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We examine two- and three-dimensional drops steadily sliding down an inclined
plate. The contact line of the drop is governed by a model based on the Navier-slip
boundary condition and a prescribed value for the contact angle. The drop is thin,
so the lubrication approximation can be used. In the three-dimensional case, we
also assume that the drop is sufficiently small (its size is smaller than the capillary
scale). These assumptions enable us to determine the shape of the drop and derive
an asymptotic expression for its velocity. For three-dimensional drops, this expression
is matched to a qualitative estimate of Kim et al. (J. Colloid Interface Sci., vol. 247,
2002, pp. 372–380) obtained for arbitrary drops, i.e. not necessarily thin and small.
The matching fixes an undetermined coefficient in Kim, Lee and Kang’s estimate,
turning it into a quantitative result.

Key words: drops, interfacial flows (free surface), thin films

1. Introduction
Given that several self-consistent, yet conflicting, models of contact lines (CLs)

exist, one can only judge them by comparing their predictions with the experimental
data. Such comparisons typically involve the predicted/measured values of the dynamic
contact angle (e.g. Le Grand, Daerr & Limat 2005; Rio et al. 2005).

It should be noted, however, that the dynamic contact angle and similar local
characteristics (with short-scale variability) are much harder to measure than global
parameters, such as, say, the velocity of a drop sliding down an inclined plate. Such
a setting, in fact, can be viewed as the simplest testbed for theoretical models of CLs,
and it indeed has been used as such by Kim, Lee & Kang (2002) and Puthenveettil,
Senthilkumar & Hopfinger (2013) to test a qualitative estimate derived in the former
paper. This estimate, however, involves an undetermined constant, hampering the
comparison with the experimental data and, thus, suggesting a need for a quantitative
theory for drops sliding down an incline.

The first such theory was obtained by Hocking (1981) for two-dimensional (2D)
thin drops described by the lubrication approximation. For the CLs he used the
Navier-slip boundary condition and the assumption that the contact angle of an
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advancing (receding) CL equals θa (θr), whereas that of a static CL can assume
any value between θr and θa. In particular, it was shown that sufficiently large
drops develop a ‘tail’ of almost uniform thickness. Once the tail has emerged,
further increases of the drop’s mass cause only an increase in the length of the tail,
whereas the drop’s velocity and amplitude (maximum thickness) remain virtually
unchanged. These conclusions have been confirmed by further studies, both numerical
and analytical, for various models of CLs (Thiele et al. 2002; Schwartz, Roux &
Cooper-White 2005; Koh et al. 2009; Savva & Kalliadasis 2013).

It should be noted, however, that 2D drops, just like many other two-dimensional
liquid structures with CLs, are unstable with respect to transverse perturbations (e.g.
Huppert 1982; Silvi & Dussan V. 1985; Jerrett & de Bruyn 1992; Bertozzi & Brenner
1997; Thiele & Knobloch 2003). As a result, 2D drops are never observed in nature.

Still, they have several important features in common with their 3D counterparts.
In particular, sufficiently large 3D drops develop tails too, and an increase of the
drop’s mass beyond a certain threshold extends the tail but leaves the drop’s amplitude
and velocity unchanged (Podgorski, Flesselles & Limat 2001; Le Grand et al. 2005;
Snoeijer et al. 2007). Thus, from a technical viewpoint, 2D drops could provide an
excellent testing ground for mathematical methods to be later used for 3D drops.

In the present paper, we consider thin drops, both 2D and 3D, sliding down an
inclined plate. The 2D case is examined under the sole assumption that the slip length
l is much smaller than the drop’s size. In the (more difficult) 3D case, we also assume
that the Bond number is small and θr = θa.

The obtained expression for the drop’s velocity is then tested against the
experiments of Kim et al. (2002). It turns out that the theoretical and experimental
results agree only for an unphysically small (subatomic) l. Given that our results
are derived from the Navier-slip model, one has to conclude that it does not hold
for glycerine, glycerine/water mixture and ethylene glycol used in the experiments
of Kim et al. (2002). Recalling also that the experimental results of Podgorski et al.
(2001), Winkels et al. (2011) and Puthenveettil et al. (2013) suggested a subatomic l
for water and mercury, one might wonder whether the list of exceptions has become
long enough to cast doubt on the actual rule.

At the same time, quite paradoxically, the theoretical dependence of the drop’s
velocity on the parameters other than l does agree with the experimental results,
implying that the Navier-slip model can still be used for applications (albeit
with an unphysically small l). This conclusion agrees with that of Limat (2014),
who claimed that, even for water and mercury, the ‘hydrodynamical model
describes. . . logarithmic profiles, correlations between angles. . . reasonably well,
but the price to be paid. . . seems to be the acceptance of an unphysical cutoff length
scale’.

The results outlined above are presented as follows: in § 2 we formulate the
problem, in §§ 3 and 4 we examine 2D and 3D drops, and in § 5 we compare our
results with those of Kim et al. (2002).

2. Formulation of the problem
2.1. The governing equations for 2D drops

Consider a drop of liquid sliding down a plate inclined at an angle α. The liquid has
density ρ, dynamic viscosity µ and surface tension σ , all of which are assumed to
be constant in this investigation. We shall first formulate the governing equation for
two spatial dimensions, so that the drop’s thickness h∗ depends on a single spatial
coordinate x∗ (with an axis directed down the plate – see figure 1).
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Drop

FIGURE 1. The setting (for the two-dimensional case): a drop sliding down an inclined plate.

This paper is concerned with drops steadily sliding with a constant velocity c∗, and
it is convenient to assume that the plate is moving in the opposite direction with a
matching velocity. In this case, the drop is stationary, and the coordinates x∗± of its
CLs are time-independent.

Let the drop’s CLs be governed by the Navier-slip boundary condition. We shall
also assume that the drop is thin and, thus, can be described by Hocking’s (1981)
lubrication equation. In application to a stationary drop on a moving plate, this
equation reduces to

−c∗h∗ +
(

h3
∗

3
+ lh2

∗

)(
σ

µ

d3h∗
dx3∗
+ ρg sin α

µ

)
= 0, (2.1)

where l is the slip length and g is the acceleration due to gravity.
We shall first assume that the advancing contact angle equals its receding

counterpart, i.e. θa = θr = θ , which corresponds to the following boundary conditions:

h∗→ 0,
dh∗
dx∗
→∓θ as x∗→ x∗±. (2.2)

Having examined this particular case, we shall briefly discuss how the results obtained
can be extended to Hocking’s (1981) general model θr 6= θa (see § 3.4).

Before non-dimensionalising the boundary-value problem (2.1) and (2.2), we note
that it does not admit any solutions for the case of perfect wettability. Mathematically,
this follows from the fact that, for θ = 0, (2.1) does not have a real solution near the
receding CL (see appendix A). Physically, the non-existence of a meaningful solution
near x= x− reflects the fact that perfectly wetting liquids cannot recede, as they always
leave behind a thin layer of liquid. Thus, the case θ = 0 will not be examined in this
work.

Now, we introduce the following non-dimensional variables:

x= x∗
X
, x± = x∗±

X
, h= h∗

H
, c= c∗

C
, (2.3a−d)

where

H =
(

σθ 3

ρg sin α

)1/2

, X =
(

σθ

ρg sin α

)1/2

, C= σθ
3

µ
. (2.4a−c)
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These particular scales have been chosen to minimise the number of non-dimensional
parameters left in the problem. It is also convenient to let

x− =−XL, x+ = 0, (2.5a,b)

where L is the drop’s non-dimensional length.
By substituting (2.3)–(2.5) into (2.1) and (2.2) and omitting the asterisks, we obtain

d3h
dx3
=−1+ 3c

h(h+ 3λ)
, (2.6)

h= 0,
dh
dx
= 1 at x=−L, (2.7)

h= 0,
dh
dx
=−1 at x= 0, (2.8)

where
λ= l

H
(2.9)

is the non-dimensional slip length. We observe that the third-order equation (2.6) is
to be solved with four boundary conditions (2.7) and (2.8). As a result, for given λ
and L, (2.6)–(2.8) determine both h(x) and c (the latter is, essentially, the problem’s
eigenvalue).

Instead of the drop’s length L, one can specify (as Hocking (1981) did) the drop’s
cross-sectional area ∫ 0

−L
h dx= A, (2.10)

and treat L as an unknown. Such an approach, however, implies mapping the a priori
unknown domain (−L, 0) into a domain with fixed boundaries. It has turned out that
solving the problem for a given L and then calculating A is simpler.

2.2. The governing equations for 3D drops
In the 3D case, the non-dimensional governing equation can be written in the form

∇

[
−chex +

(
h3

3
+ λh2

)
(ex +∇∇2h)

]
= 0, (2.11)

where ex is the unit vector directed along the x axis (down the incline), and the y
axis is implied to be horizontal and perpendicular to the x axis. Equation (2.11) can
be rewritten in a more convenient form using an auxiliary function ψ(x, y), such that

−ch+ h3

3

(
1+ ∂∇

2h
∂x

)
=−∂ψ

∂y
,

h3

3
∂∇2h
∂y
= ∂ψ
∂x
. (2.12a,b)

These equations are to be solved with the following boundary conditions:

h= 0, ψ = 0 at r = rc, (2.13a,b)

n · ∇h= 1 at r = rc, (2.14)
where r = rc is a (parametric or other) representation of the CL and n is the inward
unit normal to it. It should be noted that the boundary condition for ψ reflects the
fact that the mass flux vanishes at the CL. The 3D equivalent of condition (2.10), in
turn, is ∫∫

B
h dx dy= V, (2.15)
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FIGURE 2. Typical shapes of 2D drops (as computed using the boundary-value problem
(2.6)–(2.8) with λ= 0.001). The curves are marked with the corresponding values of the
drop length L.

where V is the drop’s volume and B is the drop’s base (i.e. the region bounded by
the curve r = rc).

2.3. Classification of drops
All results in this paper are based on the assumption that the non-dimensional slip
length λ is small. Given this, three cases can be distinguished depending on the drop’s
non-dimensional horizontal size L (and, thus, the Bond number Bo= L2):

(i) small drops, L� 1;
(ii) medium drops, λ� L∼ 1;

(iii) large drops, L� 1.

We observe that cases 1 and 2 overlap, with the non-overlapping part of the former,
L . λ, being of little physical importance (the corresponding drops are too small).
Thus, we shall only examine cases 2 and 3.

3. Two-dimensional drops
3.1. The numerical results

Before developing an asymptotic theory for the limit λ→ 0, it is helpful to compute
some typical solutions of the boundary-value problem (2.6)–(2.8) and discuss their
characteristic features.

The boundary-value problem (2.6)–(2.8) was solved numerically using the algorithm
described in appendix B. A wide range of λ and L was explored.

Figure 2 shows examples of drops of increasing lengths. One can see that, by
L≈ 5, the drop’s front assumes a certain limiting shape which remains the same for
all larger drops. One can also observe the ‘tail’ growing behind the frontal part (the
same feature was observed by Hocking (1981), Savva & Kalliadasis (2013) and, in a
slightly different formulation, by Thiele et al. (2002)).

It is instructive to plot the drop’s global characteristics (such as the velocity,
maximum thickness and cross-sectional area) as functions of the drop length – see
figure 3.
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FIGURE 3. The dependence of a 2D drop’s characteristics on its length L (as computed
using the boundary-value problem (2.6)–(2.8) with λ= 0.001): (a) the velocity c, (b) the
maximum thickness hmax, (c) the cross-sectional area A. The circled numbers in (a)
indicate the corresponding values of L; the solutions with these values are shown in
figure 2.

First, we observe that c is small, but not as small as λ (except for the smallest
drops). In fact, a more precise estimate can be made,

c=O
(

1
ln λ

)
, (3.1)

which will be confirmed by the asymptotic analysis below.
Second, for L& 5, c and hmax are effectively constant. This suggests that the length

of the tail does not affect the drop’s global characteristics. One can also see that the
tail is of virtually uniform thickness (later shown to approximately equal

√
3c), which

agrees with the virtually linear dependence of A on L for L & 5 (see figure 3c).
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A thin drop sliding down an inclined plate 81

The observed features will be used as ‘hints’ when studying the solution’s
asymptotic structure. In particular, estimate (3.1) is the basis of all of our asymptotic
results, both 2D and 3D.

3.2. Medium drops
The asymptotic structure of 2D medium drops involves an outer region and two
boundary layers near the CLs.

The left boundary layer is described by the local variables

xl = x+ L
λ

, hl = h
λ
. (3.2a,b)

In terms of (xl, hl), (2.6) and the left boundary condition (2.7) become

d3hl

dx3
l
= 3c

hl(hl + 3)
+O(λ2), (3.3)

hl = 0,
dhl

dxl
= 1 as xl→ 0. (3.4)

We need two terms of the expansion of the solution in powers of c, for which (3.3)
and (3.4) yield

hl = xl + a(1)x2 + c
[

1
2 x2

l ln xl − 1
2(xl + 3)2 ln(xl + 3)+ (3 ln 3+ 3

2

)
xl + 9

2 ln 3+ a(2)x2
]

+O(c2). (3.5)

It turns out that hl does not match the outer solution unless a(1) = a(2) = 0; hence,

hl = xl + c
[

1
2 x2

l ln xl − 1
2(xl + 3)2 ln(xl + 3)+ (3 ln 3+ 3

2

)
xl + 9

2 ln 3
]+O(c2). (3.6)

Next, the outer region is described by the unscaled variables. Accordingly, to match
(3.6) to the outer solution, the former is to be expressed in terms of (x, h) and re-
expanded in c,

h= (x+ L)+ 3c(x+ L)[ln λ− ln(x+ L)+ ln 3] +O(c2). (3.7)

Given estimate (3.1), one can see that the term 3c(x + L) ln λ (originating from the
first order of the inner solution) is now comparable to the term (x+ L) (originating
from the zeroth order). It can be further shown that higher-order corrections to (3.6)
include terms O(cn lnn xl): if expressed through the outer variables, they contribute to
the zeroth order of (3.7) and, thus, should all be taken into account when matching
to the outer solution. This property of near-CL boundary layers was first observed
by Hocking (1981), who also suggested a way of handling it (see also Voinov 1976;
Lacey 1982; Sibley, Nold & Kalliadasis 2015).

First of all, we observe that, given estimate (3.1), the O(λ2) term in (3.3) is
exponentially small and, thus, does not affect any order of our expansion (which is
carried out in powers of c). Omitting this term, we introduce

ξ = c ln xl. (3.8)

It is also convenient to replace hl with

s= hl

xl
. (3.9)
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In terms of (ξ , s), (3.3) becomes

− ds
dξ
+ c2 d3s

dξ 3
= 3

s(s+ 3e−ξ/c)
. (3.10)

Keeping in mind that e−ξ/c is exponentially small, one can readily verify that an
asymptotic solution of (3.10) can be written in the form

s= (−9ξ + f0 + cf1)
1/3 +O(c2), (3.11)

where f0 and f1 are constants of integration. Changing (ξ , s) back to (xl, hl), we obtain

hl = xl(−9c ln xl + f0 + cf1)
1/3 +O(c2). (3.12)

Re-expanding (3.12) in c and matching the result to the large-xl limit of (3.6), we
obtain

f0 = 1, f1 = 9 ln 3. (3.13a,b)

Finally, we use (3.2) to express solution (3.12)–(3.13) in terms of the unscaled
variables, and then re-expand in c (with (3.1) kept in mind), which yields

h= (x+ L)


(

1− 9c ln
1
λ

)1/3

+ 3c[− ln(x+ L)+ ln 3](
1− 9c ln

1
λ

)2/3

+O(c2). (3.14)

This asymptotics will play the role of a boundary condition for the outer solution, and
a similar condition can be derived for the right boundary layer,

h=−x


(

1+ 9c ln
1
λ

)1/3

− 3c[− ln(−x)+ ln 3](
1+ 9c ln

1
λ

)2/3

+O(c2). (3.15)

To understand the physical meaning of the asymptotics (3.14) and (3.15), rewrite, say,
the latter for dh/dx,

dh
dx
=−

(
1+ 9c ln

1
λ

)1/3

− 3c[− ln(−x)+ ln 3+ 1](
1+ 9c ln

1
λ

)2/3 +O(c2). (3.16)

This condition can be interpreted as a double-accuracy version of the Voinov–
Hocking–Cox law (Voinov 1976; Hocking 1981; Hocking & Rivers 1982; Cox 1986)
applied to the drop’s front CL. The standard leading-order Hocking law corresponds
to omitting the O(c) term on the right-hand side of (3.16).

Before solving the outer problem, it is convenient to introduce

ε= 1

9 ln
1
λ

, (3.17)
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and rewrite (3.14) and (3.15) in the form

h∼ (x+ L)


(

1− c
ε

)1/3 + 3c[− ln(x+ L)+ ln 3](
1− c

ε

)2/3

+O(ε2) as x→−L, (3.18)

h∼−x


(

1+ c
ε

)1/3 − 3c[− ln(−x)+ ln 3](
1+ c

ε

)2/3

+O(ε2) as x→ 0. (3.19)

We seek a solution of problem (2.6), (3.18) and (3.19) in the form

h= h(0) + εh(1) +O(ε2), (3.20)
c= ε[c(0) + εc(1) +O(ε2)]. (3.21)

In the zeroth order, we obtain

h(0) =− 1
6(x+M)(x+ L)x, (3.22)

where

M = 6(1+ c(0))1/3

L
(3.23)

and the drop’s leading-order velocity c(0) is related to its length L by

(1+ c(0))1/3 − (1− c(0))1/3 = 1
6 L2. (3.24)

It turns out, however, that for λ > 10−4, the leading-order results are not accurate
enough, so we shall calculate c(1).

In the next-to-leading order, (2.6) and the asymptotic boundary conditions (3.18)
and (3.19) yield

d3h(1)

dx3
= 3

h(0)2
, (3.25)

h(1) ∼ (x+ L)
−c(1) + 9c(0)[− ln(x+ L)+ ln 3]

3(1− c(0))2/3
as x→−L, (3.26)

h(1) ∼−x
c(1) − 9c(0)[− ln(−x)+ ln 3]

3(1+ c(0))2/3
as x→ 0. (3.27)

Upon substitution of expression (3.22) for h(0) into (3.25), it can be rewritten in terms
of partial fractions,

d3h(1)

dx3
= A1

x
+ B1

x2
+ A2

x+ L
+ B2

(x+ L)2
+ A3

x+M
+ B3

(x+M)2
, (3.28)

where

A1=−216c(0)(L+M)
L3M3

, A2= 216c(0)(M − 2L)
L3(M − L)3

, A3= 216c(0)(2M − L)
M3(M − L)3

, (3.29a−c)

B1 = 108c(0)

L2M2
, B2 = 108c(0)

L2(M − L)2
, B3 = 108c(0)

M2(M − L)2
. (3.30a−c)
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FIGURE 4. An illustration (for λ = 0.001, L = 11) of the asymptotic structure of the
large-drop solution. Observe the small local maximum in Zone 2. The ellipsis ‘. . .’
symbolises a (formally infinite) sequence of asymptotic zones representing alternating
minima and maxima. The shaded regions are the left and right boundary layers.

By integrating (3.28) three times and matching the resulting solution to the
asymptotics (3.26) and (3.27), we obtain, after some straightforward algebra,

c(1)

3

[
1

(1− c(0))2/3
+ 1
(1+ c(0))2/3

]
= 3(ln 3− 1)c(0)

[
1

(1− c(0))2/3
+ 1
(1+ c(0))2/3

]
+ 2(B1 + B2 + B3)− (B1 + B2) ln L

− A3M(M − L)− B3(2M − L)
L

ln
(

1− L
M

)
+ (A1 − A2)L− A3(2M − L)

2
. (3.31)

This equality relates the first-order velocity c(1) to the drop length L (we recall that
M, c(0), A1,2,3 and B1,2,3 are related to L by (3.23)–(3.24) and (3.29)–(3.30)).

The physical meaning of the asymptotic results obtained for medium drops will be
discussed in § 3.4, after large drops have also been examined.

3.3. Large drops
The case of large drops is more complicated than its medium-drop counterpart, mostly
due to the fact that it formally involves an infinite sequence of asymptotic zones. This
feature was observed for the first time in a problem examined by Wilson & Jones
(1983), and it has come up four times since then (Bowles 1995; Duchemin, Lister
& Lange 2005; Benilov, Benilov & Kopteva 2008; Benilov et al. 2010). In all four
cases, the infinite sequence of zones corresponds physically to a packet of short-scale
ripples generated by gravity and surface tension. However, only one or two of the
ripples (asymptotic zones) are typically visible in the exact solution, with the other
zones being more of a mathematical abstraction. The present case is not an exception
to this rule, as illustrated in figure 4.

Due to the similarity of (2.6) to the case examined by Benilov et al. (2008), we
shall consider only the first two zones of the sequence: the outer region (describing
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FIGURE 5. The solutions (for λ= 0.001) in the ‘tail end’ (a), in Zone 1 (b) and in the
outer region (c).

the crest of a ripple) and Zone 1 (describing a trough). The rest of the sequence
comprises alternating crests and troughs with decreasing amplitudes and widths,
rapidly converging to a uniform ‘tail’ (see figure 4). These asymptotic zones will
be examined in § 3.3.1, with the remaining two (the ‘tail end’ and the left boundary
layer) examined in § 3.3.2.

3.3.1. The drop’s front
It turns out that the velocity of a large drop is determined by the structure of the

drop’s rear. This makes the drop’s front less important, so we shall calculate its shape
with leading-order accuracy only.

The outer region is described by the ‘natural’ (non-scaled) variables (x, h). Given
that we still expect c to be small, the original (2.6) in this case reduces, to leading
order, to

d3h
dx3
=−1. (3.32)

As in the case of a medium drop, the outer region can be matched to the right
boundary layer only if we require

h= 0 at x= 0. (3.33)

The left boundary condition, however, cannot be enforced for the outer region (since
L� 1, the left boundary is too far away). It turns out that the outer solution can be
matched to the neighbouring zone to its left only if h(x) approaches the x-axis at a
zero angle, which corresponds to the following solution of (3.32) and (3.33):

h=− 1
6(x+W)2x, (3.34)

where W is the width of the drop’s ‘main body’, and it also determines the amplitude
of the drop,

hmax = 2
81 W3. (3.35)

Solution (3.34) is illustrated in figure 5(c).
The right boundary layer should be handled in the same way as it was in the

medium-drop case, which yields, at leading order,

1
6

W2 =
(

1+ 9c ln
1
λ

)1/3

. (3.36)

Given relationship (3.35) between hmax and W, this equality relates the (large) drop’s
amplitude to its velocity.
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Zone 1 is described by the local variables (x1, h1), such that

x=−W + c1/3x1, h= c2/3h1, (3.37a,b)

for which (2.6), to leading order, becomes

d3h1

dx3
1
= 3

h2
1
. (3.38)

Taking the limit x→ −W of the outer solution (3.34), one can deduce that (3.34)
matches h1(x1) only if

h1 ∼ 1
6 Wx2

1 as x1→∞. (3.39)

Next, it can be verified that h1(x1) matches the solution in Zone 2 only if it has the
following asymptotic behaviour:

h1 ∼−x1(9 ln x1)
1/3 as x1→−∞. (3.40)

The solution of the eigenvalue problem (3.38)–(3.40) was computed numerically (see
figure 5b). As mentioned before, it describes a dip in the drop’s surface, and is flanked
by two peaks: the outer region on the right and a much smaller peak on the left (in
figure 4, the latter is labelled ‘Zone 2’).

Finally, the ‘tail’ is described by the following solution of (2.6):

h= (3c)1/2 +O(λ). (3.41)

3.3.2. The drop’s rear
The ‘tail end’ (see figure 4) is described by the local variables (xe, he),

x=−L+ c1/6xe, h= c1/2he. (3.42a,b)

By rewriting (2.6) in terms of (xe, he) and keeping the leading order only, we obtain

d3he

dx3
e

=−1+ 3
h2

e

. (3.43)

To match he(xe) to the tail solution (3.41), we require

he→ 31/2 as xe→∞. (3.44)

It turns out that he(xe) matches the left boundary layer (to be examined below) only
if

he→ 0 as xe→ 0. (3.45)

The solution of problem (3.43)–(3.45) was computed numerically (see § C.2), and it
is shown in figure 5(a).

It should be noted also that, as demonstrated in § C.1, he has the following
asymptotics:

he =−xe

{
(9 ln xe)

1/3 + b
(9 ln xe)2/3

+O
[

ln(− ln xe)

ln5/3 xe

]}
as xe→ 0. (3.46)

Within the framework of this asymptotics, the constant b remains arbitrary, as it
is determined by the global solution of problem (3.43)–(3.45). The method for
computing b is described in § C.3 and it yields

b≈−0.613. (3.47)
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The left boundary layer for large drops is exactly the same as its medium-drop
counterpart, i.e. is represented by expression (3.6). To match it to the asymptotics
(3.46) of the tail end, we use (3.42) and (3.2) to deduce

xe = λxl

c1/6
, he = λhl

c1/2
. (3.48a,b)

Expressing then (3.46) in terms of (xl, hl) and taking advantage of estimate (3.1), we
obtain

hl ∼−xl(9c ln λ)1/3
(

1− ln c
18 ln λ

+ ln xl

3 ln λ
+ b

9 ln λ
+O

[
ln(− ln λ)

ln2 λ

])
. (3.49)

We also expand the dependence of c on λ,

c= c1

ln
1
λ

+ c2 ln(− ln λ)+ c3

ln2 1
λ

+O

 ln2(− ln λ)

ln3 1
λ

 , (3.50)

where c1, c2 and c3 are order-one coefficients. On substituting (3.50) into (3.49) and
(3.6), and matching these, we obtain

c1 = 1
9 , c2 =− 1

54 , c3 = 1
27(b+ 4 ln 3). (3.51a−c)

Thus, expression (3.50) becomes

c= 1

9 ln
1
λ

+ ln(− ln λ)

54 ln2 1
λ

+ b+ 4 ln 3

27 ln2 1
λ

+O
[

ln2(− ln λ)
ln3 λ

]
, (3.52)

where it should be recalled that b is given by (3.47).

3.4. Discussion
(i) The velocity of medium drops (determined by (3.21), (3.17), (3.24), (3.31)) and
that of large drops (given by (3.52)) are compared with the numerical solution of the
exact boundary-value problem (2.6)–(2.8) in figure 6. One can see that the numerical
and asymptotic results agree reasonably well, especially since the latter are based on
expansions in logarithmically small parameters.

The high accuracy of the results obtained should be attributed to the fact that c has
been calculated to the first order. The leading-order results, in turn, are not sufficiently
accurate for λ> 10−4 (see figure 6).

(ii) It is instructive to adapt the medium-drop results to the limit of small Bond
number. By assuming L2� 1 in (3.21) and expression (3.24), substituting the resulting
c(0) and c(1) into (3.31), and recalling definition (3.17) of ε, we obtain

c= 1

9 ln
1
λ

[
L2

4
+O(L6)

]
+ 1

81 ln2 1
λ

[
9
4

L2 ln
3
L
+O(L4 ln L)

]
+O

 1

243 ln3 1
λ

 .
(3.53)
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FIGURE 6. The numerical (solid line), zeroth-order asymptotic (dashed line) and first-order
asymptotic (dotted line) dependences of the velocity c of a 2D drop on its length L, for
λ= 0.001, 0.0001. The sloping and horizontal dashed/dotted lines represent the asymptotic
results for medium and large drops respectively.

10 2
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0.015

 0.020

L

c

FIGURE 7. The numerical (solid line) and first-order small-Bond-number asymptotic
(dotted line) dependences of the velocity c of a 2D drop on its length L, for λ= 0.001
and medium drops.

Figure 7 shows that, even though this expression has been formally obtained for small
L, it is reasonably accurate for L . 2.

(iii) Medium 2D drops have been examined previously by Savva & Kalliadasis
(2013) using a model similar to our (2.1), but with an extra term describing the
hydrostatic pressure gradient (which becomes important in the limit α � 1, i.e. if
the plate’s slope is small). It can be readily shown that, if α ∼ 1, our leading-order
medium-drop results agree with those of Savva & Kalliadasis (2013).
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(iv) We observe that the asymptotic results for medium/large drops (shown by
the sloping/horizontal dotted lines in figure 6) do not form a smooth junction. This
indicates that there exists an intermediate region where neither approximation works.

This ‘gap’ is a result of the requirement that the parameter M in expression (3.22)
must exceed the drop length L, otherwise the drop thickness becomes negative for
some x, as does the apparent contact angle at the rear CL. As follows from (3.22)
and (3.23), the marginal case M = L corresponds to

L= 31/222/3 ≈ 2.75. (3.54)

Thus, the medium-drop asymptotic results are valid only for L . 31/222/3. The large-
drop results, in turn, are valid for L� 1, which clearly leaves a gap where neither
approximation is applicable.

In principle, the gap can be bridged by considering several intermediate limits
(starting from L≈ 31/222/3). These limits, however, involve a large amount of tedious
algebra. Thus, since the results obtained capture the problem’s most important
qualitative features (the quadratic nature of c(L) for L � 1 and the existence of
the limiting velocity for L � 1), there seems to be little urgency in exploring the
intermediate limits.

(v) We recall that the expression for the velocity of large drops is fully determined
by matching of the tail end and left boundary layer, i.e. it is not affected by other
asymptotic zones. This comes as a surprise, as one would intuitively assume a drop’s
velocity to depend on the parameters of the advancing CL or both CLs. This feature
indicates the importance of the tail for the dynamics of large drops.

In fact, if one is concerned with the velocity of a large drop and not its shape, one
could use (2.6) with the boundary condition describing the left boundary layer,

h→ 0,
dh
dx
→ 1 as x→−L, (3.55)

and the tail end,
h→ const. as x→∞. (3.56)

For L� 1, the boundary-value problem (2.6), (3.55) and (3.56) yields c which is very
close to that of the original problem (2.6)–(2.8). For L>6 (and λ=10−3), for example,
the two values of c differ by less than 10−5.

(vi) As mentioned before, Hocking (1981) examined a more general problem, with
the boundary conditions (2.2) replaced by

h→ 0,
dh
dx
→ θr as x→ x−, (3.57)

h→ 0,
dh
dx
→−θa as x→ x+. (3.58)

Letting the parameter θ used in the non-dimensionalisation (2.3) and (2.4) be θ = (θr+
θa)/2, we can write the modified version of the non-dimensional boundary conditions
in the form

h→ 0=


dh
dx
→ θ− as x→−L,

dh
dx
→−θ+ as x→ 0,

(3.59)

where
θ− = 2θr

θr + θa
, θ+ = 2θa

θr + θa
. (3.60a,b)
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The analysis of the boundary-value problem (2.6), (3.59) is very similar to that in
the case θr = θa, and it will not be presented in detail. We shall only summarise
the leading-order results for the drop’s velocity (the next-to-leading-order ones can be
obtained in a similar fashion). For a medium drop, c(0) satisfies

(θ 3
− + c(0))1/3 − (θ 3

+ − c(0))1/3 = 1
6 L2 (3.61)

(compare this equation with (3.24), which implies θ+ = θ− = 1). For large drops, in
turn, we have

c(0) = θ−

9 ln
1
λ

. (3.62)

This expression is a generalisation of the first term in expansion (3.52).

4. Three-dimensional drops
The structure of the solution in this case is similar to that of 2D drops: it involves

the central (outer) region and a narrow boundary layer near the CL. Since the width
of the boundary layer is much smaller than the drop’s size, the boundary layer is
essentially two-dimensional. As before, we shall first neglect the hysteresis interval
(i.e. assume θr = θa), with the general case discussed briefly in § 5.2.

Thus, the exact boundary condition (2.14) can be replaced with a 3D equivalent of
the asymptotics (3.16) – such that dh/dx is replaced with −n · ∇h and c is replaced
with the projection of the drop’s velocity onto the normal vector, i.e. cn · ex,

n · ∇h =
(

1+ 9cn · ex ln
1
λ

)1/3

+ 3cn · ex[− ln(−x)+ ln 3+ 1](
1+ 9cn · ex ln

1
λ

)2/3 +O(c2) at r = rc. (4.1)

In what follows, we carry out all calculations to the leading order only, which implies
that the terms O(c) in (4.1) and the governing equations (2.12) should be omitted.
Rewriting the truncated versions of (2.12), (4.1), the boundary conditions (2.13) and
the volume condition (2.15) in terms of the polar coordinates (r, φ), we obtain

h3

3

(
cos φ + ∂∇

2h
∂r

)
=−1

r
∂ψ

∂φ
,

h3

3

(
− sin φ + 1

r
∂∇2h
∂φ

)
= ∂ψ
∂r
, (4.2a,b)

1
r

dR
dφ

∂h
∂φ
− R

∂h
∂r√(

dR
dφ

)2

+ R2

=

1+ 3ĉ

dR
dφ

sin φ + R cos φ√(
dR
dφ

)2

+ R2


1/3

at r= R(φ), (4.3)

h= 0, ψ = 0 at r= R(φ), (4.4a,b)

∫ ∞
0

∫ 2π

0
h r dr dφ = V, (4.5)
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where
ĉ= 3c ln

1
λ

(4.6)

and r = R(φ) is the polar representation of the CL. The boundary-value problem
(4.2)–(4.6) is still not simple enough to be solved analytically. We shall solve
(4.2)–(4.6) asymptotically, in the limit of small R (or, equivalently, small Bond
number).

Since small R implies that the drop’s volume V is also small, it is convenient to
introduce

δ =
(

4V
π

)1/3

(4.7)

and rescale the variables as follows:

rnew = r
δ
, φnew = φ, (4.8a,b)

hnew = h
δ
, ψnew = ψ

δ2
, Rnew = R

δ
, ĉnew = ĉ

δ2
(4.9a−d)

(observe that the scaling of ĉ implies that small drops slide slowly). Substituting (4.8)
and (4.9) into (4.2)–(4.5) and omitting the subscript new, we obtain

h3

3

(
δ2 cos φ + ∂∇

2h
∂r

)
=−1

r
∂ψ

∂φ
,

h3

3

(
−δ2 sin φ + 1

r
∂∇2h
∂φ

)
= ∂ψ
∂r
, (4.10a,b)

1
R2

dR
dφ

∂h
∂φ
− ∂h
∂r
=
√

1+
(

1
R

dR
dφ

)2

+ δ2ĉ
(

1
R

dR
dφ

sin φ + cos φ
)
+O(δ4) at r= R(φ), (4.11)

h= 0, ψ = 0 at r= R(φ), (4.12a,b)

∫ 2π

0

∫ R

0
h r dr dφ = π

4
. (4.13)

We seek a solution in the form

h= h(0) + δ2h(1) + · · · , ψ =ψ (0) + δ2ψ (1) + · · · , (4.14a,b)

R= R(0) + δ2R(1) + · · · , ĉ= ĉ(0) + · · · . (4.15a,b)

Expanding (4.10)–(4.13) to leading order, one can deduce that

R(0) = 1, h(0) = 1
2(1− r2), ψ (0) = 0. (4.16a−c)

In the next order, (4.10)–(4.13) yield

h(0)2h(1)
∂∇2h(0)

∂r
+ h(0)3

3

(
cos φ + ∂∇

2h(1)

∂r

)
=−1

r
∂ψ (1)

∂φ
, (4.17)
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h(0)3

3

(
− sin φ + 1

r
∂∇2h(1)

∂φ

)
= ∂ψ

(1)

∂r
, (4.18)

−∂h(1)

∂r
− ∂

2h(0)

∂r2
R(1) = ĉ(0) cos φ at r= 1, (4.19)

h(1) + ∂h(0)

∂r
R(1) = 0, ψ (1) + ∂ψ

(0)

∂r
R(1) = 0 at r= 1, (4.20a,b)∫ 2π

0

∫ 1

0
h(1)r dr dφ = 0. (4.21)

Seeking the solution of these equations in the form

h(1)(r, φ)= ĥ(1)(r) cosφ, ψ (1)(r, φ)= ψ̂ (1)(r) sinφ, R(1)(φ)= R̂(1) cosφ, (4.22a−c)

then taking into account expressions (4.24), and eventually eliminating R(1), we obtain

d
dr

[
1
r

d
dr

(
r

dĥ(1)

dr

)
− 1

r2
ĥ(1)
]
+ 24

r(1− r2)3
ψ̂ (1) =−1, (4.23)

1
r

[
1
r

d
dr

(
r

dĥ(1)

dr

)
− 1

r2
ĥ(1)
]
+ 24
(1− r2)3

dψ̂ (1)

dr
=−1, (4.24)

−dĥ(1)

dr
+ ĥ(1) = ĉ(0), ψ̂ (1) = 0 at r= 1. (4.25a,b)

It is convenient to introduce

F= d2ĥ(1)

dr2
+ 1

r
dĥ(1)

dr
− 1

r2
ĥ(1), (4.26)

which allows one to eliminate ψ (1) from (4.23)–(4.25) and decouple F from ĉ(0),

r2(1− r2)
d2F
dr2
+ r(1− 7r2)

dF
dr
− (1− r2)F= 7r3 − r2 − r+ 1, (4.27)

F∼ const. as r→ 1, (4.28)
F∼−1− 1

2 r ln r as r→ 0 (4.29)

and

ĉ(0) =−
∫ 1

0
r2F dr. (4.30)

The boundary-value problem (4.27)–(4.29) has been solved numerically (by shooting)
and the integral in (4.30) was evaluated to yield

ĉ(0) ≈ 0.48501. (4.31)

Recalling scaling (4.9) of ĉ, relationship (4.6) of ĉ to the non-dimensional velocity
c, definition (4.7) of δ, and non-dimensionalisation (2.3) and (2.4), we obtain for the
drop’s dimensional velocity

c∗ ≈ 0.18992
V2/3
∗ θ 4/3ρg sin α

µ ln
X
l

, (4.32)

where V∗ is the dimensional volume and X is defined by (2.4).
Expression (4.32) is the main result of the present paper.
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5. Discussion
5.1. Comparison with the results of Kim et al. (2002)

Kim et al. (2002), hereafter referred to as KLK02, examined the energy balance
of drops sliding down an inclined plate and obtained a qualitative estimate for
their velocity. As many qualitative estimates do, this one involves an undetermined
non-dimensional constant.

In what follows, this constant will be fixed by adapting the estimate of KLK02 to
the thin-drop limit and matching the result to our expression (4.32). Once the constant
is determined, it can be used in the original estimate for arbitrary drops, turning it into
a quantitative formula. This plan is best understood through an analogy with an outer
asymptotic solution involving undetermined parameters which can be fixed through
matching with the inner solution.

KLK02 obtained the following expression for the dimensional velocity:

c∗ ≈ γ ρg
µc(θ) s(θ)

V2/3
∗ (sin α− sin αc)

ln
Rb

l

, (5.1)

where γ is an undetermined constant, V∗ is the drop’s dimensional volume, αc is the
critical value of the inclination angle α (such that, for α<αc, the drop remains static),
Rb is the radius of the drop’s base and

c(θ)= 2θ sin2 θ − 1
2 sin 2θ + 1

4 sin 4θ
(sin 2θ − 2θ)2

, s(θ)= 24/3 sin θ
31/3(1− cos θ − 1

2 cos θ sin2 θ)1/3
.

(5.2a,b)
In order to adapt expression (5.1) to the case of thin drops, we observe that

c(θ)∼ 3
4θ
−1, s(θ)∼ 24/33−1/3θ−1/3 as θ→ 0. (5.3a,b)

It should be noted also that, unlike us, KLK02 assumed different values for the
advancing and receding contact angles (which is why they have αc 6= 0). The
advantages/shortcomings of the two models will be discussed later, whereas here
we simply adapt the results of KLK02 to our assumptions, i.e. set

αc = 0. (5.4)

We also assume that the ratio of Rb to our spatial scale X (defined by (2.4)) is much
smaller than the ratio of either of them to the slip length l, which implies that

ln
Rb

l
≈ ln

X
l
. (5.5)

Substitution of (5.3)–(5.5) into (5.1) yields

c∗ ≈ γ

2−2/332/3

ρg sin α

µ ln
X
l

V2/3
∗ θ 4/3. (5.6)

This expression has exactly the same dependence on the physical parameters as that of
our expression (4.32), which should be viewed as an extra validation for both results.
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Source Liquid γ

KLK02 Glycerine 1.1× 10−2

KLK02 Ethylene glycol 1.3× 10−2

KLK02 Water/glycerine mixture 1.8× 10−2

PSH13 Water 4× 10−2

PSH13 Mercury 4× 10−2

TABLE 1. The experimental values of the coefficient γ from expression (5.1) extracted
from the results of KLK02 (Kim et al. 2002) and PSH13 (Puthenveettil et al. 2013), for
various liquids.

Furthermore, comparing (5.6) with (4.32), one can deduce that

γ ≈ 0.24887. (5.7)

With γ given by (5.7), formula (5.1) becomes a quantitative result (and it is still valid
for thick drops, of course).

It is interesting to compare the theoretical value (5.7) with the experimental ones
obtained by KLK02 and Puthenveettil et al. (2013) (the latter work will be referred
to as PSH13). It should be noted that both papers assume

l∼ 10−8 m. (5.8)

The values of γ extracted from the results of KLK02 and PSH13 are presented in
table 1. We observe that the values obtained for different liquids differ from each other
by a factor of up to 3.6, and even the largest one is smaller than the theoretical value
(5.7) by a factor of more than 7. In principle, an agreement between the experimental
and theoretical results can be achieved by assuming a value of l different from (5.8),
but, practically, this does not work because l becomes unphysically small (subatomic).

We conclude that the Navier-slip model of CLs (from which our results have been
derived) does not hold for glycerine, glycerine/water mixture or ethylene glycol (used
in the experiments of Kim et al. 2002). Recalling also that Podgorski et al. (2001),
Winkels et al. (2011) and Puthenveettil et al. (2013) observed unphysically small l
for water and mercury, one cannot help wondering whether the Navier-slip model has
sound physical foundations.

At the same time, quite paradoxically, the dependence of our results on the
parameters other than l does agree with the results of Kim et al. (2002). This
conclusion agrees with that of Limat (2014), who claimed that the ‘hydrodynamical
model describes. . . logarithmic profiles, correlations between angles. . . reasonably
well, but the price to be paid. . . seems to be the acceptance of an unphysical cutoff
length scale’.

This suggests that, until a physically consistent model of CLs is developed, the
Navier-slip model (with an unphysically small l) can still be used in, say, industrial
applications.

5.2. The effect of the hysteresis interval
It should be noted that our approach (as well as that of all researchers assuming
θa= θr) implies that drops slide for all values of the inclination angle α. Experiments,
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(a) (b)

FIGURE 8. A 3D drop viewed from above (a schematic). The arrow shows the direction
of motion. (a) If all of the CL is curved, two points exist (shown by black dots) where
the contact angle changes abruptly from its receding value θr to its advancing value θa.
(b) To resolve the singularity, two straight segments should be introduced to the CL, along
which θ changes continuously from θr to θa.

on the other hand, show that, for most liquid/substrate combinations, there exists a
critical value αc such that, if α <αc, the drop remains static. This is usually attributed
to the existence of a hysteresis interval, i.e. a range of contact angles for which the
CL remains static.

This seems to imply that our results are valid only if the hysteresis interval is
narrow, and, even though such materials do exist (e.g. Glassmaker et al. 2007; Smith
et al. 2013), it is still a restriction.

Models involving hysteresis, however, are associated with a certain difficulty.
Indeed, even though they work well in two dimensions, for 3D drops they appear

to give rise to singularities at the points where the tangent to the CL is parallel to the
drop’s velocity (see figure 8a). At such points, a model with θa 6= θr implies a jump
in the value of the contact angle.

A solution to this problem has been suggested by Dussan V. & Chow (1983), who
assumed that the drop’s CL involves straight-line segments (see figure 8b) along which
the contact angle changes continuously from θa to θr, and such segments have indeed
been observed experimentally (Bikerman 1950; Furmidge 1962; Rio et al. 2005).

An alternative way to introduce a critical inclination angle consists in letting the
plate be inhomogeneous. Following this idea, Savva & Kalliadasis (2013) examined
2D drops on an inclined plate with topography and chemical inhomogeneities, and it
can be deduced from their results that inhomogeneities can make drops static, for a
sufficiently small inclination angle, even if θa = θr.

6. Concluding remarks
Thus, we have examined two- and three-dimensional drops sliding down an inclined

plate, with their sizes exceeding the slip length l. Our main result is the asymptotic
expression (4.32) for the sliding velocity c∗ of a three-dimensional thin and small drop
(where ‘small’ means ‘with a small Bond number’).

The expression for c∗ has been matched to a qualitative estimate obtained by
Kim et al. (2002) for arbitrary drops (not necessarily thin and small). The matching
fixes the undetermined coefficient involved in this estimate, transforming it into a
quantitative result for arbitrary drops.

It turns out, however, that the Navier-slip model of CLs (and, hence, our results)
agrees with the available experimental data only for an unphysically small slip length.
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Still, the dependence on all other parameters does agree with the experiments (under
the additional requirement that the drop’s Reynolds number be small). Thus, until a
physically consistent model of CLs is developed, our results (as well as the underlying
Navier-slip model) can still be used in, say, industrial applications.

Generally, given the large number of alternative models of CLs, it would be very
interesting to use them to calculate the velocity of sliding drops and compare the
results with those of the experiments. This should enable one to determine the model
that is not just useful for applications, but is also relevant physically. One such model
could be that of Shikhmurzaev (1993), for which Puthenveettil et al. (2013) obtained
reasonable values for all of the adjustable parameters involved.

Another potential extension of our results consists in introducing a hysteresis
interval, i.e. assuming θa > θr. If it is sufficiently narrow, and the Bond number
is still small, the problem can be treated using an asymptotic approach similar to
the one of this work. One can also examine drops on an inhomogeneous substrate:
the inhomogeneities (as shown for 2D drops by Savva & Kalliadasis 2013) would
produce a similar effect to hysteresis even if θr = θa.

Finally, it would be interesting to examine the effect of inertia (by assuming that
the drop’s Reynolds number is order one). It should be noted, however, that even
though it should change the global parameters of the drop, it is unlikely to affect the
local dynamics of the CL (due to the extremely small spatial scale of the processes
involved).
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Appendix A. The case of zero contact angle
There seems to exist only one kind of asymptotics of the solution of (2.1) that

corresponds to the contact angle being zero. In application to the advancing CL
(located at x= 0), it has the form

h= B(−x)3/2 +D(−x)n +O[(−x)3] as x→−0, (A 1)

where B, C and n are undetermined constants. It should be noted that the asymptotics
(A 1) is self-consistent only if

3
2 < n< 3. (A 2)

On substituting (A 1) into (2.1), we obtain

B2 = 8µc∗
3σ l

, (A 3)

n(n− 1)(n− 2)− 3
8 = 0, (A 4)

whereas D remains undetermined (it can be determined by matching the local solution
(A 1) to the global one). The cubic (A 4) can be readily solved, and one of its roots,

n= 1
4(5+

√
13)≈ 2.15, (A 5)

satisfies condition (A 2).
Next, assume asymptotics similar to (A 1), but for the receding CL, i.e.

h= B(x+ L)3/2 +D(x+ L)n +O[(x+ L)3] as x→ L+ 0. (A 6)
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On substituting this expansion into (2.1), one can verify that n again satisfies (A 4), but

B2 =−8µc∗
3σ l

. (A 7)

Thus, no real solutions exist for a receding CL with zero contact angle.

Appendix B. The numerical method for problem (2.6)–(2.8)
When computing the solution of the boundary-value problem (2.6)–(2.8), the main

difficulty results from the fact that (2.6) is singular at both boundaries (where the
coefficient of the highest derivative vanishes).

To bypass this difficulty, observe that (2.6) admits a Frobenius-style expansion about
x=−L,

h = P1(x+ L)+ P2(x+ L)2 +Q2(x+ L)2 ln(x+ L)+ P3(x+ L)3

+Q3(x+ L)3 ln(x+ L)+O[(x+ L)4 ln2(x+ L)] as x→−L+ 0. (B 1)

On substituting (B 1) into (2.6) and (2.7), one obtains

P1 = 1, P3 =−
(

1
9λ
+ Q2

3

)
c

2λ
− 11c2 + 12λ2

72λ2
,

Q2 = c
2λ
, Q3 =− c2

12λ2
.

 (B 2)

A similar expansion can be derived from (2.6) and the boundary condition (2.8) for
the vicinity of x= 0,

h=C1x+C2x2+D2x2 ln(−x)+C3x3+D3x3 ln(−x)+O[x4 ln2(−x)] as x→−0, (B 3)

where

C1 =−1, C3 =−
(

1
9λ
+ D2

3

)
c

2λ
− 11c2 + 12λ2

72λ2
,

D2 =− c
2λ
, D3 = c2

12λ2
.

 (B 4)

We observe that the coefficients P2 and C2 remain undetermined (they can only be
fixed by matching the local expansions (B 1) and (B 3) to the global solution).

Expressions (B 1)–(B 2) and (B 3)–(B 4) can be used to ‘shift’ the boundary
conditions away from the singular points x = −L and x = 0 to x = −L + ∆ and
x=−∆ (where ∆ is small). Thus, (2.7) and (2.8) are to be replaced with

(h)x=−L+∆ = ∆+ P2∆
2 + c

2λ
∆2 ln∆

−
[(

1
9λ
+ Q2

3

)
c

2λ
+ 11c2 + 12λ2

72λ2

]
∆3 − c2

12λ2
∆3 ln∆, (B 5)(

dh
dx

)
x=−L+∆

= 1+ 2P2∆+ c
2λ
∆(2 ln∆+ 1)

− 3
[(

1
9λ
+ Q2

3

)
c

2λ
+ 11c2 + 12λ2

72λ2

]
∆2 − c2

12λ2
∆2(3 ln∆+ 1),

(B 6)
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(h)x=−∆ = −∆+C2∆
2 − c

2λ
∆2 ln∆

−
[(

1
9λ
+ D2

3

)
c

2λ
+ 11c2 + 12λ2

72λ2

]
∆3 + c2

12λ2
∆3 ln(−x), (B 7)(

dh
dx

)
x=−∆

= −1+ 2C2∆− c
2λ
∆(2 ln∆+ 1)

− 3
[(

1
9λ
+ D2

3

)
c

2λ
+ 11c2 + 12λ2

72λ2

]
∆2 + c2

12λ2
∆2[3 ln(−x)+1].

(B 8)

To eliminate the undetermined constant P2, one needs to differentiate (B 1) twice,
evaluate the resulting expression at x = −L + ∆, and compare it with (B 6), which
yields

P2 =
2
(

dh
dx

)
x=−L+∆

−∆
(

d2h
dx2

)
x=−L+∆

− 2− c
2λ
∆(2 ln∆− 1)− c2

4λ2
∆2

2∆
. (B 9)

A similar expression can be derived for C2:

C2 =
−2
(

dh
dx

)
x=−∆
−∆

(
d2h
dx2

)
x=−∆
− 2+ c

2λ
∆(2 ln∆− 1)− c2

4λ2
∆2

2∆
. (B 10)

Upon substitution of (B 9) and (B 10) into (B 5)–(B 8), the latter become closed-form
boundary conditions for h and its derivatives, and these boundary conditions are set
at regular points of (2.6).

The boundary-value problem (2.6), (B 5)–(B 8) was solved for h(x) and c using the
MATLAB function BVP5C (designed for solving an nth order ordinary differential
equation involving m eigenvalues, with n + m boundary conditions). The algorithm
employed by BVP5C is based on the four-stage Lobatto IIIa formula (see Ascher,
Mattheij & Russell 1995).

The solution found through the above procedure turned out to be virtually
independent of ∆ as long as ∆6 λ/10.

Appendix C. The boundary-value problem (3.43)–(3.45)
C.1. The asymptotics (3.46)

It is convenient to rearrange (3.43) using two consecutive changes of variables,

(xe, he)→
(

he, p= dhe

dxe

)
→ (η=− ln he, p), (C 1)

after which (3.43) becomes

p
2

d2(p2)

dη2
+ 1

3
d(p3)

dη
+ e−2η = 3. (C 2)

In terms of the new variables, the asymptotics (3.46) corresponds to the limit

p→∞ as η→∞, (C 3)
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which can be ‘targeted’ by scaling the variables as follows:

η= ηnew

ε
, p= pnew

ε1/3
, (C 4a,b)

and taking the limit ε→ 0. On substituting (C 4) into (C 2) and omitting the subscript
new, we obtain

εp
2

d2(p2)

dη2
+ 1

3
d(p3)

dη
+ exp

(
−2η
ε

)
= 3. (C 5)

We seek a solution of the form

p=
∞∑

k=0

εkpk +O
[

exp
(
−2η
ε

)]
as η→∞, (C 6)

where p0, p1 and p2 satisfy

1
3

d(p3
0)

dη
= 3, (C 7)

p0

2
d2(p2

0)

dη2
+ 1

3
d(3p2

0p1)

dη
= 0, (C 8)

p1

2
d2(p2

0)

dη2
+ p0

2
d2(2p0p1)

dη2
+ 1

3
d(3p2

0p2 + 3p0p2
1)

dη
= 0. (C 9)

The general solutions of these equations are

p0 = [9(η+ a0)]1/3,
p1 = ln(η+ a0)+ a1

[9(η+ a0)]2/3 ,

p2 =−[ln(η+ a0)]2 − 3 ln(η+ a0)+ 12
[9(η+ a0)]5/3 + a2

[9(η+ a0)]2/3 ,


(C 10)

where a0, a1 and a2 are constants of integration. On comparing the expressions for p1
and p2, one can see that a2 can be eliminated by a small (∼ε) change of a1. Next,
we observe that

p0 = (9η)1/3 + 3a0

(9η)2/3
+O

[
1

(9η)5/3

]
, p1 = ln η+ a1

(9η)2/3
+O

[
ln η
(9η)5/3

]
as η→∞,

(C 11a,b)
which means that, in the limit η→∞, a0 can also be eliminated by changing a1.
Setting, thus,

a0 = a2 = 0, (C 12)

we substitute (C 10)–(C 13) into (C 6):

p= (9η)1/3 + ε(ln η+ a1)

(9η)2/3
− ε

2(ln2 η− 3 ln η+ 12)
(9η)5/3

+O
[

ln3 η

(9η)8/3

]
. (C 13)

The parameter ε has played its role of the ‘indicator’ of small terms and can now
be omitted. Setting accordingly ε = 1, we rewrite (C 13) in terms of the original
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variables,

dhe

dxe
= −(9 ln he)

1/3 + ln(− ln he)+ a1

(9 ln he)2/3

+ ln2(− ln he)− 3 ln(− ln he)+ 12
(9 ln he)5/3

+O
[

ln3(− ln he)

ln8/3 he

]
. (C 14)

Equation (C 14) should be treated as a first-order ordinary differential equation for
he(xe). Seeking a solution in a form similar to that of the right-hand side of (C 14),
one can derive the desired asymptotics (3.46) and also obtain

b=−3+ 2 ln 3− a1. (C 15)

C.2. Numerical solution of problem (3.43)–(3.45)
The simplest numerical approach to solving the boundary-value problem (3.43)–(3.45)
consists in ‘shooting’ the solution from a large positive value of xe (approximating
plus-infinity) towards xe = 0.

The boundary condition (3.44) suggests that, for large xe,

he ∼ 31/2 + ĥ, (C 16)

where
ĥ→ 0 as xe→∞. (C 17)

By linearising (3.43) with respect to ĥ, solving the resulting equation subject to the
boundary condition (C 17) and substituting ĥ into (C 16), we obtain

he ∼ 31/2 +C exp
(
− 2

31/2
xe

)
as xe→∞, (C 18)

where C is an arbitrary constant. It turns out that, if C> 0, the solution he is positive
for all xe and the boundary condition (3.46) cannot be satisfied; hence, C must
be negative. Its absolute value, however, is unimportant, as changing it amounts to
shifting the solution along the xe-axis without changing its shape. Thus, we can set

C=−1. (C 19)

It turns out that the solution determined by the asymptotics (C 18) and (C 19) vanishes
at xe= x̂e≈−0.2610, not at xe=0; hence, the boundary condition (3.45) does not hold.
This can be corrected by shifting the xe-axis by x̂e.

The above algorithm was realised using MATLAB’s function ODE45 based on an
explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair (Dormand & Prince
1980). Since (3.43) becomes singular at the point where he vanishes, the computation
was stopped when he became smaller than 10−12. This was achieved through the
‘Event’ option of ODE45, which would stop the computation once an appropriately
chosen ‘event function’ changed its sign.
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C.3. Computation of the constant b
It appears that b can be computed by shooting two solutions from xe = 0 and xe =
+∞, using the asymptotics (3.46) and (C 18) respectively, and matching them at an
intermediate point by adjusting the constants b and C. However, matching the two
solutions implies continuity of he, dhe/dx and d2he/dx2, which cannot be achieved by
adjusting two constants. In principle, it is possible to generalise the asymptotics (3.46)
so that it would include an extra constant, but the correction involving this constant
becomes exponentially smaller than the rest of the solution as xe→ 0. As a result, if
the extra constant is used for shooting, the numerical solution exhibits exponentially
strong dependence on the initial conditions, and the iterations do not converge.

Alternatively, b can be found by computing a1 (which appears in the asymptotics
(C 14)) and using expression (C 15) to determine b.

To extract a1 from the solution he(xe) (computed as described in the previous
subappendix), we ‘constructed’ the following function:

f (xe)= dhe

dxe
(9 ln he)

2/3+ 9 ln he− ln(− ln he)− ln2(− ln he)− 3 ln(− ln he)+ 12
9 ln he

. (C 20)

Comparing this expression with the asymptotics (C 14), one can see that

lim
he→0

f = a1. (C 21)

This approach yields a1 ≈−0.189, for which (C 15) yields b≈−0.613.
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