3), which indicates
that there is a boundary layer at z = h. We shall not discuss it, however, as it does
not affect the leading-order eigenvalue (and is similar to the boundary layer at z= h
of the solution examined in appendix B).
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Observe that solutions (A 10) and (A 11) do not match at z0, as it can be shown
that

w ∼ Aλ5/12

[s(h− z0)]5/6(−y)5/4
cos

{
λ1/2

∫ z0

0

[
c− s

(
hz− 1

2
z2

)]1/2

dz− 2
3
(−y)3/2

}

+ 1
s2(h− z0)

as z→ z0 − 0, (A 13)

w∼ 1
s2(h− z0)

as z→ z0 + 0, (A 14)

where
y= [λs(h− z0)]1/3(z0 − z). (A 15)

The mismatch between (A 13) and (A 14) indicates that a boundary layer exists at z0.
To examine it, rewrite (A 1) in terms of y (which is actually the inner variable) and

keep the leading-order terms only, which yields

d3wi

dy3
− y

dwi

dy
+wi = 1

s2(h− z0)
, (A 16)

where the subscript i stands for ‘inner’. Making two successive changes of variables,
w→ f1→ f2, such that

w= yf1 + 1
s2(h− z0)

,
df1

dy
= 1

y2

df2

dy
, (A 17a,b)

one can reduce (A 16) to the Airy equation for f2. Using then the properties of the
Airy functions, one can show that all bounded solutions of the original equation (A 16)
have the following large-distance asymptotics:

wi ∼ 1
s2(h− z0)

+ c1
sin[ 14π+ 2

3(−y)2/3]
(−y)5/4

as ξ→−∞, (A 18)

where c1 is an undetermined constant. Finally, comparison of (A 18) to (A 13) yields

λ1/2
∫ z0

0

[
c− s

(
hz− 1

2
z2

)]1/2

dz=
(

1
4
+ n
)

π, (A 19)

where n> 0 is an integer. Equation (A 19) is, essentially, an expression for λ.
To find negative eigenvalues, one should ‘interchange’ expressions (A 10) and

(A 11), i.e. the fast component should be present in the region z> z0. The rest of the
calculation remains virtually the same and, instead of (A 19), it yields (3.20).

Appendix B. The derivation of condition (3.16)
As described in the main body of the paper, condition (3.16) can be obtained by

examining the values of s for which λ tends to negative infinity.
It should be emphasised that large eigenvalues do not necessarily correspond to fast-

oscillating eigenfunctions as the WKB eigenvalues do (see appendix A). Note also
that, even though the WKB eigenvalues are large, they cannot become infinitely large
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in response to a finite change of s (as can be readily verified using expressions (3.15),
(A 19) and (3.20)).

Thus, we assume that λ is large, but w(z) has non-oscillatory structure. Fast changes
in w(z) occur only near z = 0 and z = h, due to boundary layers located there (as
before, h and w are stripped of subscripts and hats).

Outside the boundary layers, the solution can be obtained by omitting the first term
in (A 1), which yields

w=
[

c− s
(

hz− 1
2

z2

)]{
D+

∫ z

0

dξ
s[c− s(hξ − 1

2ξ
2)]2
}
+O(λ−1). (B 1)

This expression coincides with the slow component (A 7) of the WKB solution, but
the two solutions involve different values of the constant of integration.

The left-hand boundary layer (near z = 0) is described by the following inner
variables:

zl = (−λ)1/2z, wl = (−λ)1/2w, (B 2a,b)

where it is implied that λ is real and negative (as any ‘good’ eigenvalue of the
downflow problem should be). In terms of variables (B 2), (A 1) and boundary
conditions (A 2) become

−d3wl

dz3
l
+ [c− (−λ)−1/2shzl +O(λ−1)]dwl

dzl
+ (−λ)−1/2shwl = 1

s
, (B 3)

wl = 0,
dwl

dzl
= 0 at zl = 0. (B 4a,b)

Seeking a solution in the form wl = w(0)
l + (−λ)−1/2w(1)

l + O(λ−1), one can readily
obtain

wl = zl

sc
+ exp(−c1/2zl)− 1

sc3/2
+ (−λ)

−1/2h
c

×
[

exp(−c1/2zl)− 1
c

+ zl

c1/2
+ z2

l exp(−c1/2zl)

3c

]
+O(λ−1). (B 5)

Matching (B 5), (B 2) to the outer solution (B 1), we obtain

D=−(−λ)−1/2 1
sc5/2

. (B 6)

The right-hand boundary layer (the one near z= h) is described by

zr = (−λ)1/2(z− h), wr = (−λ)1/2w, (B 7a,b)

and (A 1) and (A 3) become

−d3wr

dz3
r

+
(

c− sh2

2

)
dwr

dzr
= (−λ)

−1/2

s
+O(λ−1), (B 8)

wr = 1
s

(
c− sh2

2

)
,

d2wr

dz2
r

=O(λ−1) at zr = 0, (B 9a,b)
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which yields

wr = 1
s

(
c− sh2

2

)
+ (−λ)−1/2zr

s
(

c− sh2

2

) +O(λ−1). (B 10)

Matching (B 10), (B 7) to the outer solution (B 1), we obtain

√−λ= c5/2

{∫ h

0

dξ
[c− s(hξ − 1

2ξ
2)]2 − 1

}−1

. (B 11)

Recall that (B 11) has been obtained under the assumption that λ is real and negative
– hence, if ∫ h

0

dξ
[c− s(hξ − 1

2ξ
2)]2 < 1, (B 12)

eigenvalue (B 11) does not exist. Finally, using (3.7) to substitute for c and evaluating
the integral in condition (B 12), one can readily reduce (B 12) to condition (3.16), as
required.
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