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The stability of a barotropic zonal jet aligned with zonal topography on the beta-
plane is investigated. The topography is assumed to be spatially periodic, with a
period much smaller than the width of the jet. The problem is examined both by
linear normal-mode analysis and by direct numerical simulations.

The following results are obtained. If the topography is sufficiently weak, the
growth-rate of the most unstable normal mode has two maxima. The long-wave
maximum occurs at wavelengths comparable to the width of the jet, and is described
by Benilov’s (J. Phys. Oceanogr. vol. 30, 2000, p. 733) asymptotic theory. The short-
wave maximum occurs at wavelengths comparable to the scale of the topography or
at a shorter one. The nonlinear evolution of the flow is, in this case, similar to that in
the case of a flat bottom, i.e. the jet begins to meander and breaks up into separate
vortices.

For a stronger topography, long-wave disturbances are stable, as predicted by
Benilov’s (2000) asymptotic theory, whereas short-wave instabilities are still present.
The instabilities are strongest near the lines of maximum shear. In nonlinear simula-
tions, the flow becomes turbulent within narrow strips along these lines, and potential
vorticity there homogenizes. As the strips grow wider, they begin to interact, and the
subsequent evolution is again similar to that of a jet over a flat bottom: large-scale
meandering and break-up of the jet into vortices. In the presence of topography, how-
ever, the vortices are ‘filled’ with short-wave turbulence, and break-up occurs later.

1. Introduction
Most large-scale oceanic currents are unstable, and, in most places, the bottom of

the ocean is uneven. Yet, little is known about the effect of bottom topography on
the stability of oceanic currents.

In the simplest case of zonal barotropic flow and zonal topography, the monotoni-
city of potential vorticity (PV) across the flow guarantees stability. Accordingly, the
stability of a flow can be affected by topography through its contribution to the PV
field: for example, topography can make an otherwise monotonic PV non-monotonic
and, thereby, potentially unstable. Note, however, that non-monotonicity of PV is a
necessary, but not a sufficient condition for instability.

Pedlosky (1980) considered a problem where topography-induced non-monotonicity
of PV does destabilize a three-dimensional quasi-geostrophic flow. In that example, the
velocity profile was linear (in both depth and the transverse horizontal variable) and
the topography was parabolic, whereas the instability was bottom trapped. Further
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examples of destabilization of shear flows by ridges and trenches, both for barotropic
flow and for stratified flow, were considered by Schmidt & Johnson (1997).

Benilov (2000a) studied the effect of topography with a much smaller horizontal
scale than the flow. He found that such short-scale bottom irregularities can stabilize
the traditional jet instability – despite the fact that they make the PV field strongly
non-monotonic. Benilov’s (2000a) study, however, was not complete, as only long
disturbances were considered, with wavelengths comparable to the width of the jet.
Short disturbances, with wavelengths comparable to the topographic scale, were not
tractable by the asymptotic method employed.

The present paper deals with the stability of large-scale currents over small-scale
topography with respect to small-scale disturbances, and thus complements Benilov’s
(2000a) study. It is organized as follows. In § 2, we formulate the governing equations.
In § 3, we discuss the stability of a uniform shear flow over a single rectangular ridge
(this simple example illustrates how topography can destabilize a shear flow). Then,
the stability of a Gaussian jet over sinusoidal topography is examined in § 4 by means
of linear stability analysis and, in § 5, by direct simulation of the nonlinear governing
equations.

2. Formulation
Consider a barotropic ocean of variable depth H (x, y), where x and y are the

spatial coordinates (the x-axis is directed eastwards), on the beta-plane. The flow is
described by the streamfunction Ψ (t, x, y), where t is the time. We assume Ψ to be
governed by the barotropic vorticity equation (e.g. Pedlosky 1987),

∂∇2Ψ

∂t
+ J (Ψ, ∇2Ψ + D) + β

∂Ψ

∂x
= 0, (2.1)

where the function

D(x, y) =
f0

H0

(H0 − H )

describes the height of topography relative to the mean level of the ocean’s bottom
(H0 is the mean depth), f0 and β are the Coriolis parameter and its meridional
gradient, and J is the Jacobian. Equation (2.1) is valid in the quasi-geostrophic limit,
i.e. if the Rossby number is small and the topography is weak (i.e. |H − H0| � H0).

In this paper, we consider the simplest case of a zonal flow, U = U (y), aligned with
zonal topography, D = D(y). Let the flow be perturbed by a small disturbance, ψ ,

Ψ = −
∫

U dy + ψ. (2.2)

Substitute (2.2) into (2.1) and omit nonlinear terms. For normal modes, i.e. solutions
of the form

ψ(x, y, t) =φ(y)ei(kx−ωt), (2.3)

where k and ω are the wavenumber and frequency of the disturbance, the resulting
equation becomes

(U − c)

(
d2φ

dy2
− k2φ

)
+

(
dD

dy
+ β − d2U

dy2

)
φ = 0, (2.4)

where c = ω/k is the phase speed of the disturbance. The boundary conditions are

φ → 0 as y → ± ∞. (2.5)
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(2.4)–(2.5) form an eigenvalue problem, for which φ is the eigenfunction and c is the
eigenvalue. If Im c > 0, the flow is unstable.

Following Fjørtoft’s (1950) stability criterion, we can prove that problem (2.4)–(2.5)
does not have unstable solutions if there exists a constant C, such that

(U − C)
dQ

dy
< 0 for all y, (2.6)

where Q(y) = −U ′(y) + D + βy is the potential vorticity of the background flow.

3. Stability of shear flows along a rectangular ridge
In this section, we shall discuss the stability of a uniform shear flow along a rect-

angular ridge or trench – which is the simplest example illustrating how topography
may destabilize an otherwise stable flow. It is also relevant to flows of arbitrary
profile, provided the ridge is much narrower than the length scale of the flow.

Consider a ‘top hat’ topography defined by

D(y) =




f0 �H

H0

at |y| � 1
2
a,

0 at |y| > 1
2
a,

(3.1)

where a is the width and �H the height of the ridge (for a trench, �H < 0). Assuming
that the wavelength of the disturbance and a are much smaller than the horizontal
scale of the flow, we approximate the flow profile locally by a uniformly sheared
current,

U (y) = Sy,

where S =dU/dy is the local shear. We also assume that the topography is much
stronger than the beta-effect, and therefore neglect the latter. The solution of (2.4)
in the three regions defined by (3.1) is then a superposition of simple exponentials,
which have to be matched by the appropriate jump conditions at the topographic
discontinuities. The calculations are elementary, and the result can also be obtained as
a special case of equation (4.6) in Schmidt & Johnson (1997). The resulting dispersion
relation is

ω = ± 1
2
|S|

√
(ka − B)2 − B2e−2ka, (3.2)

where the topography amplitude parameter

B = −f0 �H

S H0

(3.3)

reflects the strength of topography relative to the shear of the flow†.
If �H and S are of the same sign (i.e. B < 0), we can readily see that ω is real;

hence, the flow is stable. If �H and S are of opposite signs (B > 0), there is a band of
unstable wavenumbers (see figure 1). For B → ∞, the unstable band moves towards the
short-wave end of the spectrum (it is centred at k ≈ B/a) and becomes exponentially
narrow, whereas the growth rate becomes exponentially small (proportional to e−B).
For B ∈ (0, 1), on the other hand, the band includes k =0, as can be seen by expanding

† Equation (3.2) is the same as obtained previously by Dritschel (1989) for a strip of uniform PV
in background shear, if we identify SB with ω, the strip PV, and B with (1 − Λ)−1, where Λ is the
shear to PV ratio. The nonlinear development of unstable strips is discussed in this reference.
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Figure 1. The non-dimensional growth rate (3.2) vs. non-dimensional wavenumber, for the
case of uniformly sheared flow and an isolated rectangular ridge. The topography amplitude
parameter (3.3) is B = 0.5, 1, 1.5, 2, 2.5, 3 (curves 1–6, respectively).

equation (3.2) for ka � 1:

ω 	 ±i|S|
√

1
2
ka(B − B2).

Such large-scale instabilities usually lead to meandering and, physically, are the most
important ones.

We conclude, as did Schmidt & Johnson (1997), that a rectangular ridge (�H > 0)
destabilizes a cyclonic shear flow (S < 0), whereas a trench (�H < 0) destabilizes an
anticyclonic one (S > 0). In other words, the flow in this example is unstable in all
cases where Fjørtoft’s criterion (2.6) does not guarantee stability. Most importantly,
the instability has the same length scale as the topography, or even a shorter one
(if B 
 1).

For a wide jet over small-scale topography with both ridges and trenches, these
results would indicate that short-wave topographic instability occurs on both (cyclonic
and anticyclonic) flanks of the jet. However, topographic irregularities are usually not
isolated or separated by wide gaps, and disturbances localized near neighbouring
irregularities interact with one another. In addition, the sharp edges make a rectan-
gular ridge a poor approximation of real oceanic topography. Thus, in the next
section, we shall consider sinusoidal topography, which is free from both of these
shortcomings.
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4. Stability of a Gaussian jet over sinusoidal topography
The stability of barotropic jets over short-scale zonal topography of general shape

has previously been examined by Benilov (2000a). He showed that modes with a
much larger length scale than the topography are stable provided a ‘topographic
Richardson number’ exceeds 1/4,

Ritopo =

(
f0 �H

Smax H0

)2

> 1
4
,

where �H is the mean-square height of topography and Smax is the maximum shear
of the jet. Applying this to sinusoidal topography (for which �H = �H/

√
2) yields

the stability criterion

Ritopo = 1
2

(
f0 �H

Smax H0

)2

> 1
4
. (4.1)

(Note that Ritopo = B2/2 – compare (4.1) with (3.3).)
On the other hand, the simple example discussed in § 3 of the present paper indicates

that we can expect instabilities for any values of Ritopo at crests or troughs where
B > 0. The length scale of these unstable modes must be too small for Benilov’s
(2000a) analysis to be applicable. We shall therefore re-examine the problem for a
wider range of wavelengths numerically (using a method employed previously by
Benilov & Sakov 1999).

Thus, we shall investigate the stability of a Gaussian jet over sinusoidal topography,

U (y) = Umax exp

(
− y2

2L2

)
, (4.2)

D(y) =
f0�H

H0

sin

(
2π y

a

)
, (4.3)

where Umax and L are the amplitude and half-width of the jet, and �H and a are the
amplitude and spatial scale of the topography. We shall consider a strong (in terms
of net mass flux) westward current with the parameters

Umax = −0.25 m s−1, L = 50 km, (4.4)

in a mid-latitude ocean

H0 = 5000 m, θ =30U, (4.5)

where θ is the latitude. Note that, for disturbances with a length scale comparable to
that of the jet, the beta-effect is relatively weak, but not negligible – as characterized
by the following non-dimensional parameter:

βL2

Umax

≈ 0.2.

However, for disturbances with a similar length scale to the topography, the beta-
effect can be neglected. The parameters of the topography were chosen on a more or
less ad hoc basis. We assume that the distance between two neighbouring topographic
crests is a tenth of the half-width of the jet,

a = 5 km , (4.6)

and consider several particular values of �H in the range

0 � �H � 150 m. (4.7)
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Figure 2. The asymptotic (Benilov 2000a) non-dimensional growth rate vs. non-dimensional
wavenumber, for the Gaussian jet and sinusoidal topography (4.2)–(4.6). The height of
topography is �H =0, 50, 100 (curves 0–2, respectively).

First of all, we examine (4.2)–(4.7) using Benilov’s (2000a) asymptotic theory. Only
one mode is found, and it is unstable for �H � 145 m. (Its growth rate for various
values of �H is shown in figure 2.) At �H ≈ 145 m, topography stabilizes the flow.
In this case, Ritopo ≈ 0.242, so that criterion (4.1) is almost satisfied.

The growth rate of the same mode (which will be referred to as the ‘main’ mode)
has also been computed using the exact equation (2.4). A typical case (�H = 50 m) is
illustrated in figure 3. The following features of the main mode can be observed:

(i) For kL � 1, the asymptotic curve is indistinguishable from the exact one, but,
for shorter wavelengths, the two curves diverge (figure 3). Most importantly, instability
exists far beyond kL ≈ 1.38, where the asymptotic theory places its short-wave cutoff.

(ii) For kL � 3, the eigenfunction has two localization points, y = ±y∗, which are
situated at the topographic crest or trough closest to the point of maximum shear.
The disturbance is no longer sensitive to the global structure of the jet, and these
localization points can be examined separately. Furthermore, the jet profile (4.2) can
now be replaced by its expansion about y∗,

U ≈ Umax exp

(
− y2

∗
2L2

)[
1 − y∗

L2
(y − y∗)

]
, (4.8)

or a similar expansion about −y∗ (both cases result in the same growth rate). In
addition, since we are dealing with short disturbances, we can neglect the beta-effect,

β = 0. (4.9)
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Figure 3. The non-dimensional growth rate vs. non-dimensional wavenumber, for the
Gaussian jet and sinusoidal topography, (4.2)–(4.6), with �H = 50 m (B = 0.24, Ritopo = 0.029).
The solid line shows the numeric solution of the exact equation (2.4), the dotted line shows
Benilov’s (2000a) long-wave approximation, and the dashed line shows the approximation
of local shear (4.8)–(4.9). The shaded region in this figure corresponds to the entire area of
figure 2.

In what follows, approximation (4.8)–(4.9) will be referred to as the ‘approximation
of local shear’ (ALS). The growth rate when using ALS is shown in figure 3 – we can
see that it approximates the exact growth rate sufficiently well.

Unlike the asymptotic model, the exact equation (2.4) has more than one eigenmode,
and the most convenient way to classify them is to consider a sufficiently large k, in
which case the eigenfunctions become localized near topographic crests or troughs.
Modes localized closer to the point of maximum shear have higher growth rates, with
the ‘closest’ mode being, generally, the most unstable one.

We have examined other examples, two of which (�H = 100 m and �H =150 m)
are shown in figures 4a and 4b. In the latter case, topography is strong enough
to completely eliminate the long-wave maximum of the growth rate. Note that the
necessity of resolving the long scale L associated with the jet and the short topographic
scale a makes the exact equation (2.4) extremely difficult to solve numerically. The
difficulty becomes particularly severe for larger �H and k – as a result, we were unable
to solve (2.4) with a consistently high accuracy for �H > 50 m, kL > 3. Instead, we
used the approximation of local shear (the uniform shear flow (4.8) does not have an
intrinsic spatial scale, hence, a is the only spatial scale – which makes this problem
easy to solve numerically). For growing �H , the ALS works increasingly well, which
is particularly visible in figure 4b.

We have also calculated the dimensional parameters of the long- and short-wave
maxima of the growth rate, for various heights of topography (see table 1).

The following conclusions can be drawn from figure 4 and table 1:
(i) As the height of topography grows, the asymptotic approach fails completely,

and for �H � 145 m (for which Ritopo > 1/4, and criterion (4.1) predicts stability) the
flow is still unstable.
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Figure 4. The same as figure 3, but for: (a) �H = 100 m (B = 0.48, Ritopo = 0.114); (b) �H =
150 m (B = 0.72, Ritopo = 0.258). The long-wave stability criterion (4.1) is satisfied; hence, the
asymptotic growth rate is zero and is not shown.

�H = 0 m �H = 50 m �H = 100m �H = 150 m

LWM
λ≈ 214 km
τ ≈ 12 days

λ≈ 207 km
τ ≈ 18 days

λ≈ 182 km
τ ≈ 32 days

−

SWM − λ≈ 22 km
τ ≈ 32 days

λ≈ 12 km
τ ≈ 20 days

λ≈ 8 km
τ ≈ 17 days

Table 1. The dimensional parameters of the long- and short-wave maxima (LWM and SWM)
of the growth rate, for various heights of topography. λ= πk−1 is the spatial scale, τ = (Imω)−1

is the e-folding time.
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(ii) Inreasing topography moves the instability toward the short-wave end of the
spectrum. (The most unstable wavenumber is approximately proportional to the height
of topography, as suggested by the scaling k ≈ B/a obtained for the rectangular ridge.)
It also gradually strengthens the instability†.

In addition to the strong westward jet (4.4) illustrated here, we have also examined
westward and eastward jets with other parameters. Similar results have been obtained,
with one exception: the beta-effect influences eastward currents more strongely than
their westward counterparts and, as a result, eastward jets are less susceptible to long-
wave instability. The short-wave instability, in turn, is not sensitive to the beta-effect
and all our conclusions remain exactly the same.

The short-wave topographic modes are by themselves unable to cause meandering
and break up the jet. Does this mean that they are unimportant physically? This
question cannot be answered by the normal-mode stability analysis; it will be
addressed in the next section by direct numerical simulations.

5. Simulations of a Gaussian jet over sinusoidal topography
In order to investigate the long-term evolution of the jet, (2.1) has been simulated

numerically by means of the CASL algorithm (Dritschel & Ambaum 1997, see also
the Appendix). We have simulated the Gaussian jet, (4.2), with parameters (4.4)–
(4.5), for a wide range of topographies ((4.3), (4.6) with 0 � �H � 500 m). The
computational domain is a periodic channel of length and width 2Lc, with free-slip
rigid-wall boundary conditions in y:

∂Ψ

∂x
= 0 at y = ±Lc.

The half-width of the channel used in the simulations is approximately Lc = 160 km,
which is a little more than three times wider than the jet. Such a relatively narrow
channel can be used because of the short-wave nature of the instabilities (which are
mainly localized in the jet and do not spread out). At the same time, large-scale
flows over short-scale topography are extremely difficult to model numerically, and
we needed all the resolution we could muster.

The initial condition consists of a weakly perturbed Gaussian jet, as described in the
Appendix. Several examples of topography have been examined, with the following
results.

If the topography is weak (�H < 150 m) and does not stabilize long-wave distur-
bances, the evolution of the flow is similar to that in the case of a flat bottom – i.e.
the jet begins to meander and breaks up into separate vortices (see figure 5). Unlike
the flat bottom case, however, these vortices are ‘filled’ with short-wave turbulence.

If the topography is strong enough to suppress the long-wave instability, the short-
wave instability first develops in accordance with the linear analysis presented in the
previous section. An example with �H = 150 m can be seen in figure 6. Instability
first appears near the lines of maximum shear, where the growth rate is largest (its
wavenumber differs from the wavenumber of maximum growth, computed through
linear normal-mode theory, by no more than 3%). The growing disturbances then
become nonlinear and ‘roll up’ (at t ∼ 90 days). Eventually, two turbulent strips
form (at t ∼ 110 days), the potential vorticity within which has, to a certain extent,

† This conclusion applies to topography with �H � 500 m. For larger �H , the instability evens
out and begins to weaken.
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Figure 5. Evolution of PV for a Gaussian jet over sinusoidal topography, (4.2)–(4.6), with
�H = 50 m. The times shown are t = 15, 51, 87, 124, 160, 196 days.

homogenized (see figure 7a). Effectively, this means that a rapidly varying zonal flow
develops in the strips, which cancels the topographic part of the PV, and at the same
time has a small enough amplitude to leave the velocity profile essentially unperturbed
(see figure 7b). The turbulent strips gradually grow wider, and at t ≈ 160 days begin to
interact, which leads to meandering. This can be interpreted as a secondary instability
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Figure 6. Evolution of PV for a Gaussian jet over sinusoidal topography, (4.2)–(4.6), with
�H = 150 m. The times shown are t =15, 51, 87, 124, 160, 196 days.

acting on a flow with partially homogenized PV, i.e. the PV-homogenized strips
destabilize long-wave disturbances, which were initially stable because of small-scale
topography.

Eventually, the jet breaks up into turbulence-filled vortices – see the last frame
(t = 196 days) of figure 6. Note, however, that the vortices are very weak, and the
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Figure 7. Zonally averaged non-dimensional characteristics of the jet with �H = 150 km vs.
non-dimensional y. The initial profiles are shown by dotted lines. (a) potential vorticity at
t = 110 days, (b) velocity at t = 110 days, (c) potential vorticity at t = 196 days, (d) velocity at
t = 196 days.

mean flow is essentially intact (it has lost less than 3% of its initial amplitude, see
figure 7d).

We have also examined two cases of stronger topography, �H = 350, 500 m. It
turned out that these are qualitatively similar to the previous case, but turbulent strips
with homogenized PV develop later (at the same time, suprisingly, the linear growth
rates in the cases considered are very close: the e-folding times for �H = 150, 350,

500 m are τ = 17, 17, 18 days, respectively).

6. Summary and concluding remarks
We have examined the stability of a jet over short-scale sinusoidal topography. A

normal-mode linear analysis has been carried out (§ 4), supported by simulations of
the nonlinear flow evolution (§ 5). The following results have been obtained.

If the topography is weak and does not satisfy Benilov’s (2000a) asymptotic stability
criterion (4.1), the growth rate has two maxima (a typical example is shown in figure 3).
The long-wave maximum occurs at wavelengths comparable to the width of the jet
and is described by Benilov’s (2000a) asymptotic theory. The short-wave maximum is
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associated with topography. Many unstable short-wave modes exist, each having two
localization points at topographic crests or troughs located on opposite flanks of the
jet. The mode with the largest growth rate is localized near the points of maximum
shear.

In this case, the nonlinear large-scale evolution of the flow is similar to that in the
flat-bottom case, i.e. the jet begins to meander and breaks up into separate vortices
(see figure 5). Because of the short-wave topographic modes, the vortices are filled
with small-scale turbulence.

For stronger topographies, satisfying criterion (4.1), the linear analysis shows that
there is no long-wave instability. The short-wave modes, however, are still present
and, in nonlinear simulations, they evolve into turbulent strips centred around the
lines of maximum shear on the flanks of the jet. Within these strips, the PV field
is homogenized by the turbulence. The perturbation of the zonally averaged flow
implied by the homogenization is very small compared to the background flow.

The strips slowly widen and start to interact, which leads to a large-scale secondary
instability. Because of this instability, the jet meanders and, eventually, breaks up into
vortices. Compared to the case of a flat bottom, however, breakup occurs later and
slower.

Note that our results justify applications of Rayleigh’s and Fjørtoft’s stability
criteria to large-scale oceanic flows, even though oceanic topography seems to
violate both of these conditions. Indeed, since short-scale topographically induced
PV variations give rise to short-wave instability which homogenizes the PV field, we
conclude that the most relevant initial condition in modelling geophysical problems
includes a weak short-scale flow component that compensates for the short-scale
topographic PV variations. The resulting PV field varies on the scale of the flow,
rather than on that of the topography.

Note also that such a PV-field does not support topographic waves of the kind
studied by Rhines & Bretherton (1973), Reznik & Tsybaneva (1999), Bobrovich &
Reznik (1999), Vanneste (2000, 2003), Benilov (2000a) and others. In fact, our results
call the practical reality of such waves into question, since they require for their
existence small-scale PV-variations which are unstable in the presence of a large-scale
flow.

Finally, we note that the model used in the present paper must be extended to
include density stratification of the ocean and two-dimensional topography. The
former is relatively easy to implement (see Samelson 1992; Reznik & Tsybaneva
1999; Bobrovich & Reznik 1999; Benilov 2001; Vanneste 2003). The latter extension
is much more difficult: so far, only one setting has been found, where the problem
has an analytic solution (Vanneste 2000; Benilov 2000b). It appears that numerical
simulation is the only tool available for the case of two-dimensional topography.

Appendix. Numerical simulations
A.1. Basic approach

The nonlinear flow evolution is simulated using the Contour-Advective Semi-
Lagrangian (CASL) algorithm (Dritschel & Ambaum 1997). In this algorithm, PV
advection is enforced explicitly by tracking a set of PV contours, across which the
PV jumps by an increment �q . The contours are represented by a finite variable
number of points between which local cubic splines are used for interpolation (details
for this and other aspects of the algorithm may be found in Dritschel & Ambaum
1997).
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0/Q (horizontal axis), with 20 PV levels (L is the half-width of the channel,
Q = max{q ′}). (b) The discrete profile of the dimensionless topography D/Dm = sin 2πy/a,
where Dm = f0�H/H0q

′
0/Q, in the domain [0, 7a/4] in πy/L (vertical axis) and [−1, 1] in

D/Dm (horizontal axis). Here, five PV levels are shown, as used in the simulations reported.

The CASL algorithim also makes use of an underlying grid to obtain the velocity
field efficiently. This is done by inverting the definition of PV, q = ∇2Ψ + D + βy,
for the streamfunction Ψ and then differentiating Ψ with respect to x and y. Details
of this procedure differ little from that discussed in Dritschel & Ambaum (1999) for
the three-dimensional (multi-layer) algorithm, apart from the use here of rigid-wall
boundaries in y to simulate flow in a periodic channel. Conservation of momentum
(in x) is enforced explicitly.

A.2. PV discretization

The CASL algorithm works with material contours, here contours of the full PV,

q = q ′ + βy + D,

where q ′ = ∇2Ψ is the part of the PV associated with the flow and D is the contribu-
tion of topography. Hence, to recover Ψ from q , we invert Laplace’s operator on
q − βy − D. Initially, β , D, and the flow q ′(x, y, 0) = q ′

0(x, y) are all given. From these,
we construct the initial PV q0 = q ′

0 + βy + D by linearly superposing the flow, the
background planetary vorticity, and the topography. This is done here by discretizing
each effect separately and then superposing the contours.

The planetary vorticity βy is discretized using nβ = 128 equally-spaced contours,
with equal PV jumps �qβ = βLc/nβ , where Lc is the half-width of the channel (see
DiBattista & Polvani 1998; Lam & Dritschel 2001).

The discretization of the initial flow q ′
0 and topography D are accomplished in the

same manner. Equal PV jumps are used (or half jumps adjacent to the domain walls)
with care to ensure that the circulation contained between any pair of jumps is equal
to the corresponding circulation of the continuous distributions of q ′

0 and D. Figure 8
illustrates the discretization of these profiles used in the current work.

A.3. The initial disturbance

In order to introduce a disturbance in the otherwise zonal problem, all of the PV
contours are disturbed by randomly displacing each node in y by up to one grid length
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(uniformly). Then 10 successive 1-2-1 averagings are done (for each node and the
nodes adjacent to it) to smear the disturbance in x, but after each averaging the initial
r.m.s. displacement of the contour is restored by multiplying the node displacements
by an appropriate factor. This results in a random disturbance correlated over about
10 grid lengths in x and reduces the high-wavenumber component. Pure random
noise can lead to local contour slopes of order unity and can cause contour folding
before the onset of the linear instability. Averaging keeps the initial contour slopes
small, consistent with linear theory.

A.4. Parameter settings

In all the simulations conducted, we have ensured an equal grid length in the x and y

directions, �y =�x. Also, we have used a grid 4 times finer in each direction (mg = 4)
to carry out the PV contour-to-grid conversion (before averaging back to the inversion
grid, where the velocity is computed). The node distribution and redistribution on
contours depends on two prescribed lengths: L, which characterizes the broad features
of the PV field, and δ, the smallest contour scale as well as the scale of ‘surgery.’ In the
Gaussian jet simulations, L is chosen to be twice the wavelength of the most unstable
linear mode. The surgical scale is given by δ = �x/(5mg), or a twentieth of the grid
scale (for mg = 4), following the recommended setting in Viúdez & Dritschel (2002).
From these two parameters, the dimensionless node-spacing parameter is computed
from µ = 2

√
δ/L. The density of nodes along a contour is approximately proportional

to the square root of curvature and inversely proportional to µ – details may be
found in Dritschel & Ambaum (1997). Nodes are redistributed every other time step.

For the time integration, a fourth-order Runge–Kutta method is used with the
recommended time step �t � 0.025/max(|q ′

max|, |Dm|). Note that no CFL condition is
required for stability.
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