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Inertial instability of flows on the inside or
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We consider thin liquid films on the inside (rimming flows) or outside (coating flows)
of a cylinder with horizontal axis, rotating about this axis. If the liquid’s net volume
is small, such films are known to evolve towards a steady state with a smooth surface,
whereas, for larger amounts, the flow develops a ‘shock’ similar to a tidal bore. In
this work, smooth films are shown to be unstable. Since the strongest instability
occurs at wavelengths comparable to the film’s thickness, our analysis is based on the
full Navier–Stokes equations, not on the lubrication approximation (which has been
traditionally used in this problem). It is also shown that, for cylinders of sufficiently
small radii, the instability can be suppressed by surface tension.
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1. Introduction
Interest in flows on a rotating horizontal cylinder originates from a question raised

by Moffatt (1977), as to how much honey one can keep on a spoon by holding it
horizontally and permanently turning it. Approximating the spoon by a cylinder and
assuming the layer of the liquid (honey) to be thin, Moffatt (1977) found a family of
solutions describing steady flows around the cylinder. These solutions can be ordered
in accordance with their ‘loads’ (i.e. the liquid’s net volume), with the maximum load
corresponding to a certain limiting solution – which seemed to provide a qualitative
answer to the question of how much honey one can keep on a rotating spoon.

Note that Moffatt’s (1977) results are applicable to both coating and rimming flows,
i.e. on the outside and inside of a rotating horizontal cylinder. The similarity of the
two problems stems from the fact that the depth of the liquid layer in both cases is
usually assumed to be much smaller than the cylinder’s radius, so the geometry of the
flow is, to leading order, Cartesian. Thus, in what follows, when describing results that
are valid for both problems, we shall not mention for which one they were obtained
originally.

It turned out, however, that other solutions exist for coating and rimming flows.
Firstly, Benjamin, Pritchard & Tavener (1993) and O’Brien & Gath (1998) found flows
with a shock similar to a tidal bore, with loads exceeding those of Moffatt’s (1977)
smooth solutions. Secondly, Ashmore, Hosoi & Stone (2003) and Benilov, Benilov
& Kopteva (2008) found flows involving a pendant drop hanging from the cylinder’s
lower part. Unlike the smooth and shock flows, the loads of the pendant-drop flows
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are unbounded, which suggests that the maximum load may not be determined by a
limiting solution. Alternatively, an instability can be the limiting factor, provided it is
triggered off if the load exceeds a certain threshold.

Generally, flows on a rotating horizontal cylinder are prone to two different
instabilities, which were both examined for Moffatt’s (1977) smooth solutions. The
first instability, of a Taylor–Goldstein kind, results from hydrostatic destabilization of
the liquid on the cylinder’s lower half by gravity (Benilov, O’Brien & Sazonov 2003;
Benilov 2004). The second instability is caused by the liquid’s inertia (Benilov &
O’Brien 2005; Pougatch & Frigaard 2011).

The mere fact that Moffatt’s (1977) smooth flows are unstable, and that their loads
are smaller than those of the other solutions, has important physical implications. It
suggests that, apart from the maximum load, there exists, surprisingly, a minimum one.
In other words, if an amount of liquid on a cylinder is smaller than a certain threshold
value, it cannot form a steady state. One can conjecture that, if the instability develops
sufficiently fast, part of the liquid would fall off the cylinder, with the remaining part
forming three-dimensional ‘rings’ (Leslie, Wilson & Duffy 2013).

Note, however, that both above instabilities have been studied using the lubrication
approximation (LA), which is inapplicable to perturbations with wavelengths
comparable to, or shorter than, the depth of the liquid layer. The long-wave instability,
in turn, can be studied using the LA, but is usually relatively weak. This can be
illustrated by the above-mentioned result of Benilov & O’Brien (2005) – who used
the LA to show that the growth rate of the inertial instability increases with the
perturbation’s wavenumber, with an implication that the strongest instability occurs
beyond the limits of the LA. We might also mention that the LA can give rise to
‘spurious’ instabilities, which do not exist in more accurate models (O’Brien 2002;
Benilov, Kopteva & O’Brien 2005), as well as spurious steady states, including some
of the above-mentioned shock solutions (see Benilov & Lapin 2011; Benilov, Lapin &
O’Brien 2012). Thus, even though Moffatt’s (1977) low-load solutions are unstable, it
is unclear whether the instability is fast enough to make the honey drip down from the
spoon.

Note also that, even though Moffatt’s (1977) original study was motivated by
scientific curiosity in its purest form, coating and rimming flows have many industrial
applications – such as rotational moulding (Throne & Gianchandani 1980), coating of
fluorescent light bulbs (O’Brien 1998), or modelling of aero-engines (Williams et al.
2012). In most applications, the instability is undesirable (for example, it makes the
coating on fluorescent tubes uneven, etc.).

In the present paper, we use the full Navier–Stokes equations to examine the
stability of coating and rimming flows described by Moffatt’s (1977) solutions, with
respect to short-wave disturbances. Such disturbances do not satisfy the LA, but the
base state still does, which noticeably simplifies our task.

This paper has the following structure. In § 2, we introduce the governing equations
and, in § 3, discuss the non-dimensional parameters involved. In § 4, a set of
asymptotic equations for a disturbance in a steady flow is derived. In § 5, we consider
the case of Stokes flow, which is the simplest non-LA model (it allows for short-wave
disturbances but still ignores inertia). In § 6, we shall examine the general case,
revealing the mechanisms of an instability due to inertial effects. In § 7, we summarize
the results and discuss their implications for the problem of honey on a rotating spoon.
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FIGURE 1. Liquid film in a rotating horizontal cylinder.

2. Formulation of the problem
As mentioned above, even though the governing sets of equations for coating and

rimming flows are different, the asymptotic results obtained for thin films are usually
applicable to both (not only qualitatively, but also quantitatively). The present problem
is not an exception in this respect, so the details of the analysis will be presented only
for rimming flows.

Consider a thin layer of liquid on the inside surface of an infinitely long cylinder
of radius R (see figure 1). The axis of the cylinder is horizontal, and it is rotating
about this axis with constant angular velocity Ω . We shall use cylindrical coordinates
(r, θ, z), so the thickness h of the film depends on the azimuthal angle θ , axial
coordinate z and time t. In addition to h, the flow is characterized by the radial,
angular and axial velocities, u, v and w, respectively, and the pressure p (the fluid is
assumed incompressible, so its density, ρ, is constant).

In cylindrical coordinates, the Navier–Stokes equations are (Landau & Lifshitz
1995)
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where g is the acceleration due to gravity and ν is the kinematic viscosity. These
equations should be supplemented by the boundary conditions at the surface of the
cylinder,

u= 0, v =ΩR, w= 0 at r = R, (2.5)

and the kinematic boundary condition at the film’s free surface,
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+ u= 0 at r = R− h. (2.6)

We shall also require that the two tangential components of the stress tensor S at the
free surface are zero, whereas the normal component is proportional to the curvature
of the surface. All these requirements can be written as a single vector condition,

(S − σCI)n= 0 at r = R− h, (2.7)

where σ is the surface tension coefficient, I is the identity matrix, n is a normal (not
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is the curvature of the film’s surface (Finn 1986). Expressing n and S in terms of the
cylindrical coordinates (e.g. Landau & Lifshitz 1995) and substituting them into (2.7),
we obtain
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Given suitable initial conditions, equations (2.1)–(2.6) and (2.8)–(2.11) determine the
unknowns u, v, w, p and h.

3. The non-dimensional parameters
The evolution of a coating or rimming flow with a characteristic thickness 〈h〉 is

governed by five non-dimensional parameters. Four of those are associated with the
physical setting:

δ = 〈h〉
R

(3.1)

is the non-dimensional thickness of the film,

α = 〈h〉RΩ
ν

(3.2)

is an effective Reynolds number (based on the spatial scale 〈h〉 and velocity scale
ΩR),

λ= g〈h〉2
RΩν

(3.3)

is the ratio of the gravitational and viscous forces, and

γ = σ

ρΩRν
(3.4)

is the ratio of the capillary and viscous forces. The fifth parameter characterizes the
spatial structure of the flow,

∆= 〈h〉
min{R1θ,1z} , (3.5)

where 1θ and 1z are the azimuthal and axial scales. In what follows, ∆ will be
referred to as the ‘aspect ratio’.

We shall define the LA by

δ� 1, (3.6)
∆� 1, (3.7)
λ . 1, (3.8)

α∆� 1, (3.9)

γ∆3 . 1. (3.10)

To clarify the physical meaning of these requirements, note the following:

(a) The thin-film condition (3.6) allows the cylindrical geometry of the problem to be
approximated by the Cartesian one.

(b) The shallow-water condition (3.7) makes the dynamic component of the pressure
field small – as a result, the leading-order pressure is determined by the hydrostatic
formula. Equation (3.7) makes also the ‘azimuthal’ friction stronger than the
‘radial’ one.

(c) Condition (3.8) guarantees that gravity does not dominate viscous entrainment. If it
did, fluid would accumulate in a pool at the bottom of the cylinder, with virtually
no film on its walls.
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(d) Condition (3.9) guarantees that viscous entrainment of the fluid by the cylinder’s
rotation dominates inertia (the latter is described by the material derivatives in the
Navier–Stokes equations).

(e) Condition (3.10) guarantees that, for flows with spatial scales comparable to R,
surface tension does not dominate viscosity. Note, however, that, for most fluids,
surface tension is weak (see the example below) and (3.10) can be safely replaced
with a stronger condition,

γ∆3� 1. (3.11)

To illustrate restrictions (3.6)–(3.9) and (3.11), consider the following example. Let
the fluid under consideration be glycerine at 20 ◦C, for which

ν = 1.12× 10−3 m2 s−1, σ = 0.063 N m−1, ρ = 1.26× 103 kg m−3. (3.12)

The angular velocity of the cylinder, its radius and the film’s thickness are taken to be

Ω = 2π s−1, R= 0.03 m, 〈h〉 = 0.003 m. (3.13)

Substitution of (3.12) and (3.13) into (3.1)–(3.4) yields

δ = 0.1, α ≈ 0.51, λ≈ 0.42, γ ≈ 0.24. (3.14)

Observe that δ � 1 and λ ∼ 1 – hence, the film is thin and gravity is on par with
viscous entrainment.

To assess the impact of inertia and surface tension, observe that a steady rimming
flow varies on the scale of the cylinder, i.e. 1θ = 1, 1z= R. Then, (3.5) yields for the
aspect ratio ∆= δ, and

α∆= 0.051, γ∆3 = 0.000 24. (3.15)

Clearly, conditions (3.9) and (3.11) hold, which means that, for steady rimming flows,
inertia and surface tension are negligible.

Next, consider a short-wave disturbance, with a wavelength comparable to the film’s
thickness, i.e. 1θ = 〈h〉/R, 1z= 〈h〉. In this case, (3.5) yields ∆= 1. Then, we obtain

α∆= 0.51, γ∆3 = 0.24, (3.16)

and conditions (3.9) and (3.11) do not hold. This indicates that the impact of inertia
and surface tension on such a disturbance is comparable to that of viscosity.

Thus, even though the inertial effects and surface tension are negligible for the
steady state, they must be retained for disturbances, and the LA may not be used for
them.

4. The analysis
In this section, we shall derive asymptotic equations for the steady state (§ 4.1), and

those for the disturbance (§ 4.2).

4.1. The steady state
Assume that the flow satisfies the LA, which implies the following non-dimensional
variables:

r̃ = R− r

δR
, θ̃ = θ, z̃= z

R
, t̃ =Ωt, (4.1)
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, ṽ = v

RΩ
, w̃= w

RΩ
, p̃= δ

ρνΩ

(
p+ σ

R

)
, (4.2)

h̃= h

δR
, C̃ = CR− 1

δ
, (4.3)

where, as before, δ is the ratio of the film’s thickness to the cylinder’s radius. Note
that the σ/R term in the expression for p̃ and the −1 in the expression for C̃ represent
capillary effects associated with the cylinder’s curvature.

In terms of the new variables, (2.1)–(2.6), (2.9)–(2.11) and (2.8) become (tildes
omitted)
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where α, λ and γ are determined by (3.2)–(3.4) with 〈h〉 = δR. Observe also that
scaling (4.1) implies that the azimuthal and axial scales of the solution are 1θ = 1 and
1z= R – which is, essentially, the steady-state scaling.

Now, seek a steady, axially homogeneous solution, i.e. put

u= ū(r, θ), v = v̄(r, θ), w= 0, p= p̄(r, θ), h= h̄(θ). (4.14)

Assuming that δ� 1, whereas α, λ, γ ∼ 1, substitute (4.14) into (4.4)–(4.13) and keep
the leading-order terms only:
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Using (4.15), (4.16) and (4.18), one can express p̄, v̄ and ū in terms of h̄,
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]
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Next, substitute (4.20) and (4.21) into (4.17) and integrate the latter with respect to θ ,
which yields

h̄− λh̄3

3
cos θ = const. (4.22)

Without loss of generality, we can assume that the scale 〈h〉 for the variable h̄ is such
that the constant of integration in the above equation is equal to unity, so we have

h̄− λh̄3

3
cos θ = 1. (4.23)
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FIGURE 2. Steady rimming flows (solutions of (4.23)) for ¬ λ = 0,  λ = 2/9 and
® λ = 4/9. (a) The Cartesian representation; (b) the cylindrical representation (δ = 0.1, the
dotted line shows the axis of symmetry).

This (cubic) equation was examined by Moffatt (1977), who demonstrated that, if
λ < 4/9, it has a smooth unique solution for h̄(θ) – see figure 2. Observe that

h̄
(
±π

2

)
= 1, (4.24)

which implies that the dimensional scale 〈h〉 can be identified with the film’s thickness
at θ =±π/2 (i.e. at the bottom or top of the cylinder).

Note also that, for λ = 4/9, h̄(θ) has a corner at θ = 0 – which can be regularized
by taking into account either non-LA corrections (Wilson, Hunt & Duffy 2002) or
surface tension (Ashmore et al. 2003; Benilov et al. 2008). In this work, we shall
assume that λ is not close to 4/9, and the steady state is sufficiently smooth.

4.2. Disturbances
Seek a solution of (4.4)–(4.13) in the form

u= ū(r, θ)+ u′(t, r, θ, z), v = v̄(r, θ)+ v′(t, r, θ, z), w= w′(t, r, θ, z), (4.25)
p= p̄(r, θ)+ p′(t, r, θ, z), h= h̄(r, θ)+ h′(t, θ, z), (4.26)

where the over-bars and primes mark the steady state and disturbance, respectively.
Note that, for the latter,

1θ = δ, 1z= δR. (4.27)

Next, the solution (4.25) and (4.26) should be substituted into the governing equations
(4.4)–(4.13), which should then be linearized and rescaled in accordance with (4.27).
The sheer size and number of the equations involved make this straightforward
procedure impossible to present in a reasonably sized paper. Instead, we shall present
its final result and explain how it has been obtained.

One can readily ‘select’ large terms by simply keeping in mind that, for the
disturbance,
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,
∂h′

∂z
= O(δ−1),

∂2h′

∂θ 2
,
∂2h′

∂z2
= O(δ−2). (4.31)

Recall also that, in the original scaling (4.2), the radial velocity u was assumed small
(observe the extra δ in the first equation of (4.2)). That was a requirement of the
shallow-water approximation, which we no longer use – correspondingly, u should
now be scaled up, i.e. we should assume

u′ = O(δ−1),
∂u′

∂t
,
∂u′

∂θ
,
∂u′

∂z
= O(δ−2),

∂2u′

∂θ 2
,
∂2u′

∂z2
= O(δ−3). (4.32)

Now, substitute (4.25) and (4.26) into (4.4)–(4.13) and linearize them. Then, keeping
in mind (4.28)–(4.32), retain the leading-order terms only, one obtains

αδ2

(
∂u′

∂t
+ v̄ ∂u′

∂θ

)
+ ∂p′

∂r
= δ

[
∂2u′

∂r2
+ δ2

(
∂2u′

∂θ 2
+ ∂

2u′

∂z2

)]
, (4.33)

αδ

(
∂v′

∂t
+ u′

∂v̄

∂r
+ v̄ ∂v

′

∂θ

)
+ δ ∂p′

∂θ
= ∂

2v′

∂r2
+ δ2

(
∂2v′

∂θ 2
+ ∂

2v′

∂z2

)
, (4.34)

αδ

(
∂w′

∂t
+ v̄ ∂w′

∂θ

)
+ δ ∂p′

∂z
= ∂

2w′

∂r2
+ δ2

(
∂2w′

∂θ 2
+ ∂

2w′

∂z2

)
, (4.35)

∂u′

∂r
+ ∂v

′

∂θ
+ ∂w′

∂z
= 0, (4.36)

u′ = v′ = w′ = 0 at r = 0, (4.37)
∂h′

∂t
+ v̄ ∂h′

∂θ
− u′ = 0 at r = h̄, (4.38)

2δ
∂u′

∂r
− p′ − ∂ p̄

∂r
h′ − γ δ2

(
∂2h′

∂θ 2
+ ∂

2h′

∂z2

)
− δ ∂v̄

∂r

∂h′

∂θ
= 0 at r = h̄, (4.39)

δ2 ∂u′

∂θ
+ ∂v

′

∂r
+ ∂

2v̄

∂r2
h′ + p̄

∂h′

∂θ
= 0 at r = h̄, (4.40)

δ2 ∂u′

∂z
+ ∂w′

∂r
+ δp̄∂h′

∂z
= 0 at r = h̄. (4.41)

Note that the terms involving ∂ p̄/∂r, ∂v̄/∂r and ∂2v̄/∂r2 in (4.39) and (4.40) appeared
due to the linearization of the free-surface conditions, i.e. shifting them from r = h̄+ h′

to r = h̄.
In this paper, we shall confine ourselves to the eigenmodes of (4.33)–(4.41), i.e.

solutions with harmonic dependence on the time variable and axial coordinate,

u′(t, r, θ, z)= U(r, θ)

δ
exp

(
ilz− iωt

δ

)
, (4.42)

v′ = V(r, θ) exp
(

ilz− iωt

δ

)
, w′ =W(r, θ) exp

(
ilz− iωt

δ

)
, (4.43)

p′ = P(r, θ) exp
(

ilz− iωt

δ

)
, h′ = H(θ) exp

(
ilz− iωt

δ

)
, (4.44)
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where l/δ is the axial wavenumber, ω/δ is the frequency, and the factor δ−1 in (4.42)
reflects that we no longer use the LA and u′ is not small. Such scaling assumes the
axial wavelength to be comparable to the film’s thickness and the frequency to exceed
the angular velocity of the cylinder by a factor of δ−1.

Now substitute (4.42)–(4.44) into (4.33)–(4.41), and take into account that

∂ p̄

∂r
= λ sin θ,

∂v̄

∂r
= 0,

∂2v̄

∂r2
= λ cos θ, v̄ = 1− λh̄2

2
cos θ at r = h̄ (4.45)

(these formulae follow from (4.19) and (4.20)). Doing so, we obtain

α

(
−iωU + δv̄ ∂U

∂θ

)
+ ∂P

∂r
= ∂

2U

∂r2
+ δ2 ∂

2U

∂θ 2
− l2U, (4.46)

α

(
−iωV + U

∂v̄

∂r
+ δv̄ ∂V

∂θ

)
+ δ ∂P

∂θ
= ∂

2V

∂r2
+ δ2 ∂

2V

∂θ 2
− l2V, (4.47)

α

(
−iωW + δv̄ ∂W

∂θ

)
+ ilP= ∂

2W

∂r2
+ δ2 ∂

2W

∂θ 2
− l2W, (4.48)

∂U

∂r
+ δ ∂V

∂θ
+ ilW = 0, (4.49)

U = 0, V = 0, W = 0 at r = 0, (4.50)

−iωH + δ
(

1− λh̄2

2
cos θ

)
∂H

∂θ
− U = 0 at r = h̄, (4.51)

2
∂U

∂r
− P− γ

(
δ2 ∂

2H

∂θ 2
− l2H

)
− λH sin θ = 0 at r = h̄, (4.52)

δ
∂U

∂θ
+ ∂V

∂r
+ λH cos θ = 0 at r = h̄, (4.53)

ilU + ∂W

∂r
= 0 at r = h̄. (4.54)

The boundary-value problem (4.46)–(4.54) determines the unknowns U, V , W, P and
H. The steady-state characteristics v̄(θ, r) and h̄(θ) play the role of coefficients and are
determined by (4.20) and (4.23).

4.3. Discussion
Generally, (4.46)–(4.54) describe linear gravity–capillary waves in a layer of variable
thickness and velocity, with gravity gradually changing its direction. The geometry of
the problem has become Cartesian, as the effect of cylindricity is weak (recall that the
thickness of the film and the wavelength of the disturbance are both smaller than the
radius of the cylinder). Note, however, that our equations are noticeably simpler than
the full linearized Navier–Stokes set, as some of the terms have been omitted due to
the fact that the steady state satisfies the LA.

Note also that the corresponding set of equations for coating flows can be
obtained from the rimming-flow set (4.46)–(4.54) by changing H → −H, r→ −r
and U→−U.

Finally, note that the Wentzel–Kramers–Brillouin (WKB) method is expected to fail
in the limit λ→ 4/9, when a ‘corner’ appears on the film’s surface. In this case,
the spatial scale of the steady state cannot be assumed to be larger than that of the
disturbance.



118 E. S. Benilov and V. N. Lapin

5. The Stokes-flow limit
In this section, we shall examine the limit α → 0. It will be used for testing

the asymptotic method later applied to the general case, and also for physical
interpretation of the results obtained. We shall also clarify the effect of the non-LA
corrections on the exploding solutions found in this problem previously (Benilov et al.
2003; Benilov 2004; Benilov, Lacey & O’Brien 2005) and the instability found by
O’Brien (2002) and Benilov et al. (2005).

5.1. The eigenmodes
In this case, the first three equations of the set (4.46)–(4.54) become

∂P

∂r
= ∂

2U

∂r2
+ δ2 ∂

2U

∂θ 2
− l2U, δ

∂P

∂θ
= ∂

2V

∂r2
+ δ2 ∂

2V

∂θ 2
− l2V, (5.1)

ilP= ∂
2W

∂r2
+ δ2 ∂

2W

∂θ 2
− l2W. (5.2)

Observe that (5.1) and (5.2) reflect the balance of the pressure gradient and viscosity,
which is often referred to as the Stokes-flow approximation.

Together with the periodicity condition in θ , equations (5.1), (5.2) and (4.49)–(4.54)
form an eigenvalue problem for the eigenfrequency ω (if Imω > 0, the flow is
unstable). Unfortunately, the problem is too complicated to be solved exactly, as it
involves variable coefficients and a curved boundary – however, it also involves the
small parameter δ and, thus, can be analysed asymptotically.

Observe that, in (5.1), (5.2) and (4.49)–(4.54), δ always appears next to a derivative
with respect to θ . This suggests using a suitable WKB technique – in fact, we can take
advantage of the asymptotic method developed by Benilov et al. (2003) for the LA
equivalent of the present problem. According to this method (adopted to the problem
in hand), the solution can be represented by

U(r, θ)= Û(r, θ) exp
[

i
δ

∫ θ

0
m(θ ′) dθ ′

]
, V(r, θ)= · · ·, . . . (5.3)

where m(θ) is the ‘local’ azimuthal wavenumber, varying with θ . The functions
Û, V̂, . . . are assumed to be periodic with respect to θ – hence, the periodicity
of the original unknowns U, V, . . . requires

1
δ

∫ 2π

0
m(θ) dθ = 2πn, (5.4)

where n is an integer (the azimuthal mode number). We shall also expand the
unknowns in powers of δ,

m= m(0) + δm(1) + O(δ2), Û = û(0) + δû(1) + O(δ2), V̂ = · · ·, . . . . (5.5)

Substituting (5.3) and (5.5) into (5.1), (5.2) and (4.49)–(4.54), keeping the leading-
order terms only, and omitting hats and superscripts, we obtain

∂P

∂r
= ∂

2U

∂r2
− k2U, (5.6)

imP= ∂
2V

∂r2
− k2V, (5.7)

ilP= ∂
2W

∂r2
− k2W, (5.8)
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∂U

∂r
+ i(mV + lW)= 0, (5.9)

U = 0, V = 0, W = 0 at r = 0, (5.10)

−iωH + m

(
1− λh̄2

2
cos θ

)
H − U = 0 at r = h̄, (5.11)

2
∂U

∂r
− P− H(sin θ − γ k2)= 0, imU + ∂V

∂r
+ H cos θ = 0 at r = h̄, (5.12)

ilU + ∂W

∂r
= 0 at r = h̄, (5.13)

where

k2 = m2 + l2. (5.14)

The boundary-value problem (5.6)–(5.13) is solved in the Appendix, where it is shown
that a solution exists if and only if

ω − m

λ
+ mh̄2 cos θ

2
+ mkh̄2 cos θ − i(cosh kh̄ sinh kh̄− kh̄)(sin θ − γ k2)

2k(cosh2kh̄+ k2h̄2)
= 0. (5.15)

5.2. Discussion: localized wave packets versus eigenmodes
Before we apply (5.15) to eigenmodes, it is instructive to interpret it using localized
wave packets.

Consider a packet of short waves, propagating around the cylinder and currently
located at a point θ . It can be demonstrated that the local parameters of the packet
(axial and azimuthal wavenumbers, l/δ and m/δ, and the frequency ω/δ) are related
to the local properties of the medium and to each other by the dispersion relationship
(5.15). We shall also define the azimuthal phase speed and the growth/decay rate, for
which (5.15) yields

Reω
m
= 1− λh̄2

2

(
1+ 1

cosh2kh̄+ k2h̄2

)
cos θ, (5.16)

Imω

δ
= (cosh kh̄ sinh kh̄− kh̄)(λ sin θ − γ k2)

2δk(cosh2kh̄+ k2h̄2)
, (5.17)

respectively. Observe that, in the absence of surface tension (γ = 0), the growth/decay
rate is positive in the upper part of the cylinder and negative in the lower part – which
reflects the destabilizing/stabilizing role of the hydrostatic pressure in the former/latter
cases, respectively. Observe also that surface tension reduces the region of instability
and, for γ k2 > λ, eliminates it completely.

Expressions (5.16) and (5.17) enable us to compare the present approach with the
LA, for which kh̄� 1. Expanding (5.16) and (5.17) in powers of kh̄, we obtain

Reω
m
= 1− λ[1+ O(k2h̄2)]h̄2 cos θ, (5.18)

Imω

δ
= 1
δk

[
1
3

k3h̄3 + O(k5h̄5)

]
(λ sin θ − γ k2). (5.19)

The LA formulas (5.18) and (5.19) have been compared to the original expressions
(5.16) and (5.17) – see figure 3. Note that, for δ = 0.1, the LA does not work very
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FIGURE 3. The local (θ = π/2, h̄ = 1) dispersion relation (5.16) and (5.17) for δ = 0.1,
λ = 0.35 and γ = 0 (no surface tension). The corresponding LA solution is shown as the
dotted lines: ¬, the first-order solution (5.18) and (5.19); , the second-order solution (5.20)
and (5.21). (a) The phase speed (Reω)/m versus the wavenumber k/δ. (b) The growth rate
(Imω)/δ versus the wavenumber k/δ.
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FIGURE 4. The same as figure 3, but for δ = 0.02.

well, especially for the phase speed shown in figure 3(a); and even the next-order
formulas,

Reω
m
= 1− λ[1− k2h̄2 + O(k4h̄4)]h̄2 cos θ, (5.20)

Imω

δ
= 1
δk

[
1
3

k3h̄3 − 3
5

k5h̄5 + O(k7h̄7)

]
(λ sin θ − γ k2), (5.21)

are not much better. For a better agreement, the film’s thickness should be
approximately 50 times smaller than the radius of the cylinder (δ = 0.02) – see
figure 4. But, in any case, the LA does not describe the maximum growth rate. Indeed,
assume for simplicity that there is no surface tension (γ = 0) – then, the local growth
rate (5.17) reaches its maximum at kh̄ ≈ 2 (which can be deduced from figure 3b,
where the maximum is located at k̄/δ ≈ 20, with δ = 0.1 and h̄ = 1). Thus, the
wavelength (equal to 2π/k) of the most unstable disturbance is, roughly, three times
larger than the film’s thickness and, thus, is inconsistent with the LA.
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FIGURE 5. The ‘global’ phase speed ω/δn versus the mode number n, for δ = 0.02, λ= 0.35,
α = 0 (Stokes flow), γ = 0 (no surface tension) and l = 0 (no axial variability). The
corresponding LA solution is shown as the dotted lines: ¬, the first-order solution; , the
second-order solution.

5.3. Examples of eigenmodes
We shall now apply (5.15) to eigenmodes, in which case it determines the local
azimuthal wavenumber m as a function of θ , for a given frequency ω and axial
wavenumber l. Once m(θ) is computed, it should be substituted into the periodicity
condition (5.4), which determines the dependence of ω on l and the mode number n.

This plan has been realized numerically, using the secant method for solving
(5.15) for m, and Simpson’s rule combined with the secant method for integrating
and solving (5.4) for ω. For γ = 0 (no surface tension), only real (neutrally stable)
eigenfrequencies were found, which agrees with the corresponding LA results obtained
in the absence of inertial and capillary effects (Benjamin et al. 1993; Benilov et al.
2003). Typical results for γ = 0 are shown in figure 5, where we also compare the
present approximation to the LA (as before, it holds when the film’s thickness is 50 or
more times smaller than the radius of the cylinder).

We have also examined the effect of surface tension in a wide range of γ and
λ, and, in all cases, surface tension makes the disturbance decay (Imω < 0). Thus,
the capillary instability observed by O’Brien (2002) and Benilov et al. (2005) is an
artefact of the LA (the possibility of which has indeed been pointed out in the latter
paper).

5.4. The existence of exploding solutions
When studying the stability of rimming flows, Benilov et al. (2003), Benilov (2004)
and Benilov et al. (2005) found exploding solutions that develop singularity in a finite
time. These solutions, however, have been found using the LA, which becomes invalid
when the spatial scale of the collapsing disturbances becomes comparable to the film’s
thickness (which might happen even before the breakdown of the linearity condition).
In this section, we shall examine whether or not exploding solutions are admitted by
the (more accurate) Stokes-flow approximation.

It is intuitively clear that exploding solutions can exist only if there is a spatial
region where the local growth rate tends to plus infinity in the short-wave limit,

Imω→+∞ as k→∞. (5.22)
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In the absence of surface tension (γ = 0), the leading-order LA growth rate (5.19)
does satisfy this requirement (in the upper part of the cylinder), giving rise to the
exploding solutions found in the above-mentioned papers. If γ > 0, expression (5.19)
tends to minus infinity, in accordance with which no exploding solutions were found in
the LA problem with surface tension (see Benilov et al. (2005) and Benilov (2006) for
the azimuthal and axial disturbances, respectively).

In the present case, expression (5.17) for the local growth rate shows that

Imω→
{

0 if γ = 0
−∞ if γ > 0

}
as k→∞. (5.23)

Hence, the corresponding set of equations, (4.42)–(4.50), does not admit exploding
solutions.

It should be emphasized, however, that the formal absence of singular solutions does
not preclude disturbances from growth. It just transforms the exploding instability into
a transient one (see Farrel 1982; Trefethen et al. 1993; Chapman 2002), such that the
disturbance initially grows by an order of magnitude, but eventually always disperses.
If, however, the transient growth is strong enough to trigger off nonlinear effects, the
steady state breaks down before the dispersal of the linear disturbance.

The above argument agrees with the conclusions of Benilov (2006) obtained for
a similar problem, where surface tension was indeed shown to transform exploding
disturbances into transient ones.

6. Inertial instability of rimming flows

In this section, we shall examine the general case, α 6= 0, where instability is
expected to occur due to the effects of inertia (described by the material derivatives
of the Navier–Stokes equations). Benilov & O’Brien (2005) examined this type of
instability using the LA and demonstrated that its growth rate grows monotonically
with the mode number – hence, the maximum growth occurs at short wavelengths.
Thus, the LA (which is inapplicable to short disturbances) is not suitable for studying
inertial instability, whereas the WKB method used earlier in this paper is.

Substituting the WKB representation (5.3) and (5.5) into the first three of the
Navier–Stokes equations, (4.46)–(4.48), keeping the leading-order terms only, and
omitting hats and superscripts, we obtain

iα(mv̄ − ω)U + ∂P

∂r
= ∂

2U

∂r2
− k2U, iα(mv̄ − ω)V + imP= ∂

2V

∂r2
− k2V, (6.1)

iα
[
(mV − ω)W + U

∂v̄

∂r

]
+ ilP= ∂

2W

∂r2
− k2W, (6.2)

where the effective Reynolds number α is given by (3.2), and k2 = m2 + l2. The
remaining equations are exactly the same as in the Stokes-flow limit, i.e. coincide with
(5.9)–(5.13).

Unlike the Stokes-flow limit, the coefficients of the problem for α 6= 0 involve r
and, therefore, the dependence of the eigenmode on r cannot be resolved analytically.
Instead, it was resolved numerically, using the Runge–Kutta method. The rest of the
scheme remains the same as in § 5.3.
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FIGURE 6. The normalized growth rate Imω of inertial instability versus the normalized
mode number N = nδ, for λ = 0.35, α = 1, 5, 10, γ = 0 (no surface tension) and l = 0
(no axial variability). The curves are marked with the corresponding values of α. The dotted
curves were computed for α = 0.1 and scaled up by the factors of 10, 50 and 100 (the first of
the three curves is indistinguishable from the case α = 1).

6.1. The results
The eigenvalue problem (6.1), (6.2), (5.9)–(5.13) and (5.4) has been solved for a wide
range of the parameters involved, with typical results shown in figures 6–8. Note
that these figures have been drawn in terms of the normalized growth rate Imω and
the normalized mode number N = nδ (as opposed to the actual rate Imω/δ and the
actual mode number n, defined by (4.42)–(4.44) and (5.4) and used in figure 5). The
normalized variables make the graph continuous and independent of δ, whereas the
eigenmodes correspond to N being exact multiples of δ.

The following conclusions have been drawn.

(a) As the axial wavenumber l increases, the growth rate of inertial instability always
decays. Thus, the strongest instability occurs for l = 0, i.e. for two-dimensional
disturbances.

(b) It turned out that, even for large values of α, the normalized growth rate Imω is
anomalously small (see figure 7). This came as a surprise, as Imω does not depend
on any small or large parameter.

(c) Furthermore, for α . 5, the growth rate is almost proportional to α. To illustrate
this, we computed Imω for α = 0.1, multiplied it by 10, 50 and 100, and
compared with Imω computed for α = 1, 5, 10 (see figure 7). Observe that,
even for α = 10, the two graphs are not too far apart.

This suggests that an asymptotic theory for small Reynolds numbers (α→ 0)
would be accurate for at least α . 5.

(d) With increasing λ, inertial instability becomes stronger (see figure 8) – i.e. thick
films are more unstable than thin ones.

(e) Surface tension weakens instability, especially higher eigenmodes (see figure 9).
A similar tendency has been observed in the LA analysis of Benilov & O’Brien
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FIGURE 8. The same as figures 6 and 7, but for λ= 0.35, α = 1 and γ = 0, 0.1, 0.5. The
curves are marked with the corresponding values of γ .

(2005). Thus, the last eigenmode to remain unstable is the first one, n = 1 (to
which the latter work is applicable).

Thus, if one needs to find out whether or not a given rimming flow is stable,
one should be able to rely on the first-mode LA. Then, if the flow is unstable, the
growth rate can be calculated either through the LA (for marginally unstable flows),
or through the WKB theory presented here (for cases where instability is strong
enough to reach high eigenmodes).

Note, however, that the above argument implies that the WKB approximation
and LA ‘overlap’, so the wavelength of maximum growth is described by at least
one of the two. To verify that this is indeed the case, note that the WKB applies
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to (dimensional) wavelengths that are much shorter than the cylinder’s radius R
– whereas the LA applies to wavelengths longer than the characteristic depth 〈h〉 of
the liquid. Thus, the two approximations are both applicable to wavelengths longer
than 〈h〉, but shorter than R.

(f ) Note, however, that surface tension can stop inertial instability only for very small
cylinders. Even the flow in example (3.12)–(3.13), where R = 3 cm, is noticeably
unstable, with the e-folding time being approximately 15 s. To stabilize it (keeping
the same value of δ = 〈h〉/R), one needs to reduce the cylinder’s radius to
R . 0.75 cm (this estimate has been obtained using the approach of Benilov &
O’Brien (2005)).

Thus, reducing the Reynolds number (through increasing the fluid’s viscosity or
reducing the cylinder’s angular velocity) seems to be the only way to inhibit inertial
instability (which is essential for industrial applications).

6.2. Discussion: the mechanism of inertial instability

Recall that, for α = γ = 0 (i.e. for a Stokes flow with no surface tension), the local
growth rate (5.17) is positive (unstable) in the upper part of the cylinder and negative
(stable) in the lower part. Observe also that the governing equations (5.6)–(5.12) are
invariant with respect to the simultaneous replacements

θ→−θ, U,P→ U∗,P∗, V,W,H→−V∗,−W∗,−H∗, ω→ ω∗. (6.3)

Accordingly, the eigenfunctions are symmetric with respect to the point θ = π,

|U(−θ, r)| = |U(θ, r)|, |V(−θ, r)| = |V(−θ, r)|, . . . , (6.4)

and the disturbances are neutrally stable, as they are ‘equipartitioned’ between the
cylinder’s stable and unstable halves.

If, however, α 6= 0, the governing equations (6.1)–(6.2) are not invariant with respect
to (6.3). The eigenfunctions are no longer symmetric and the disturbances are not
equipartitioned between the upper and lower parts of the cylinder – hence, they
become either asymptotically stable or fully unstable.
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To illustrate the above observation, introduce

D(θ)=
∣∣∣∣exp

[
i
δ

∫ θ

0
m(θ ′) dθ ′

]∣∣∣∣ , (6.5)

which will be referred to as the density of the disturbance (it appears in the WKB
representations of all the unknowns – see (5.3)). Several examples of D(θ) are shown
in figure 9. One can see that, if α = 0, the density of the disturbance is indeed
symmetric and, thus, corresponds to neutral stability. For positive α, on the other hand,
the graph of D(θ) becomes increasingly ‘skewed’ towards the cylinder’s upper half, as
the disturbance becomes more and more unstable (see figure 9a). Note also that, for
stable disturbances, D(θ) is skewed towards the cylinder’s lower half, although by a
much smaller margin (see figure 9b).

We conclude that inertial effects violate the symmetry of disturbances and ‘skew’
some of them towards the cylinder’s upper half, making them unstable.

7. Summary and concluding remarks
Thus, we have examined the stability of rimming flows. Five non-dimensional

parameters, (3.1)–(3.5), have been introduced, in terms of which requirements
(3.6)–(3.10) of the LA were formulated. Then, assuming that the steady flow satisfies
all of these requirements, we allowed the disturbance’s wavelength to be comparable
to the film’s thickness (and, thus, to violate some of the LA requirements, namely
(3.7), (3.9) and (3.11)). For harmonic disturbances (eigenmodes), a linearized set
of equations, (4.46)–(4.54), has been derived and then solved by a WKB-style
asymptotic method based on a ‘locally harmonic’ dependence of the eigenfunction
on the azimuthal coordinate (see (5.3)).

Firstly, we examined the limit of small Reynolds number (α → 0, where α is
defined by (3.2)), in which case the equations for the disturbance reduce to the
Stokes-flow approximation. The following conclusions have been drawn.

(a) In the absence of surface tension, the disturbance grows in the upper part of
the cylinder and decays in the lower part. The maximum growth occurs for the
disturbance, the wavelength of which is approximately three times larger than the
film’s thickness. Such disturbances do not satisfy the LA.

(b) Despite the local instability, the ‘global’ harmonic solutions (eigenmodes) are
neutrally stable, which reflects the perfect balance between the disturbance’s
growth in the upper part of the cylinder and its decay in the lower part. A
similar property has been pointed out by Benjamin et al. (1993) and Benilov et al.
(2003) for the long-wave eigenmodes (tractable through the LA).

Secondly, we considered the general case, α 6= 0, which takes into account inertial
effects. The following conclusions have been drawn.

(a) It was shown that inertia violates the balance between the cylinder’s upper and
lower halves. As a result, some of the eigenmodes become ‘skewed’ towards the
former and, thus, become unstable.

(b) As the axial wavenumber increases, the growth rate of inertial instability decays.
Thus, the strongest instability occurs for two-dimensional disturbances.

(c) Surface tension weakens slightly inertial instability and, in principle, can eliminate
it – but the complete stabilization occurs only for very small cylinders, with a
radius of less than 1 cm.
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Finally, we shall discuss the implications of our results for the original problem
of honey on a rotating spoon (Moffatt 1977). Even though a quantitative prediction
cannot be made (as cylinders are not good approximations of spoons), one can still
conjecture that surface tension can stabilize flows on smaller (tea)spoons. For larger
ones, however, a thin layer of honey (such that Moffatt’s (1977) smooth solution
applies) is likely to be unstable.

A thick layer, on the other hand – such that a shock solution applies – can actually
be stable even on a large spoon. Such flows have not been considered in this paper,
but Benjamin et al. (1993) and O’Brien & Gath (1998) argued that they are stable due
to absorption of potentially unstable perturbation in the shock, similar to those in gas
shocks and tidal bores. This conclusion agrees with the numerical results of Peterson,
Jimack & Kelmanson (2001), who observed increasing stability in the limit λ→ 4/9,
i.e. when the steady state approached the parameter region of shock-wave solutions.

Note, however, that the analyses of Benjamin et al. (1993) and O’Brien & Gath
(1998) have been carried out using the lubrication approximation (LA) – which,
firstly, neglects inertial instability and, secondly, is invalid near the shock. As a
result, conclusions obtained through the LA can be incorrect both quantitatively and
qualitatively (regarding the latter, see Benilov & Lapin (2011) and Benilov et al.
(2012)).

In a more accurate non-LA model, the stability of shock solutions results from a
competition between the inertial instability and the absorption of unstable disturbances
in the shock, so that some of the flows are stable and some are not. The cases
for which the two effects are in precise balance determine both the maximum and
minimum amounts of honey that can be kept on a rotating spoon.
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Appendix. Solution of the boundary-value problem (5.6)–(5.13)
Consider the following combination of (5.6)–(5.8):

∂

∂r
(5.6)+ im(5.7)+ il(5.8), (A 1)

which yields
∂2P

∂r2
− k2P= 0. (A 2)

The solution of this equation can be written in the form

P= c1 cosh kr + c2 sinh kr, (A 3)

where the ‘constants’ of integration c1,2 may depend on θ . Substituting (A 3) into
(5.6)–(5.8), solving for U, V , W, and taking into account boundary conditions (5.10),
we obtain

U = 1
2
[c1r cosh kr + (c4 + c2r) sinh kr], (A 4)

V = im
2k
[(c5 + c1r) sinh kr + c2r cosh kr], (A 5)

W = il
2k
[(c7 + c1r) sinh kr + c2r cosh kr]. (A 6)
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Substitution of (A 4)–(A 6) into the continuity equation (5.9) yields

c4 =−c1

k
, c2 = m2c5 + l2c7

k
. (A 7)

Using (A 7) to eliminate c4 and c2 from (A 4)–(A 6) and (A 3), and substituting the
resulting expressions for U, V , W and P into the free-surface boundary conditions
(5.12) and (5.13) gives

(kh̄ sinh kh̄− cosh kh̄)c1 + (m2h̄ cosh kh̄)c5 + (l2h̄ cosh kh̄)c7 = H(sin θ − γ k2), (A 8)
(2k2h̄ cosh kh̄)c1 + [2m2kh̄ sinh kh̄+ (k2 + m2) cosh kh̄]c5

+ [l2(2kh̄ sinh kh̄+ cosh kh̄)]c7 = 2ik2H cos θ
m

, (A 9)

(2k2h̄ cosh kh̄)c1 + [m2(2kh̄ sinh kh̄+ cosh kh̄)]c5

+ [2l2kh̄ sinh kh̄+ (k2 + l2) cosh kh̄]c7 = 0. (A 10)

Using these equations, we can relate c1, c5 and c7 to H,

c1 =−(2kh̄ sinh kh̄+ cosh kh̄)(sin θ − γ k2)− 2imh̄(cosh kh̄) cos θ

2(cosh2kh̄+ k2h̄2)
H, (A 11)

c5 = (h̄ cosh2kh̄)(sin θ − γ k2)

[cosh2kh̄+ (kh̄)
2] cosh kh̄

H

− i[m2kh̄(cosh kh̄)(sinh kh̄)− (k2 + l2)cosh2kh̄− 2l2(kh̄)
2] cos θ

mk2[cosh2kh̄+ (kh̄)
2] cosh kh̄

H, (A 12)

c7 = (h̄ cosh2kh̄)(sin θ − γ k2)

[cosh2kh̄+ (kh̄)
2] cosh kh̄

H

− im[kh̄(cosh kh̄)(sinh kh̄)+ cosh2kh̄+ 2(kh̄)
2] cos θ

k2[cosh2kh̄+ (kh̄)
2] cosh kh̄

H. (A 13)

Now, substitute expression (A 4) for U into (5.11) and take into account (A 7)–(A 13),
after which H cancels out, and we end up with (5.15).

Observe also that the cancellation of H prevents us from finding the solution for
U, V , W and P. This is typical of the WKB approach, where the leading-order
solution yields the ‘eikonal’ (i.e. m(θ)), but not the amplitude of the eigenfunction. To
determine the latter, one needs to examine the next order, as has been done by Benilov
et al. (2003) for the LA version of the present problem.

Note, however, that there is no point in doing so for our equations (5.6)–(5.13), as
they include only the leading order of the linearized Navier–Stokes set – whereas, to
consistently determine H(θ), the next-to-leading order should be taken into account.
Alternatively, we have to confine ourselves to the eigenfrequency ω, which is the most
important stability characteristic anyway.

In the present paper, we choose the latter option, as the former one results in
extremely cumbersome algebra. Furthermore, even though the next-order expansion
fixes H(θ), it is unlikely to improve on the leading-order eigenfrequency (in all the
WKB techniques known to the authors, the eigenvalue expansions skip every other
term).
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