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On the stability of shallow rivulets
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We examine the linear stability of a capillary rivulet under the assumption that it is
shallow enough to be described by the lubrication approximation. It is shown that
rivulets on a sloping plate are stable regardless of their parameters, whereas rivulets
on the underside of a plate can be either stable or unstable, depending on their widths
and the plate’s slope. For the case of a horizontal plate, sufficiently narrow rivulets
are shown to be stable and sufficiently wide ones unstable, with the threshold width
being π/2 (σ/gρ)1/2 (ρ and σ are the liquid’s density and surface tension, g is the
acceleration due to gravity).

It is also shown that, even though the plate’s slope induces in a rivulet a sheared
flow (which would normally be viewed as a source of instability) – in the present
problem, it is a stabilizing factor. The corresponding stability criterion involving the
rivulet’s width and the plate’s slope is computed, and it is demonstrated that, if the
latter is sufficiently strong, all rivulets are stable regardless of their widths.

1. Introduction
Rivulets, or shallow and narrow flows of liquid, play an important role in

hydrodynamics. The seminal results on their stability was obtained by Davis (1980)
and Weiland & Davis (1981), who used the linearized Navier–Stokes equations to
examine the stability of normal modes. The stability of rivulets has also been studied
using variational methods (Langbein 1990; Roy & Schwartz 1999) and by exploring
whether or not it is energetically favourable for a rivulet to split up into several
subrivulets (e.g. Schmuki & Laso 1990; Myers, Liang & Wetton 2004; Wilson &
Duffy 2005; Sullivan, Wilson & Duffy 2008).

Note also that almost all of the above papers dealt with rivulets on a rigid
plate. The only exception is the work of Sullivan et al. (2008), who examined
the stability of rivulets on the underside of a plate (which are, obviously, much
more unstable due to the effect of ‘inverted’ gravity). Their analysis, however, was
restricted to liquids/substrates that do not exhibit the so-called hysteresis of contact
angles.

In the present paper, we consider the case where the liquid–substrate interaction
involves a finite-width hysteresis interval. Rivulets are assumed to be sufficiently
shallow and, thus, satisfy the lubrication approximation; their stability is examined
through the usual linear stability approach based on normal modes. In § 2, we
shall examine the stability of a rivulet on a sloping plate and compare the results
to those obtained previously. Rivulets on the underside of a plate are examined
in § 3.

† Email address for correspondence: eugene.benilov@ul.ie
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Figure 1. The setting: a rivulet on a sloping plate.

2. Rivulets on a plate
2.1. Mathematical formulation

Consider a layer of liquid (of density ρ, kinematic viscosity ν, surface tension σ ) on a
plate inclined at an angle α to the horizontal (see figure 1). The depth h of the layer
depends on the time t and the spatial coordinates (x, y); the y-axis is directed along
the direction of the fastest slope.

Assume also that the layer is shallow, the slope of its (free) surface is close to
that of the plate, and the Reynolds number of the flow is small. In this case, the
lubrication approximation can be used, yielding the following asymptotic equation:

∂h

∂t
+

g sinα

ν

∂

∂y

(
h3

3
+ λh2

)
+∇ ·

[(
h3

3
+ λh2

)
∇

(
σ

ρν
∇2h − g cosα

ν
h

)]
= 0, (2.1)

where g is the acceleration due to gravity and λ is the so-called slip length
(introduced to relax the no-slip condition near the contact lines). The term involving
g sinα describes the down-the-slope acceleration, the one with g cosα describes the
hydrostatic pressure gradient due to variations of the rivulet’s depth, and the one
with σ , surface tension.

The derivation of (2.1) will not be presented here, as it is very similar to that of its
two-dimensional counterpart derived by Hocking (1981). Note also that if the flow
did not involve contact lines, or even if it did but they were not moving, the terms
including λ could be omitted – after which (2.1) would coincide with an equation
derived by Bertozzi & Brenner (1997).

Now, introduce the following non-dimensional variables:

x∗ =
x

Lc

, y∗ =
y

Lc

, t∗ =
σH 3t

ρνL4
c

, h∗ =
h

H
, (2.2)

where H will later be identified with the maximum depth of the rivulet, and

Lc =

√
σ

ρg cos α
(2.3)

is the capillary scale. Observe that, for α = 90 ◦ (vertical plate), Lc becomes infinite and
the problem should be non-dimensionalized differently. It will be shown, however,
that all rivulets are stable in this case and it is, thus, unimportant.

Substituting (2.2)–(2.3) into (2.1) and omitting the asterisks, we obtain

∂h

∂t
+ γ

∂

∂y

(
h3

3
+ μh2

)
+ ∇ ·

[(
h3

3
+ μh2

)
∇

(
∇2h − h

)]
= 0, (2.4)
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where

γ =
Lc tan α

H
, μ =

λ

H
. (2.5)

are the normalized slope of the plate and non-dimensional slip length.
Next we need to formulate boundary conditions at the contact lines. Let these be

located at x = x±(y, t), which implies

h → 0 as x → x±. (2.6)

We shall also require the normal component of the mass flux at the contact lines be
zero,

n± ·
[
γ

(
h3

3
+ μh2

)
ey +

(
h3

3
+ μh2

)
∇

(
∇2h − 1

)]
→ 0 as x → x±, (2.7)

where ey is the unit vector directed along the y-axis and

n± = ± 1√
1 +

(
∂x±

∂y

)2

⎡
⎣ 1

∂x±

∂y

⎤
⎦ (2.8)

are the unit outward normals to the contact lines. Finally, we require that

v± · n± = V (θ±), (2.9)

where

v± =

⎡
⎣ ∂x±

∂t
0

⎤
⎦ , θ± = ∓n± · (∇h)x→x± , (2.10)

and V (θ ) is a given function determined by the material properties of the liquid and
substrate. Note that the left-hand side of (2.9) represents the normal component of
the velocity of the contact lines, and θ± are the contact angles. Subject to initial
conditions, set (2.4), (2.6)–(2.10) fully describes the unknowns h(x, y, t) and x±(y, t).

Consider a steady rivulet bounded by two straight lines, described by

h = h̄(x), x± = ±x0, (2.11)

where x0 is the rivulet’s half-width. For this solution, the governing equations yield
h̄ = A (cosh x0 − cosh x), where A is an arbitrary constant. Without a loss of generality,
one can put A= (cosh x0 − 1)−1, i.e.

h̄ =
cosh x0 − cosh x

cosh x0 − 1
. (2.12)

Now, the maximum of h̄(x) is equal to unity, which makes the scale H [used in non-
dimensionalization (2.2)–(2.3)] the rivulet’s dimensional depth. Note that the contact
angles corresponding to solution (2.12) are equal and uniquely related to the rivulet’s
width

θ± = θ0 =
sinh x0

cosh x0 − 1
. (2.13)

Finally, to ensure that the contact lines are stationary, one should require

V (θ 0) = 0
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Figure 2. Examples of the dependence of the contact-line velocity V on the contact angle
θ: (a) V (θ) involves a single equilibrium value of θ ; (b) V (θ) involves an hysteresis interval
[θr , θa], such that the derivative dV/dθ does not exist at its endpoints; (c) V (θ) involves an
hysteresis interval, such that dV/dθ = 0 at θ = θr , θa .

(formally, this condition follows from (2.9)). Thus, if the function V (θ ) is as shown
in figure 2(a), steady rivulets exist for a single value of x0 – whereas, for V (θ )
shown in figures 2(b) and 2(c), rivulets exist in a certain interval of x0 (such that the
corresponding range of θ 0 coincides with the hysteresis interval).

In order to examine the stability of solution (2.12), assume that

h = h̄(x) + h̃(x, y, t), x± = ±x0 + x̃±(y, t), (2.14)

where h̃ and x̃± describe a small disturbance. Substituting (2.14) into (2.4) and
linearizing, we obtain

∂h̃

∂t
+ γ

∂

∂y

(
h̄2h̃ + 2μh̄h̃

)
+ ∇ ·

[(
h̄3

3
+ μh̄2

)
∇

(
∇2h̃ − h̃

)]
= 0. (2.15)

The linearization of the boundary conditions (2.6)–(2.10) is slightly less
straightforward, as it implies ‘extrapolating’ them from the perturbed positions of
the contact lines to the unperturbed ones. Rewriting, for example, condition (2.6) in
the form

h̄(±x0 + x̃±) + h̃(±x0 + x̃±, y, t) = 0,

we expand it in powers of x̃ and take into account linear terms only, which yields

dh̄

dx
x̃± + h̃ → 0 as x → ±x0. (2.16)

Processing in the same manner conditions (2.7)–(2.10), we obtain(
h̄3

3
+ μh̄2

)
∂

∂x

(
∇2h̃ − h̃

)
→ 0 as x → x±, (2.17)

dx̃±

dt
= V ′

0

(
∂h̃

∂x
+

d2h̄

dx2
x̃±

)
x→±x0

, (2.18)

where

V ′
0 =

(
dV

dθ

)
θ=θ0

.

This work will be confined to disturbances with harmonic dependence on t and y

(normal modes),

h̃(x, y, t) = φ(x) est+iky, x̃± = η± est+iky, (2.19)
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where Im s is the disturbance’s frequency, Re s is its growth/decay rate, k is
the wavenumber and φ(x) describes the transverse structure of the disturbance.
Substitution of (2.19) into (2.15)–(2.18) yields

sφ + iγ kh̄2φ +
d

dx

[(
h̄3

3
+ μh̄2

)
d

dx

(
d2φ

dx2
− k2φ − φ

)]

− k2

(
h̄3

3
+ μh̄2

) (
d2φ

dx2
− k2φ − φ

)
= 0, (2.20)

φ +
dh̄

dx
η± → 0 as x → ±x0, (2.21)

(
h̄3

3
+ μh̄2

)
d

dx

(
d2φ

dx2
− k2φ − φ

)
→ 0 as x → ±x0, (2.22)

sη± = V ′
0

(
dφ

dx
+

d2h̄

dx2
η±

)
as x → ±x0. (2.23)

Equations (2.20)–(2.23) form an eigenproblem, where φ and s are the eigenfunction
and eigenvalue. If there exists a wavenumber k such that one or more eigenvalues
have positive real parts, Re s > 0, the rivulet is unstable.

2.2. How do contact lines affect linear stability of liquid films?

Observe that the only characteristic of the contact-line dynamics that appears in our
stability problem is the derivative V ′

0 of the contact-line velocity evaluated at the
equilibrium contact angle. Thus, to answer the title question of this subsection, one
needs to examine the structure of the function V (θ ) near θ = θ0.

Note that, for most liquid–substrate combinations, V (θ ) involves a hysteresis
interval (e.g. Extrand 2006) – i.e. for all θ < θr , the contact line recedes; for θ > θa ,
it advances; and for θr � θ � θa , it is stationary. Accordingly, the equilibrium contact
angle θ0 can assume any of the hysteresis values (in other words, the hysteresis
interval can as well be called the equilibrium interval).

Next, observe that, for all hysteresis/equilibrium values in the example shown in
figure 2(c),

V ′
0 = 0.

As a result, the boundary conditions (2.23) yield η− = η+ =0, i.e. the contact lines in
this case are fixed (pinned to the substrate). We emphasize that the above statement
is not an assumption, but a conclusion resulting from the existence of an hysteresis
interval and smallness of the disturbance’s amplitude. We note also that this conclusion
could have been deduced from the ‘Note added in proof’ and equation (5.10a) of the
paper by Davis (1980).

Moreover, one can arrive at the same conclusion through the following qualitative
argument: consider a drop of liquid on a plate which is being shaken by external
forcing. Our everyday experience suggests that, if the liquid is not perfectly wetting
and the plate’s oscillations are sufficiently weak, the drop would remain in its original
position. The same should hold if the external forcing is replaced with a sufficiently
weak ‘internal’ (self-generated) disturbance – and, finally, if the drop is replaced with
a rivulet. In other words, when examining linear stability of liquids with hysteresis
intervals (be that drops or rivulets) one can safely assume the contact lines to be
fixed.
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A similar conclusion can be drawn for the example shown in figure 2(b) (except for
the cases where θ 0 = θr, θa , for which the derivative V ′

0 does not exist, i.e. the problem
cannot be treated through linearization). Finally, the example in figure 2(a) does not
involve an hysteresis interval – in which case V ′

0 	=0, and the contact lines can move
(the stability of rivulets for this model has been examined by Wilson & Duffy 1998;
Sullivan et al. 2008).

In this paper, we shall confine ourselves to the cases where the dependence of
the contact-line velocity on the contact angle involves a hysteresis interval, and the
rivulet’s contact angle θ 0 is strictly inside it (not on its boundary). In this case, we
can safely assume V ′

0 = 0, and the stability eigenproblem (2.20)–(2.23) reduces to

sφ + iγ kh̄2φ +
d

dx

[
h̄3

3

d

dx

(
d2φ

dx2
− k2φ − φ

)]
− k2

(
d2φ

dx2
− k2φ − φ

)
= 0, (2.24)

φ → 0,
h̄3

3

d

dx

(
d2φ

dx2
− k2φ − φ

)
→ 0 as x → ±x0. (2.25)

Observe also that, since the contact lines no longer move, the terms involving the
non-dimensional slip length μ have been omitted. This affects the solution only in a
region where h � μ, which is extremely narrow (as, typically, μ � 10−5).

2.3. A proof of stability of all rivulets on a plate

Multiply (2.24) by (
d2φ

dx2
− k2φ − φ

)∗

(where the asterisk denotes complex conjugation) and integrate with respect to x

from −x0 to x0. Integrating by parts and using the boundary conditions (2.25), one
can obtain

sI1 = I2 + iI3, (2.26)

where

I1 = −
∫ x0

−x0

(∣∣∣∣dφ

dx

∣∣∣∣
2

+ k2 |φ|2 + |φ|2
)

dx,

I2 =

∫ x0

−x0

h̄3

3

[∣∣∣∣ d

dx

(
d2φ

dx2
− k2φ − φ

)∣∣∣∣
2

+ k2

∣∣∣∣d2φ

dx2
− k2φ − φ

∣∣∣∣
2
]

dx,

I3 = γ k

∫ x0

−x0

h̄2

(∣∣∣∣dφ

dx

∣∣∣∣
2

+ k2 |φ|2 + |φ|2
)

dx.

Then, it follows from (2.26) that Re s < 0 – hence, all rivulets are stable with respect to
all disturbances regardless of their wavenumbers. Observe also that the phase velocity
Im s/k is positive, i.e. all disturbances propagate downstream.

2.4. Discussion

(a) Recall that all our results have been obtained using the lubrication
approximation, which does not take into account inertia (described by the material
derivatives in the Navier–Stokes equations). Generally, inertia can be a destabilizing
effect (e.g. Benilov & O’Brien 2005) – but, even if it does cause instability in the
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problem at hand, it should be weak (as it scales with the Reynolds number, which is
small).

(b) Methodologically, our approach is closest to the normal-mode analysis of Davis
(1980) and Weiland & Davis (1981). The latter work showed that, if the Reynolds
number is below a certain threshold (proportional to the Bond number), a shallow
rivulet with fixed contact lines is stable with respect to long-wave disturbances (such
that their wavelengths are much larger than the rivulet’s width). To draw a connection
between this conclusion and our results, observe that the lubrication approximation
(which was used to derive our main governing equation (2.1)) implies that the
corresponding Reynolds number is small, whereas the Bond number is order-one,
so the criterion of Weiland & Davis (1981) holds automatically – hence, long-wave
disturbances are certainly stable.

Our results in the previous subsection extend the conclusion of Weiland & Davis
(1981) to disturbances with arbitrary wavelengths and, thus, prove the overall stability
of shallow rivulets on a plate.

(c) It is less clear how our results can be compared to those of Schmuki & Laso
(1990) who showed that, in some cases, it is energetically favourable for a rivulet on
a sloping plate to break up into several smaller subrivulets. However, even though
a single large rivulet does not correspond to the absolute minimum of energy, it
can still correspond to a local one, in which case small disturbances are not capable
of destabilizing it. Moreover, since energy is not conserved in viscous fluids and an
Arnold-style analysis of conservation laws is impossible, it is not immediately clear
how energy is connected to the behaviour of disturbances.

3. Rivulets on the underside of a plate
Rivulets on the underside of a plate are described by (2.1) with α > π/2. Then,

to non-dimensionalize (2.1), one should modify the definition (2.3) of the capillary
length Lc,

Lc =

√
− σ

ρg cos α
,

and eventually obtain the following non-dimensional equation:

∂h

∂t
+ γ

∂

∂y

(
h3

3
+ μh2

)
+ ∇ ·

[(
h3

3
+ μh2

)
∇

(
∇2h + h

)]
= 0,

which differs from (2.4) by the last term’s sign. Then, steady-state rivulets on the
underside of a plate are described by

h̄ =
cos x − cos x0

1 − cos x0

, (3.1)

and the stability eigenvalue problem (the equivalent of (2.24)–(2.25)) has the form

sφ + iγ kh̄2φ +
d

dx

[
h̄3

3

d

dx

(
d2φ

dx2
− k2φ + φ

)]
− k2

(
d2φ

dx2
− k2φ + φ

)
= 0, (3.2)

φ → 0,
h̄3

3

d

dx

(
d2φ

dx2
− k2φ + φ

)
→ 0 as x → ±x0. (3.3)
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Figure 3. Eigenfunctions for the case of horizontal plate (eigenproblem (3.4), (3.3)), for
x0 = 3π/4, k =0. The panels are labelled with the corresponding modenumbers n (which
evidently coincides with the number of φ’s zeros at internal points of the interval (−x0, x0)).

In the next two subsections, we shall study (numerically and analytically) the case of
horizontal plate, γ = 0. Then, using it as a ‘foothold’, we shall examine the general
case, γ 	=0, in § 3.3.

3.1. The case of a horizontal plate: numerical results

Let the plate’s slope be zero. Accordingly, γ =0, and (3.2) becomes

sφ +
d

dx

[
h̄3

3

d

dx

(
d2φ

dx2
− k2φ + φ

)]
− k2h̄3

3

(
d2φ

dx2
− k2φ + φ

)
= 0. (3.4)

In this subsection, eigenproblem (3.4), (3.3) will be examined numerically (using the
approach described in Appendix A).

It turns out that, for all allowable x0, problem (3.4), (3.3) admits an infinite sequence
of real eigenvalues. When numbering them, it is convenient to assign the zero number,
n=0, to the largest eigenvalue; n= 1, to the second largest one, etc. The corresponding
eigenfunctions are shown in figure 3, which suggests that a kind of Sturm Oscillation
and Comparison Theorem holds in the problem at hand: the eigenfunction with n= 0
(zeroth mode) does not have roots at internal points of the interval (−x0, x0), the
first mode has one root, etc. Observe also that, due to the symmetry of the problem,
even-numbered eigenfunctions are even and odd-numbered ones are odd.

The dependence of the eigenvalue s on the wavenumber k, i.e. the dispersion relation,
is illustrated in figure 4: evidently, this particular rivulet is unstable with respect to
disturbances of the zeroth mode, n= 0.
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Figure 4. The dispersion curves (eigenvalues s versus wavenumber k) for the case of horizontal
plate and x0 = 3π/4. The curves are labelled with the corresponding modenumbers n. The
instability region s > 0 is shaded.

In fact, the zeroth mode has turned out to be the only unstable mode in the
problem: given that, for n= 0, φ(x) looks pretty much like the profile h̄(x) of the
rivulet itself, we conclude that the instability has a modulational nature. Indeed, since
the ‘full’ disturbance (given by (2.19)) oscillates with y, one can see that the zeroth
mode causes periodic modulations of the rivulet’s amplitude in the down-the-stream
direction. One can assume that, once the the modulations become comparable to the
depth of the rivulet, it will break up into separate pendant drops.

Observe also the ‘mergers’ of even- and odd-numbered dispersion curves as k → ∞.
In this limit, the eigenfunctions become localized near the endpoints of the interval
(−x0, x0) (see figure 5), with two consecutive eigenfunctions almost coinciding in one
half of the interval and being opposite in sign (but still very close in magnitude) in
the other half (see figure 6). At the same time, the eigenvalues corresponding to such
eigenfunctions become very close, and the two dispersion curve merge.

Examples considered for narrower rivulets suggest that the instability disappears
for some threshold value of x0, and all dispersion curves are all located in the stable
semiplane s � 0. Increasing x0, on the other hand, strengthens instability (see figure 7),
i.e. wider rivulets are more unstable than narrower ones.

In the next subsection, the above conclusion will be quantified. It will be shown
that rivulets with x0 � π/2 are stable, and those with x0 > π/2 are unstable.

3.2. The case of a horizontal plate: analytical results

In this subsection, we shall outline a ‘chain’ of theorems proving that x0 = π/2 is
the threshold separating stable and unstable rivulets. The proofs are presented in
Appendix B.
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Figure 5. The dependence of the zeroth (n= 0) eigenfunction on k, for the case of horizontal
plate and x0 = 3π/4. The curves are labelled with the corresponding values of k. Observe that,
with increasing k, the curves become localized near the endpoints of the interval.
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Figure 6. The zeroth and first modes for the case of horizontal plate and k = 3, x0 = 3π/4.
The curves are labelled with the corresponding modenumbers.
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Figure 7. The growth rate s versus wavenumber k for the case of horizontal plate. (a)
x0 = 5π/8, (b) x0 = 6π/8, (c) x0 = 7π/8. The dotted line corresponds to the approximate
formulae (B 18), (B 17) (see Appendix B).

The starting theorem of the ‘chain’ is as follows:
T1: All eigenvalues of problem (3.4), (3.3) are real.
This conclusion focuses one’s attention on those values of k for which s = 0, as they

are the only ones where a dispersion curve s(k) can cross from the stable semiplane
s � 0 into the unstable semiplane s > 0.
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T2: If x0 � π/2, problem (3.4), (3.3) has zero eigenvalues only for k2 = 0. If
x0 >π/2, there are two such points: k2 = 0 and

k2 = 1 − π 2

4x2
0

. (3.5)

This result is particularly important for x0 � 1/2π – in this case, dispersion curves
are either fully stable or fully unstable, as they cannot cross the line s = 0 for any
k2 > 0. Accordingly, if one shows that all dispersion curves are ‘negative’ (stable) for
some k2, this would amount to stability for all k2.

T3: If x0 � π/2, all dispersion curves tend to minus-infinity in the short-wave limit,
i.e.

s → −∞ as k2 → ∞.

Together with T2, this result proves that rivulets with x0 � π/2 are all stable. The
stability properties of wider rivulets are still unclear.

T4: Let s ′ be the derivative of an eigenvalue with respect to k2. Then, if x0 >π/2,
there exists a solution such that

s = 0, s ′ > 0 for k2 = 0.

This result guarantees that, if x0 >π/2, the dispersion curve of one of the modes
is ‘positive’ (unstable) in a certain region near k2 = 0. Even if s(k) eventually crosses
into the negative semiplane (which it indeed does – see figure 4), the corresponding
rivulet is still unstable.

3.3. The case of a sloping plate

A non-zero slope of the plate induces in a rivulet a sheared flow, and sheared flows
are usually viewed as a source of instability. In the problem at hand, however, they
turn out to be a stabilizing factor!

Unfortunately, few analytical results can be obtained for γ 	= 0 – therefore, the above
conclusion is mainly supported by numerical evidence. Generally, one just needs to
compute the neutral stability curve on the (x0, γ ) plane – to do so, we employed the
method described in Appendix A, and the results are presented in figure 8. One can
see that, if the slope is sufficiently large,

γ � 0.835, (3.6)

all rivulets are stable regardless of their widths.
Also, observe the ‘tick’ on the neutral stability curve which subdivides it into two

parts – these parts correspond to different ‘patterns’ of stabilization with growing
γ . If we are increasing γ for x0 � 2.36, the last pocket of instability will be located
near k = 0 (see figure 9a) – whereas, for larger x0, it will be located at medium
wavenumbers (see figure 9b). The latter circumstance is the main reason why the
stability criterion obtained for γ = 0 (and based on the analysis of the dispersion
curve at k2 = 0) cannot be extended to the general case.

In addition, the two patterns of stabilization correspond to two different behaviours
of marginally unstable rivulets. Consider, for example, an (x0, γ ) pair just below the
(a) part of the marginal stability curve in figure 8. Since the corresponding rivulet
is unstable with respect to long-wave modulations, one can expect it to eventually
break up into long/narrow ‘segments’. A rivulet with (x0, γ ) just below the (b) part
of the neutral stability curve, in turn, would break up into drops with comparable x

and y scales.
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Figure 8. The neutral stability curve in the (x0, γ ) parameter space of eigenproblem (3.2)–(3.3)
(the rivulet’s non-dimensional width x0 and the substrate’s slope γ are linked to the physical
parameters by (3.7)). The black vertical ‘tick’ separates the cases where the transition to stability
occurs as in figure 9(a) from the cases where it occurs as in figure 9(b) (the corresponding
segments of the neutral stability curve are labelled (a) and (b), respectively).
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Figure 9. The growth/decay rate Re s versus k, for eigenproblem (3.2)–(3.3). The instability
region s > 0 is shaded. The curves are labelled with the corresponding values of the slope
parameter γ . (a) x0 = 3π/4, (b) x0 = 9π/10. Observe that, in panel (a), the long-wave (k → 0)
part of the spectrum becomes stable after all other wavenumbers.
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In order to place our results in the ‘real-life’ context, we shall express x0 and
γ through the dimensional parameters. Recalling how the spatial variables were
non-dimensionalized (see (2.2)–(2.3), (2.5)), we obtain

x0 =
W

2

√
ρg cos α

σ
, γ =

√
σ

ρg cos α

tan α

H
, (3.7)

where W and H are the dimensional width and depth of the rivulet, ρ and σ are
the liquid’s density and surface tension, α is the angle between the plate and the
horizontal and g is the acceleration due to gravity.

Now our results can be illustrated physically. Let the liquid under consideration be
water, for which

ρ ≈ 1000 kg m−3, σ ≈ 0.073 Nm−1.

Recalling that, for the case of horizontal plate α = 0, all rivulets with x0 � π/2 are
stable, one can use the first equality of (3.7) to obtain a stability condition for the
rivulet’s dimensional width,

W � 8.6 mm.

Next, let the dimensional depth of the rivulet be

H = 0.5 mm.

Then, using the second equality of (3.7), one can see that the stability condition
(3.6) corresponds to

α � 8.7 ◦.

This example shows that rivulets can be stabilized by a fairly mild slope of the
substrate.

Finally, note that, instead of x0, all of our results can be formulated in terms of
the rivulet’s contact angle θ 0 (as the two parameters are related by (2.13)). It is more
instructive, however, to draw the neutral stability curve on the (x0, τ ) plane, where

τ =
2H/W

tan α
(3.8)

is the ‘transverse’ slope of the the rivulet’s surface, normalized by the plate’s slope.
This neutral stability curve is presented in figure 10: observe that instability occurs
only if τ is sufficiently large. Indeed, given that the slope of a liquid’s surface is a
measure of nonlinearity – and nonlinear effects are, generally, the underlying cause
of instabilities – it comes as no surprise that rivulets with sufficiently large τ are
unstable. Furthermore, this conclusion helps to ‘come to terms’ with the stabilizing
nature of the substrate’s slope, as an increase in tan α reduces τ (and, thus, brings it
inside the stability region).

4. Summary and concluding remarks
Thus, we examined the linear stability of rivulets. First, we proved that all rivulets

on a sloping plate are stable and, second, computed a stability criterion for rivulets
on the underside of a plate. The latter is presented in figure 8 as the neutral stability
curve on the (x0, γ ) plane, where x0 is the rivulet’s non-dimensional half-width and γ

is the slope parameter, both defined by (3.7). In the case of a horizontal plate, γ = 0,
instability occurs for wide rivulets, such that x0 >π/2, whereas the slope was shown
to be a stabilizing factor: if sufficiently strong (as in (3.6)), it stabilizes all rivulets
regardless of their widths.
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Figure 10. The same neutral stability curve as in figure 8, but in the (x0, τ ) parameter space
(the rivulet’s non-dimensional width x0 and its slope τ are linked to the physical parameters
by (3.7)–(3.8)).

Finally, note that our governing equation (2.1) was derived under the assumption
that the effect of inertia (described by the material derivatives in the Navier–Stokes
equations) is weak. Generally, inertia is a destabilizing factor (e.g. Benilov & O’Brien
2005), and it would be interesting to explore how it affects the stability of rivulets.
Moreover, inertia becomes particularly important when the plate is close to being
vertical (α ≈ 90 ◦) – in which case the pressure-gradient term in (2.1) is small, and
inertia becomes the main destabilizing factor.

Appendix A. The numerical method for solving (3.2)–(3.3)
Observe that the coefficient of the highest (fourth) derivative in (3.2) involves

h̄3 which vanishes at the contact lines. As a result, the points x = ± x0 – where
the boundary conditions (3.3) are set – are singular. In such cases, one can
employ a numerical approach used previously by Benilov (2003, 2004) for a similar
fourth-order boundary-value problem with singular behaviour at the endpoints
(describing the stability of vortices in a two-layer ocean). This approach is based on
‘shooting’ particular solutions from the endpoints and matching them at an internal
point.

To clarify the behaviour of φ near, say, x = − x0, introduce ξ such that

x = −x0 + ξ .

Then, using Frobenius expansions, one can find the following particular solutions of
(3.2):

φ1 → ξ 2 − s

6θ 3
ξ 3 + O(ξ 4)

φ2 → ξ − 3s

4θ3
ξ 2 ln ξ + O(ξ 3 ln2 ξ )

φ3 → 1 +
3s

θ 3
ξ ln ξ + O(ξ 2 ln2 ξ )

φ4 → ln ξ +
3s

θ 3
ξ

(
1
2
ln2 ξ − ln ξ

)
+ O(ξ 2 ln3 ξ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

as ξ → 0, (A 1)
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where

θ =

(
dh̄

dx

)
x=−x0

.

Generally, φ can be represented in the form

φ = c1φ1 + c2φ2 + c3φ3 + c4φ4,

where c1,2,3,4 are undetermined constants. One can verify, however, that φ3 and φ4

are inconsistent with the boundary conditions (3.3) – hence, c3 = c4 = 0, which leaves
us with two degrees of freedom (undetermined constants c1,2). A similar argument
can be applied to the point x = + x0, i.e. there are four degrees of freedom overall.
Generally, this is precisely what a fourth-order eigenproblem needs to have a solution.

Now, using the first two of asymptotics (A 1) as initial conditions, one can ‘shoot’
two linearly independent solutions, φ

(−)
1 and φ

(−)
2 (the superscript (−) reflects the fact

that these solutions originate from x = − x0). φ
(−)
1,2 can be combined in the form

φ(−) = c
(−)
1 φ

(−)
1 + c

(−)
2 φ

(−)
2 . (A 2)

Note that this solution cannot be extended numerically to x = + x0, as this is a
singular point of (3.2) and any numerical methods would fail near it.

Next, we compute φ
(+)
1 and φ

(+)
2 (where the (+) implies that these solutions originate

from x = + x0) and combine them to obtain

φ(+) = c
(+)
1 φ

(+)
1 + c

(+)
2 φ

(+)
2 . (A 3)

Now, assume that s is an eigenvalue – in which case a global solution, satisfying all
boundary conditions, must exist. Accordingly, solutions (A 2) and (A 3) – as well as
their first, second and third derivatives – can be required to match at any internal
point xi ,

c
(−)
1 φ

(−)
1 + c

(−)
2 φ

(−)
2 = c

(+)
1 φ

(+)
1 + c

(+)
2 φ

(+)
1

c
(−)
1

dφ
(−)
1

dx
+ c

(−)
2

dφ
(−)
2

dx
= c

(+)
1

dφ
(+)
1

dx
+ c

(+)
2

dφ
(+)
1

dx

c
(−)
1

d2φ
(−)
1

dx2
+ c

(−)
2

d2φ
(−)
2

dx2
= c

(+)
1

d2φ
(+)
1

dx2
+ c

(+)
2

d2φ
(+)
1

dx2

c
(−)
1

d3φ
(−)
1

dx3
+ c

(−)
2

d3φ
(−)
2

dx3
= c

(+)
1

d3φ
(+)
1

dx3
+ c

(+)
2

d3φ
(+)
1

dx3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

at x = xi.

This should be treated as set of linear homogeneous equations for c
(−)
1 , c

(−)
2 , c

(+)
1 , c

(+)
2 ;

it has a non-trivial solution only if

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(−)
1 φ

(−)
2 −φ

(+)
1 −φ

(+)
1

dφ
(−)
1

dx

dφ
(−)
2

dx
−dφ

(+)
1

dx
−dφ

(+)
1

dx

d2φ
(−)
1

dx2

d2φ
(−)
2

dx2
−d2φ

(+)
1

dx2
−d2φ

(+)
1

dx2

d3φ
(−)
1

dx3

d3φ
(−)
2

dx3
−d3φ

(+)
1

dx3
−d3φ

(+)
1

dx3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 at x = xi. (A 4)

Equation (A 4) is, essentially, an equation for the eigenvalue s.
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Thus, to compute the eigenvalues of problem (3.2)–(3.3), one should first create a
routine (based on, say, the Runge–Kutta method), computing the left-hand side of
(A 4) as a function of s. This function should be linked to a root-finding routine
(based on, say, the secant method).

Appendix B. Proofs of Theorems T1–T4
(i) To prove T1, multiply (3.4) by(

d2φ

dx2
− k2φ + φ

)∗

(where the asterisk denotes complex conjugation) and integrate with respect to x

from −x0 to x0. Integrating by parts and using the boundary conditions (3.3), one
can obtain

sI1 = I2, (B 1)

where

I1 =

∫ x0

−x0

(
−

∣∣∣∣dφ

dx

∣∣∣∣
2

− k2 |φ|2 + |φ|2
)

dx,

I2 =

∫ x0

−x0

h̄3

3

[∣∣∣∣ d

dx

(
d2φ

dx2
− k2φ + φ

)∣∣∣∣
2

+ k2

∣∣∣∣d2φ

dx2
− k2φ + φ

∣∣∣∣
2
]

dx.

Clearly, I1,2 are both real, but this does not necessarily mean that s is real too, as I1

can be zero (in which case s can be complex). Note, however, that unless

k2 = 0 and
d

dx

(
d2φ

dx2
− k2φ + φ

)
= 0 for all x ∈ (−x0, x0) , (B 2)

or

k2 > 0 and
d2φ

dx2
− k2φ + φ = 0 for all x ∈ (−x0, x0) , (B 3)

I2 is certainly non-zero, and it follows from (B 1) that I1 is non-zero too. Hence,
s = I2/I1 is real.

If either (B 2) or (B 3) does hold, then I2 = 0 and I1 can vanish too. However,
substitution of either (B 2) or (B 3) into (3.4) yields sφ = 0. Thus, for a non-trivial
solution (such that φ 	= 0 for some x), s = 0 – which is again real, as required.

(ii) To prove T2, observe that the eigenvalue problem (3.4), (3.3) is satisfied when

k2 = 0, s = 0, φ = cos x − cos x0, (B 4)

or

k2 = 1 − π2

4x2
0

, s = 0, φ = cos kx, (B 5)

where the latter solution exists only if x0 >π/2 (otherwise k2 < 0). It still remains to
prove that no other solution with s = 0 exists in the problem.

To do so, consider identity (B 1) with s = 0 and observe that it holds only subject
to either (B 2) or (B 3). Then, it can be readily shown that the only φ that satisfies
both (B 2) and the boundary conditions (3.3) is given by (B 4), and the only solution
of (B 3), (3.3) is given by (B 5), as required.

Finally, it is worth mentioning that (B 4) describes an infinitesimal change of the
rivulet’s amplitude.
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(iii) To examine the short-wave (k2 → ∞) limit of eigenproblem (3.4), (3.3), we shall
employ an asymptotic approach developed for similar problems by Simmons (1974),
Killworth (1980) and Benilov, Naulin & Rasmussen (2002).

First of all, observe that the large term involving k4 in (3.4) can only be ‘balanced’
by the fourth-derivative term, i.e.

d

dx
= O(k) as k → ∞. (B 6)

Generally, there are two situations where φ’s derivatives are large: when φ is fast
oscillating or when it is localized in narrow regions near some points. The former
possibility corresponds to the large-modenumber limit, n → ∞ (in which case the
problem can be solved asymptotically using the WKB method). In our case, however,
n is fixed, and so is the number of φ’s oscillations – hence, as k → ∞, φ becomes more
and more localized.

Now we need to find the point(s) of localization, for which there are two possibilities:
internal points of the interval (−x0, x0) or the endpoints. Numerical examples clearly
indicate the latter (see figures 5 and 6), but the safe way to select the localization
point(s) is through ‘trial and error’.

Assume, accordingly, that the eigenfunction is localized near an internal point
x = xl , where

h̄(xl) = h̄l 	= 0,

and expand the coefficients of (3.4) about xl . Taking into account (B 6) and assuming

s = O(k4) as k → ∞

(otherwise the eigenvalue drops out of the problem), we keep the leading-order terms
only and, thus, obtain

sφ +
h̄3

l

3

d2

dx2

(
d2φ

dx2
− k2φ

)
− k2h̄3

l

3

(
d2φ

dx2
− k2φ

)
= 0. (B 7)

Since φ was assumed to be localized in a small region near xl , the boundary conditions
(3.3) should be ‘moved’ to infinity,

φ → 0,
h̄3

l

3

d

dx

(
d2φ

dx2
− k2φ

)
→ 0 as x → ±∞. (B 8)

The coefficients of (B 7) are constant, which makes it easy to solve – but none of
its solutions satisfy the boundary conditions (B 8). We conclude that the localization
point(s) can only be located at x = ± x0.

Consider, for example, x = − x0 and define an ‘inner’ variable,

ξ̂ = k (x + x0) , (B 9)

where the factor k is introduced to make (B 9) consistent with (B 6). It is also
convenient to rescale the eigenvalue,

ŝ =
3s[(

dh̄

dx

)
x=−x0

]3

k

, (B 10)

which corresponds to s = O(k).
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Now, expanding (3.4), (3.3) about x = −x0 and taking into account the leading-order
terms only, we obtain

ŝφ +
d

dξ̂

[
ξ̂

3 d

dξ̂

(
d2φ

dξ̂
2

− φ

)]
− ξ̂

3

(
d2φ

dξ̂
2

− φ

)
= 0, (B 11)

φ → 0,
ξ̂

3

3

d

dξ̂

(
d2φ

dξ̂
2

− φ

)
→ 0 as ξ̂ → 0, +∞. (B 12)

Note that k is implied to be positive here, otherwise the +∞ in (B 12) would be −∞
(see (B 9)).

Now, multiply (B 11) by ξ̂
−2

φ and integrate with respect to ξ̂ from 0 to +∞ (the
convergence of the resulting integrals can be proved by analysing the asymptotics of
φ(ξ̂ ) in a manner similar to (2.14)–(2.16)). Then, integrating where necessary by parts
and using the boundary conditions (B 12), one can obtain

ŝ

∫ ∞

0

ξ−2φ2 dξ̂ = −
∫ ∞

0

ξ̂

⎡
⎣(

d2φ

dξ̂
2

)2

+ 2

(
dφ

dξ̂

)2

+ φ2

⎤
⎦ dξ̂ ,

which clearly shows that ŝ < 0. Finally, it follows from (3.1) that(
dh̄

dx

)
x=−x0

> 0,

hence, (B 10) implies that s is of the same sign as ŝ, i.e. negative (stable).

(iv) Observe that solution (B 4) involves a zero eigenvalue s for k2 = 0, which makes
it a ‘candidate’ for T4. It still remains to show that the corresponding s ′ (the derivative
of s with respect to k2) is positive for k2 = 0.

To do so, differentiate (3.4) and (3.3) with respect to k2 and substitute k2 = 0, s =0,
which yields

s ′φ +
d

dx

[
h̄3

3

d

dx

(
d2φ′

dx2
− φ + φ′

)]
− h̄3

3

(
d2φ

dx2
+ φ

)
= 0, (B 13)

φ → 0,
h̄3

3

d

dx

(
d2φ′

dx2
− φ + φ′

)
→ 0 as x → ±x0. (B 14)

This boundary-value problem determines φ′ and s ′ – but we do not need the former,
whereas the latter can be found without solving the whole problem. Indeed, integrating
(B 13) with respect to x from −x0 to x0 and taking into account the second condition
in (B 14), one can eliminate φ′ and obtain

s ′
∫ x0

−x0

φ dx −
∫ x0

−x0

h̄3

3

(
d2φ

dx2
+ φ

)
dx = 0. (B 15)

Now, taking into account the expression for φ given by (B 4), one can show that∫ x0

−x0

φ dx > 0,

∫ x0

−x0

h̄3

3

(
d2φ

dx2
+ φ

)
dx = − cos x0

∫ x0

−x0

h̄3

3
dx. (B 16)
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Together with the obvious inequality h̄ > 0, conditions (B 15)–(B 16) prove that

s ′ > 0 for x0 > 1
2
π,

as required.
Finally, note that (B 15) can be used to obtain an approximate formula for the

growth rate of the instability. Substituting (3.1) and (B 12) into (B 15), for h̄ and φ

respectively, and evaluating the integrals involved, we obtain

s ′ = − (cos x0)
27 sin x0 + 11 sin 3x0 − 6x0 (9 cos x0 + cos 3x0)

72 (sin x0 − x0 cos x0) (1 − cos x0)
3

. (B 17)

This expression furnishes us with the value of the derivative of s for k2 = 0. Recall
also that, when k2 is given by (3.5), then s = 0. Then, for intermediate values of k2,
one could expect s to be well approximated by

s ≈ s ′k2

⎛
⎜⎜⎝1 − k2

1 − π 2

4x2
0

⎞
⎟⎟⎠ . (B 18)

The approximate growth rate (B 18), (B 17) and the numerical solution of the exact
problem are plotted together in figure 7. One can see that the two results agree
reasonably well – especially, for smaller values of x0.
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