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Evolution of packets of surface gravity
waves over smooth topography
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Weakly nonlinear packets of surface gravity waves over topography are governed by
a nonlinear Schrödinger equation with variable coefficients. Using this equation and
assuming that the horizontal scale of topography is much larger than the width of the
packet, we show that, counter-intuitively, the amplitude of a shoaling packet decays,
while its width grows. Such behaviour is a result of the fact that the coefficient of
the nonlinear term in the topography-modified Schrödinger equation decreases with
depth. Furthermore, there exists a critical depth, hcr , where this coefficient changes
sign – if the packet reaches hcr , it disperses.

1. Introduction
The dynamics of surface gravity waves over bottom topography is one of the clas-

sical problems of fluid mechanics. It has been thoroughly studied in various formula-
tions, including monochromatic waves (see Mei 1983) and shallow-water solitons
(Grimshaw 1970; Ostrovsky & Pelinovsky 1970). However, an important particular
case has been overlooked, as there seem to be virtually no results on shoaling of wave
packets – which omission seems even stranger if one recalls the significance of this
problem for oceanography. The only exception is the paper by Barnes & Peregrine
(1995), who showed that the behaviour of a shoaling packet is quite different to that
of a shoaling monochromatic wave. It turned out that the amplitude of the former
is much lower than what the monochromatic theory predicts, as the packet tends to
spread out – and this effect is more marked for slowly varying topography. However,
no quantitative result was obtained which would link the parameters of the packet to
the bottom topography over which it travels.

The present paper addresses the above omission. In § 2, we formulate the problem
mathematically and, in § 3, examine it asymptotically, assuming that the depth vari-
ations are slow (i.e. the horizontal scale of topography is much larger than the width
of the packet). In § 4, the asymptotic results will be compared to, and confirmed by,
numerical simulations of the governing equation.

2. Formulation
Consider surface gravity waves in a basin with an uneven bottom (see figure 1). We

shall assume that both topography and waves are one-dimensional, i.e. the depth h

of the basin and the elevation η of the surface depend on a single horizontal variable,
x (η also depends on the time t). We shall further assume that all our variables
are non-dimensionalized using a characteristic depth h0 and the acceleration due to
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h(x)

η(x,t)

Figure 1. Formulation of the problem: a packet of surface gravity waves over topography.
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where the asterisks mark the corresponding dimensional variables.
In this paper, we are concerned with weakly nonlinear quasi-monochromatic waves

(packets), which can be characterized by a frequency ω. If the bottom were flat,
ω would correspond to a certain value of the wavenumber k determined by the
dispersion relation of surface gravity waves,

ω2 = k tanh kh. (2.1)

If h depends on x (uneven bottom), (2.1) can still be used as a means of finding k,
which will, however, depend on x (i.e. the frequency of the wave is fixed, while its
wavenumber changes as it propagates over topography – see Djordjevic & Redekopp
(1978), or any textbook on waves in non-homogeneous media). To justify the use of
(2.1) for an uneven bottom, h(x) should be a slowly changing function of x, i.e. its
spatial scale Lh should be much larger than the wavelength 2πk−1.

Under these assumptions, the packet is represented by

η(x, t) = Re

{
A(x, t) exp

[
i

∫
k(x) dx − iωt

]}
,

where A is a slowly varying function (its spatial and time scales must exceed 2πk−1

and 2πω−1, respectively). A(x, t) is governed by a nonlinear Schrödinger equation
with varying coefficients (NSVC) – see Djordjevic & Redekopp (1978):

i

(
∂A

∂x
+

1

cg

∂A

∂t
+ µA

)
− α

∂2A

∂t2
− βA |A|2 = 0, (2.2)
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where

cg(x) =
1

2ω
(tanh kh + kh sech2kh) (2.3)

is the group velocity of surface gravity waves, and

α =
1

2ωcg

(
2ωh tanh kh

cg

+ 1 − h

c2
g

)
,

β =
1

2ω3cg

{
3k4 + 2ω4k2 − ω8 − [2ωk − cg(ω

4 − k2)]2

h − c2
g

}
,

µ =
(1 − tanh2 kh)(1 − kh tanh kh)

tanh kh + kh(1 − tanh2 kh)

d(kh)

dx
. (2.4)

Observe also that the NSVC equation (2.2) is written in the form where the spatial
coordinate x is the ‘evolutionary’ variable (which role is usually played by t).

Before we proceed, it is instructive to consider the case of a flat bottom, where the
coefficients of (2.2) become constant,

cg = const, µ = 0, α = const, β = const.

Provided that

αβ > 0, (2.5)

(2.2) admits a two-parameter family of exact solutions describing steadily propagating
envelope solitons,

A =

√
2α

β
λ sechλτ exp

(
ivτ

2α
+

4iλ2x

4 + v2

)
, (2.6)

where

τ = t −
(

1

cg

+ v

)
x, (2.7)

and λ and v are arbitrary parameters. In what follows, the expression

max{|A|2} =
2αλ2

β

will be referred to as the amplitude of the wave packet, and λ−1 as its width. Finally,
v characterizes the packet’s translation speed (or, to be precise, v is proportional to
the difference between the translation speed and cg).

In the next section, we shall examine what happens to (2.6) in the case of variable
depth.

3. Asymptotic analysis
When studying the evolution of envelope solitons using the NSVC equation (2.2),

one needs to distinguish three asymptotic limits, involving the width λ−1 of the soliton
and the spatial scale Lh of h(x):

λ−1 � Lh, (3.1)

λ−1 ∼ Lh, (3.2)

λ−1 � Lh. (3.3)

Limit (3.1) has been examined by Djordjevic & Redekopp (1978), whereas (3.2) does
not allow analytical treatment. Limit (3.3), in turn, has been studied for the case
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of linear dependence of α and β on x, with attention mainly focused on the points
where one of the two coefficients vanishes (e.g. Karpman & Maslov 1982; Malomed &
Shrira 1991; Clarke et al. 1999). In the present paper, we shall consider the general
case of α and β (as long as they satisfy (3.3)). Physically, this approximation can
be applied to long (2πk−1 ∼ 50–500 m) surface waves in the ocean, travelling over a
slowly varying continental shelf.

In accordance with (3.3), we introduce a slow spatial variable,

X = εx, (3.4)

where ε = λ−1/Lh is a small parameter. Then, equation (2.2) becomes

i

(
ε
∂A

∂X
+

1

cg

∂A

∂t
+ µA

)
+ α

∂2A

∂t2
+ βA |A|2 = 0. (3.5)

We shall seek a solution in the form

A = B(X, τ ) exp

[
iv(X)τ

2α
+

i

ε

∫
4λ2(X)

4 + v2(X)
dX

]
, (3.6)

where

τ = t − 1

ε

∫ [
1

cg(X)
+ v(X)

]
dX (3.7)

((3.6)–(3.7) extend the envelope-soliton solution (2.6)–(2.7) to the case of variable
depth). Substituting (3.6) into (3.5), we obtain

−λ2B + α
∂2B

∂τ 2
+ βB|B|2 = ε

[
τB

∂

∂X

( v

2α

)
− i

(
∂B

∂X
+ µB

)]
. (3.8)

Seek a solution of (3.8) in the form of a series,

B = B (0) + εB (1) + · · · .

The first two orders of expansion yield

−λ2B (0) + α
∂2B (0)

∂τ 2
+ βB (0)

∣∣B (0)
∣∣2 = 0, (3.9)

−λ2B (1) + α
∂2B (0)

∂τ 2
+ β

(
2B (1)

∣∣B (0)
∣∣2 + B (0)2B (1)∗)

= τB (0) ∂

∂X

(
v

2α

)
− i

(
∂B (0)

∂X
+ µB (0)

)
. (3.10)

Assume that B(X, τ ) is bounded as τ → ±∞; in this case, the solution to (3.9) is

B (0) =

√
2α

β
λ sech λτ, (3.11)

which corresponds to the usual envelope soliton. Next, we separate the real and
imaginary parts of (3.10),

λ2Br + α
∂2Br

∂τ 2
+ 3βB (0)2Br = τB (0) ∂

∂X

(
v

2α

)
, (3.12)

λ2Bi + α
∂2Bi

∂τ 2
+ βB (0)2Bi = −

(
∂B (0)

∂X
+ µB (0)

)
, (3.13)
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where Br = ReB (1) and Bi = ImB (1). Equations (3.12) and (3.13) are linear non-
homogeneous ODEs, and the operators on their left-hand sides are self-adjoint. As
can be verified by inspection, the corresponding homogeneous ODEs have solutions
bounded as τ → ±∞,

Br =
∂B (0)

∂τ
, Bi = B (0).

Then, the full (non-homogeneous) ODEs (3.12) and (3.13) have bounded solutions
only if their right-hand sides are orthogonal to the corresponding solutions of their
homogeneous versions, i.e.∫ ∞

−∞
τB (0) ∂B (0)

∂τ
dτ

∂

∂X

(
v

2α

)
= 0, (3.14)

∫ ∞

−∞
B (0)

(
∂B (0)

∂X
+ µB (0)

)
dτ = 0. (3.15)

Since ∫ ∞

−∞
τB (0) ∂B (0)

∂τ
dτ = −1

2

∫ ∞

−∞
B (0)2 dτ �= 0,

it follows from (3.14) that
v

2α
= const1. (3.16)

Next, (3.15) can be rearranged into

∂

∂X

∫ ∞

−∞
B (0)2 dτ + 2µ

∫ ∞

−∞
B (0)2 dτ = 0

and integrated, ∫ ∞

−∞
B (0)2 dτ exp

[
2

∫
µ(X) dX

]
= const2.

Taking into account expression (3.11) for B (0) and expression (2) for µ, we obtain

4αλ

β
(tanh kh + kh sech2kh) = const2. (3.17)

Observe that the expression in brackets is proportional to cg – compare (3.17) and
(2.3).

Equations (3.16) and (3.17) determine the dependence of v and λ (and, hence, the
velocity and amplitude of the wave packet) on x. Interestingly, they can be also
obtained through a simple, although non-rigorous, argument based on the conser-
vation laws of the NSVC equation – see the Appendix.

Equations (3.16) and (3.17) are the main results of the present paper.

4. Examples, numerical simulations, and discussion
Let the depth of the basin be

h(x) = 1 − �h tanh[γ (x − x0)], (4.1)

which describes a depth variation of amplitude �h and width γ −1, located at x = x0

(see figure 1). Then, before choosing a specific example, recall that our asymptotic
results hold only if the topographic term in the NSVC equation is much smaller than
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the other terms. Estimating these terms for topography (4.1) and solution (3.6), we
obtain

γ � λ2.

We should also keep in mind that the NSVC equations has been derived under the
assumption that the length of the carrier wave is much smaller than the width of the
packet, i.e.

λ � k.

Finally, we want the bottom at x = 0 to be essentially flat, i.e.

γ x0 � 1.

To satisfy the above assumptions, we put

x0 = 2000, γ = 0.002, (4.2)

k = 2 at x = 0, (4.3)

λ = 0.1 at x = 0. (4.4)

To put (4.2)–(4.4) in an oceanographic context, assume that the characteristic depth
is, say, h0 = 100 m. Then,

l ≈ 300 m, Λ = 1 km, L = 50 km,

where l = 2πh0k
−1 is the (dimensional) length of the carrier wave, Λ = h0λ

−1 is the
length of the packet, and L = h0γ

−1 is the characteristic scale of the depth change.
The above parameters are consistent with a packet of oceanic swell propagating over
a continental shelf.

First, we shall consider relatively small depth variation, say,

�h = 0.2. (4.5)

The evolution of λ was calculated using formula (3.17), and the resulting amplitude
of the packet is plotted in figure 2. Observe that, unlike monochromatic waves (see
Mei 1983) or shallow-water solitons (Grimshaw 1970; Ostrovsky & Pelinovsky 1970),
the amplitude of the shoaling packet decreases. This tendency was observed in all
examples considered.

In order to verify this counter-intuitive conclusion, the exact NSVC equation (2.2)
has been simulated numerically with the initial condition

A =

√
2α

β
λ sechλt exp

(
ivt

2α

)
at x = 0, (4.6)

where λ is given by (4.4) and v =0.1. The solution was assumed periodic in t , with
a period that would be sufficiently large to eliminate interaction of two successive
solitary waves. The condition of periodicity allowed us to use the pseudo-spectral
method for the t-derivatives in equation (2.2), and we used the Runge–Kutta scheme
for the x-derivative.

The results are shown in figure 2, which demonstrates that the agreement between
the asymptotic and numerical solution is quite good.

We have also carried out simulations for larger values of γ , which correspond
to a steeper depth variation. For γ � 0.05, the evolution of the wave packet was
qualitatively the same, i.e. it would spread out while its amplitude decayed. For larger
γ fission was observed, i.e. the main packet shed ‘secondary’ solitons. Note, however,
that the amplitudes of those were always much smaller than that of the main packet.
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Figure 2. Shoaling of a wave packet with parameters (4.3)–(4.4) over topography (4.1)–(4.2),
(4.5). (a) Relative amplitude of the packet (scaled by its initial value) vs. x. Solid line shows
the numerical solution of the exact initial value problem (2.2), (4.6); dotted line shows the
asymptotic solution (3.17). (b) The corresponding topography.

In order to illustrate what happens for a stronger depth variation, consider

�h = 0.6, (4.7)

with all other parameters being the same as before. In this case, the asymptotic
formula (3.17) predicts that, at x ≈ 2400, the packet’s amplitude vanishes and its
width becomes infinite – which essentially means that the packet disperses. This con-
clusion agrees reasonably well with a direct simulation of the NSVC equation (2.2) –
see figure 3.

In order to understand why this occurs, use (3.17) to express the amplitude of the
packet,

2αλ2

β
=

const22
8

β

α[tanh kh + kh(1 − tanh2 kh)]2
. (4.8)

Next, recall that

α > 0 for all kh,

whereas

β > 0 if kh � 1.363,

β = 0 if kh ≈ 1.363,

β < 0 if kh � 1.363
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Figure 3. Shoaling of a wave packet with parameters (4.3)–(4.4) over topography (4.1)–(4.2),
(4.7). (a) Relative amplitude of the packet (scaled by its initial value) vs. x. Solid line shows
the numerical solution of the exact initial value problem (2.2), (4.6); dotted line shows the
asymptotic solution (3.17). (b) The corresponding topography.

(the critical value of kh ≈ 1.363 was originally calculated by Benjamin & Feir 1967).
If h(x) becomes sufficiently small, kh reaches the critical value, and the amplitude
of the packet vanishes (see (4.8)). Beyond this point αβ < 0, and the packet may no
longer exist as a coherent solitary wave.

It is illustrative to rewrite (4.8) in the form

amplitude of the packet

initial amplitude of the packet
=

α(0)β(x)

α(x)β(0)

{
tanh k(0) + k(0)[1 − tanh2 k(0)]

tanh kh + kh(1 − tanh2 kh)

}2

,

where it is assumed that the packet starts from x =0 and h(0) = 1 (the latter condition
implies that the problem was non-dimensionalized using the (dimensional) depth at
x = 0. Then, we can show the dependence of the packet’s (relative) amplitude on ω

and h, where h is the depth at the packet’s current location – see figure 4.
There is a simple criterion which allows one to distinguish the cases where the

packet disperses from those where it does not. Recall that, at all x, the carrier wave
satisfies the dispersion relation (2.1). Then, multiply (2.1) by hω−2 and apply to the
critical point (i.e. simply put kh = 1.363), which yields

hcr ≈ 1.195ω−2, (4.9)

where hcr is the depth at the critical point. This is, essentially, the desired criterion: if
h(x) > hcr , the packet passes over the depth variation as a coherent solitary wave and
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Figure 4. The amplitude of the packet, relative to its initial amplitude, vs. the non-dimensional
frequency ω and relative depth h(x)/h(0) (it is implied here that, initially, the packet is at
x =0). Cross-sections corresponding to a fixed ω show the ‘trajectories’ of the wave packet as
it travels over varying depth. The cut-off curve (bold line) shows the critical depth, where the
packet’s amplitude vanishes – see (4.9).

disperses otherwise. We shall also rewrite condition (4.9) in dimensional form,

hcr ≈ 1.195gω−2, (4.10)

where g is the acceleration due to gravity and ω is the dimensional frequency of the
carrier wave. Then, (4.10) can be illustrated as follows: let the packet come from ‘deep
water’, where kh � 1 and ω ≈

√
gk. For this case, (4.10) predicts that

hcr ≈ 0.190l,

where l is the initial length of the carrier wave. Thus, for a shoaling packet coming
from deep water with a wavelength of, say, 50 m, the critical depth is approximately
10 m.

Finally, we shall illustrate the importance of the nonlinear effects in the problem at
hand. To do so, we replace the original NSVC equation (2.2) with its linear equivalent

i

(
∂A

∂x
+

1

cg

∂A

∂t
+ µA

)
− α

∂2A

∂t2
= 0. (4.11)

The initial-value problem (4.11), (4.6) has been solved for parameters (4.3)–(4.4),
(4.1)–(4.2), (4.7) – see figure 5. One can see that, in the absence of nonlinearity, the
packet almost immediately spreads out and disperses.



180 E. S. Benilov, J. D. Flanagan and C. P. Howlin

1000 2000 3000 4000 5000 6000
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
am

pl
it

ud
e 

of
 th

e 
pa

ck
et

Figure 5. Shoaling of a wave packet with parameters (4.3)–(4.4) over topography (4.1)–(4.2),
(4.7). Solid line shows the numerical solution of the full nonlinear initial value problem (2.2),
(4.6); dashed line shows the corresponding linear solution (obtained through (4.11), (4.6)).

5. Concluding remarks
We have examined how a packet of surface gravity waves evolves over slowly varying

topography. Assuming that the packet can be ‘locally’ described by an envelope soli-
ton, we related its amplitude and velocity to the ‘local’ depth (see equations (3.16)–
(3.17)). It turned out that, unlike monochromatic waves or shallow-water solitons,
the amplitude of a shoaling packet decays. Moreover, if the depth reaches a certain
critical value (determined by condition (4.10)), the coefficient of the nonlinear term
in the nonlinear Schrödinger equation with variable coefficients changes sign, and the
packet disperses.

Note that, strictly speaking, the asymptotic equations (3.16)–(3.17) are not applic-
able near the critical point. We shall not dwell on this question, but refer the reader to
Malomed & Shrira (1991) and Clarke et al. (1999) where it is examined in detail. We
also note that it would be interesting to compare the present results with simulations
of the full surface-wave equations similar to those carried out by Barnes & Peregrine
(1995) (the latter work does not quite cover the parameter regime considered here).

Appendix. Derivation of (3.16) and (3.17) from conservation laws
It turns out that the dynamics of a wave packet over slowly changing topography

can be deduced from the conservation laws of the NSVC equation (2.2).
Assuming that A decays sufficiently fast as t → ±∞, one can verify that (2.2) has

two conservation laws,

d

dx

∫ ∞

−∞

(
A

∂A∗

∂t
− ∂A

∂t
A∗

)
dt = 0 (A 1)
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and
d

dx

[
(tanh kh + kh sech2kh)

∫ ∞

−∞
|A|2 dt

]
=0. (A 2)

Physically, (A 1) and (A 2) reflect conservation of the net fluxes of momentum and
wave action, passing through a fixed point x between t = −∞ and t = ∞. The energy
flux, to leading order, coincides with the action flux and, thus, does not result in a
separate conservation law. Note also that (2.2) is a conservative system and, as such,
has a Hamiltonian – which, however, explicitly depends on the evolutionary variable
x and, hence, is not conserved.

Now, assume that the main contribution to the net momentum and wave action
comes from the leading-order solution – which, in turn, can be calculated using (3.6),
(3.11):

A ≈

√
2α

β
λ sechλτ exp

[
iv(X)τ

2α
+

i

γ

∫
4λ2(X)

4 + v2(X)
dX

]
, (A 3)

with X, τ given by (3.4), (3.7). Substituting (A 3) into (A 1), (A 2) and carrying out the
integration, we obtain (3.16), (3.17), respectively.

The above calculation can be viewed as a simple, heuristic alternative to the
perturbation expansion presented in § 3.
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