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Stability of vortices in a two-layer ocean with
uniform potential vorticity in the lower layer
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Department of Mathematics, University of Limerick, Ireland

(Received 17 March 2003 and in revised form 21 July 2003)

It is well-known that oceanic vortices exist for years, whereas almost all theoretical
studies indicate that they must be unstable. A rare exception is the work by Dewar &
Killworth (1995), who demonstrated that a Gaussian vortex in the upper layer of a
two-layer ocean becomes stable if accompanied by a weak co-rotating circulation in
the lower layer. Note that this paper assumed the lower-layer circulation to have the
same profile as the main (upper-layer) vortex. The present paper considers the case
where the profile of the circulation in the lower layer is determined by the condition
that potential vorticity (PV) there is constant – which models a vortex surrounded
by water of a different origin. Given that most oceanic vortices are shed by frontal
currents, such model appears to be more realistic than any ad hoc choice. The stability
of vortices with uniform lower-layer PV is examined for both quasigeostrophic and
ageostrophic cases, numerically and asymptotically, assuming that the upper layer
of the ocean is thin. It is shown that such vortices are stable for a wide range of
parameters. The effect of vortex stabilization is interpreted through representation
of the unstable disturbance by two phase-locked Rossby waves, rotating around the
vortex in the upper and lower layers. Then, if the lower-layer PV gradient is zero, it
cannot support the corresponding wave, which inhibits the instability.

1. Introduction
The contradiction between experimental and theoretical estimates of the lifespan of

oceanic vortices (rings) was identified more than two decades ago. Observations (e.g.
Lai & Richardson 1977) suggest that rings exist for years, whereas theoretical studies
(e.g. Ikeda 1981; Flierl 1988; Helfrich & Send 1988; Carton & McWilliams 1989;
Ripa 1992; Killworth, Blundell & Dewar 1997; Benilov, Broutman & Kuznetsova
1997; Benilov 2003; Katsman et al. 2003) indicate that they are unstable. Only two
theoretical papers claimed to have found examples of stable vortices.

The first such claim was made by Paldor & Nof (1990). Using the model of a
two-layer ocean, they considered a solid-body rotating vortex in the upper layer, with
no flow in the lower layer, and demonstrated that it is stable if sufficiently thin (less
than, approximately, a quarter of the total depth of the ocean). This result would
resolve the paradox, as most oceanic vortices are indeed thin. Later, however, Benilov
(2003) examined thin vortices of arbitrary shape, and showed that their instability is
caused by the so-called critical levels – which devalued the result of Paldor & Nof
(1990): a solid-body vortex does not have critical levels and, therefore, it is not a
good model for (differentially rotating) oceanic rings.

Another mechanism of ring stabilization has been put forward by Dewar &
Killworth (1995), who considered a vortex in the upper layer and a relatively weak
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co-rotating circulation in the lower layer (‘deep flow’). It turned out that the latter
can stabilize the vortex, or at least considerably reduce the growth rate of instability.
This result was later extended to other vortex shapes by Katsman et al. (2003): in all
examples considered, a co-rotating deep flow reduced the growth rate (although no
profile other than the Gaussian one would become entirely stable).

Before we describe the results of the present paper, note that Dewar & Killworth
(1995) and Katsman et al. (2003) assumed that the deep circulation has the same
shape as the upper-layer vortex. We shall use a different approach: the profile of
the deep flow will be derived from the assumption that potential vorticity (PV) in
the lower layer is constant. Such a model is suggested by the fact that most oceanic
vortices are shed by unstable frontal currents: when a vortex moves away from the
current and arrives at a new location, the PV field below it cannot change and remains
equal to its initial, background value. Observe also that the interface displacement,
caused by the vortex, contributes to the lower-layer PV – hence, to maintain its initial
value, the lower layer spins up. Remarkably, the resulting circulation is always co-,
and never counter-, rotating.

The present paper builds on the foundation of Dewar & Killworth’s (1995) physical
idea, using the mathematical tool developed by Benilov (2003). We shall consider
vortices in a two-layer ocean with thin upper layer and weak circulation in the
lower layer. An asymptotic stability criterion, based on these two assumptions, will
be developed. It will be demonstrated that this criterion is satisfied for the most
interesting case of vortices with uniform PV in the lower layer, regardless of their
profiles in the upper layer.

The paper has the following structure. In § 2, we shall describe the setting, formulate
the governing (quasi-geostrophic) equations, and derive an eigenvalue problem for
harmonic disturbances (normal modes). In § 3, through numerical solution of the
eigenvalue problem, we shall present several examples of stable vortices with different
profiles in the upper layer and uniform PV in the lower layer. In § § 4–6, we shall
derive an asymptotic stability criterion for thin vortices with a weak deep flow. In § 7,
this criterion will be applied to vortices with constant lower-layer PV. In § 8, we shall
extend the asymptotic results to ageostrophic vortices.

2. Governing equations
Consider a two-layer ocean with rigid lid and flat bottom, and let the densities and

depths of the layers be ρ1,2 and H∗1,2 (where subscript 1 denotes the upper layer). We
shall also introduce the upper-layer deformation radius

Ld =
1

f

√
g′H∗1,

where g′ = g(ρ2 − ρ1)/ρ2 is the reduced acceleration due to gravity and f is the
Coriolis parameter. Using Ld and the characteristic velocity V∗1 of the flow in the
upper layer, we shall introduce the following non-dimensional variables:

t =
V∗1t∗

Ld

, (x, y) =
(x∗, y∗)

Ld

, ψ1,2 =
ψ∗1,2

LdV∗1

,

where t is the time, (x, y) are the spatial coordinates, ψ1,2 are the streamfunctions,
and the asterisk denotes dimensional variables.
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For the description of the vortices, we shall employ the standard quasi-geostrophic
(QG) equations on the f -plane,

∂

∂t
(∇2ψ1 − ψ1 + ψ2) + J (ψ1, ∇2ψ1 + ψ2) = 0, (2.1)

∂

∂t
(∇2ψ2 − εψ2 + εψ1) + J (ψ2, ∇2ψ2 + εψ1) = 0, (2.2)

where J (ψ1, ψ2) is the Jacobian operator and ε is the depth ratio,

ε =
H∗1

H∗2

.

We are concerned with the linear stability of radially symmetric vortices, and assume

ψ1,2 = Ψ1,2(r) + ψ ′
1,2(r, θ, t), (2.3)

where the Ψ1,2 describe the vortex, ψ1,2 describe the disturbance, and (r, θ) are polar
coordinates. Then we linearize the governing equations against the background of the
vortex solution, i.e. substitute (2.3) into (2.1)–(2.2) and omit the nonlinear terms,

∂

∂t
(∇2ψ ′

1 − ψ ′
1 + ψ ′

2) + J (Ψ1, ∇2ψ ′
1 + ψ ′

2) + J (ψ ′
1, ∇2Ψ1 + Ψ2) = 0,

∂

∂t
(∇2ψ ′

2 − εψ ′
2 + εψ ′

1) + J (Ψ2, ∇2ψ ′
1 + εψ ′

1) + J (ψ ′
2, ∇2Ψ1 + εΨ1) = 0.

In this paper, we are concerned with harmonic disturbances (normal modes),

ψ ′
1,2(r, θ, t) = Re

[
ψ1,2(r)e

ik(θ−ct)
]
,

where k and c are the azimuthal wavenumber and angular phase speed, respectively.
Then, the governing equations yield

(cr − V1)

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 − ψ1 + ψ2

]
+ Q′

1ψ1 = 0, (2.4)

(cr − V2)

[
1

r

d

dr

(
r
dψ2

dr

)
− k2

r2
ψ2 − εψ2 + εψ1

]
+ Q′

2ψ2 = 0, (2.5)

where

V1,2 =
dΨ1,2

dr
are the swirl velocities in the layers and

Q′
1 =

d

dr

[
1

r

d

dr
(rV1)

]
− V1 + V2, Q′

2 =
d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + εV1

are the corresponding PV gradients.
Equations (2.4)–(2.5) should be supplemented by the usual boundary conditions,

ψ1,2(0) = ψ1,2(∞) = 0. (2.6)

Equations (2.4)–(2.6) form an eigenvalue problem, where c is the eigenvalue. If
Im c �= 0, the vortex is unstable. (Strictly speaking, instability requires Im c > 0, but
complex eigenvalues in problem (2.4)–(2.6) always come in complex-conjugate pairs.)

We shall assume that V1(r) and V2(r) are smooth functions, decaying as r → ∞
and vanishing at r = 0 (the latter condition guarantees that the vortex is smooth at
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its centre). We shall also assume that

0 <

∫ ∞

0

r2V1 dr < ∞, (2.7)

i.e. the upper-layer net angular momentum of the vortex is finite and non-zero.

3. Numerical results
Now, problem (2.4)–(2.6) will be analysed numerically. In the first subsection, we

shall briefly discuss compensated vortices, i.e. those that have no flow in the lower
layer (this will be mostly an adaptation of Benilov’s (2003) results for our present
needs). Then we shall examine several examples of vortices with uniform PV in the
lower layer.

3.1. Compensated vortices

In this case, the lower layer is at rest,

V2 = 0, (3.1)

and we consider the following three examples of flow in the upper layer:

V1G =
r

r0

exp

(
− r2

2r2
0

)
, (3.2)

V1A =
r

r0

(
1 +

r2

5r2
0

)−3

, (3.3)

V1S =
r

r0

sech

(
1.186 r

r0

)
, (3.4)

where r0 is the non-dimensional radius of the vortex (i.e. the ratio of its dimensional
radius to the deformation radius based on the upper-layer depth). The coefficients in
these expressions have been chosen to ensure that the maximum of V1(r) is located
at r = r0 (for (3.4), this equality is approximate, r ≈ r0). Profiles (3.2)–(3.4) will be
referred to as the Gaussian vortex, Algebraic vortex, and the Sech vortex, respectively.
The corresponding profiles of the upper-layer angular velocity, V1/r , are shown in
figure 1(a) – to a naked eye, the three profiles are not very different.

The stability of vortices (3.2), (3.1); (3.3), (3.1); and (3.4), (3.1) was examined by
Benilov (2003) for a wide range of parameters, both asymptotically and numerically
(hereinafter, this work will be referred to as B03). It was demonstrated that the
most unstable azimuthal wavenumber is either k = 1 or k = 2. It was also shown
that, for a given k, the Gaussian vortex admits a finite number of eigenvalues, with
the corresponding lower-layer eigenfunctions having a different number of nodes.
The first eigenvalue always has the highest growth rate (here, the eigenvalues are
enumerated according to the number of nodes of the lower-layer eigenfunction: the
first eigenfunction has no nodes, the second one has one node, etc.). Moreover, when
parameters of a stable Gaussian vortex change and make it unstable, the first mode
becomes unstable before the others – which makes it a ‘stability indicator’. The Sech
vortex, in turn, may have either a finite or infinite number of eigenvalues (depending
on whether r0 < 1.186 or r0 > 1.186), but the first mode is, again, the stability indicator.
Finally, the Algebraic vortex admits infinitely many eigenvalues for each k, and the
first eigenvalue loses stability after all the others – although, in many cases, it is still
the most unstable one (when, of course, it is unstable).
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Figure 1. Angular velocity of vortex profiles considered in the paper. (a) In the upper layer,
the vortex is determined by (3.2), or (3.3), or (3.4) (the Gaussian, or Algebraic, or Sech profiles,
marked by G, A, and S, respectively). (b) In the lower layer, the profile of the vortex is
determined by the condition that PV is constant (i.e. it satisfies (3.7)–(3.8)).

The most important characteristic of a vortex profile is the corresponding marginal
stability curve on the (ε, r0)-plane – we have computed it for compensated vortices
(3.1), (3.2); (3.1), (3.3); (3.1), (3.4) for the first eigenvalue of the second azimuthal
wavenumber, k =2. As ε → 0 (the limit of an infinitely thin upper layer), the solution
of the eigenvalue problem (2.4)–(2.6) is increasingly difficult to compute, and we
complement the numerical solution by an asymptotic one, obtained via a method
developed in B03.

The results of these calculations are shown in figure 2.
Observe that the Gaussian profile has two regions of instability (see figure 2a).

The narrow strip with small r0 corresponds to barotropic instability, caused by
strong horizontal shear; whereas vortices with large r0 are unstable baroclinically due
to vertical shear. Note that moderate horizontal shear is a stabilizing influence: for
vortices with moderate values of r0, it neutralizes the effect of vertical shear and makes
them stable. Observe also that the Algebraic and Sech profiles are barotropically
stable.
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Figure 2. For legend see facing page.

To place the above results in an oceanographic context, figure 2 shows the
parameters of the 35 rings catalogued by Olson (1991) (this paper will be referred to
as O91). Unfortunately, O91 provides no data on the depth ratio ε, and we assumed,
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Figure 2. Stability of compensated vortices with respect to the first mode of k = 2, on the
(ε, r0)-plane (ε is the depth ratio of the ocean, r0 is the non-dimensional radius of the vortex).
Solid curve shows the numerical results, dotted curve shows the asymptotic results (based
on ε 	 1); horizontal segments show the parameters of rings catalogued by Olson (1991).
(a) Gaussian vortex (3.2), (b) Algebraic vortex (3.3), (c) Sech vortex (3.4). The circle in the
centre of (a) shows the ‘mean’ vortex (3.5)–(3.6).

on a more or less ad hoc basis, that

0.05 � ε � 0.1.

Thus, each ring in figure 2 is represented by an interval with a fixed r0 , but uncertain
ε. One can see that the Algebraic model (figure 2b) predicts that all rings are unstable
for all possible ε, and the predictions of the Sech model are similar. The Gaussian
model is the only one producing rings which are stable for the whole ε range (these
are the six rings with the smallest values of r0). Overall, the proportion of stable
vortices is far too low to account for oceanic observations.

Still, one might argue that the instability is so weak that unstable rings survive
for a long time before breaking up (which would explain the lifespans observed). To
eliminate this possibility, we have computed the growth rate for the Gaussian vortex
of radius 65 km (which is the average over the rings listed in O91) in the ocean
with deformation radius of 27 km (which is, again, an average derived from O91).
Non-dimensionally, these values correspond to

r0 = 2.468, (3.5)

and we assumed the mid-point of the ε range:

ε = 0.075 (3.6)

(values (3.5)–(3.6) are shown in figure 2a by a circle). In this case, the first eigenvalue
with k = 2 is the most unstable one, with a growth rate of k Imω ≈ 0.01711. To
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put this into dimensional terms, we need to fix the ring’s maximum swirl velocity.
Unfortunately, O91 provides only the ‘absolute’ maximum of the swirl velocity,
whereas we need the maximum of the swirl velocity averaged over the upper layer’s
depth, V∗1 max (which is a restriction imposed by the two-layer model). Estimating
V∗1 max to be within the range of 0.1–0.25 m s−1, we obtain the e-folding time range
of 111–44 days, respectively. Clearly, this is much shorter than the lifespans of most
oceanic rings.

Thus, the model of compensated vortices cannot explain the observed longevity of
rings.

3.2. Vortices with uniform PV in the lower layer

For the upper-layer velocity, we considered the same three examples as before, (3.2)–
(3.4). The lower-layer velocity, in turn, was assumed to satisfy the condition that the
PV gradient is zero,

d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + εV1 = 0, (3.7)

and the usual boundary conditions

V2(0) = V2(∞) = 0. (3.8)

As an illustration, figure 1(b) shows the solution of the boundary-value problem
(3.7)–(3.8) for the Gaussian, Algebraic, and Sech vortices, with the ‘mean’ parameters
(3.5)–(3.6).

It was found that vortices with an Algebraic or Sech profile in the upper layer,
and uniform PV in the lower layer, are stable for all values of ε and r0 – a thorough
search has not yielded a single unstable vortex. For the Gaussian profile in the upper
layer (and, again, uniform PV in the lower one), the region of barotropically unstable
vortices looks almost the same as that for compensated vortices, but the region of
baroclinically unstable vortices disappears completely. Thus, the model of uniform
PV in the lower layer predicts that all rings listed in O91 are stable.

To illustrate the transition from compensated vortices to those with uniform PV in
the lower layer, consider

V2 = α (V2)uPV (3.9)

where (V2)uPV is the solution of the uniform-PV problem (3.7)–(3.8), and α is a
number between 0 (compensated vortex) and 1 (uniform PV in the lower layer). A
large number of vortices, with various parameters, were tested for stability, and in
all cases the growth rate vanished for some α < 1. A typical behaviour of the non-
dimensional growth rate is shown in figure 3 for the ‘mean’ vortex (3.5)–(3.6): one can
see that, for all three upper-layer profiles, the vortex becomes stable at α ≈ 0.65. It is
also worth observing that, for 0.45 � α � 0.65, the three curves virtually coincide.

We have also computed the marginal stability curves for α = 0.65 (the numerical
technique is described in Appendix A). For the Algebraic and Sech upper-layer
profiles, these curves are very close, and we show only the one corresponding to the
former (see figure 4b). The Gaussian profile is different (see figure 4a), but only as
far as barotropic instability is concerned; the curve separating baroclinically unstable
vortices from the stable ones is almost the same as that in the other two cases.

One can see that, for non-compensated vortices determined by (3.9) with α =0.65,
the stability region has noticeably expanded (compare figures 4a, b to 2a, b). Moreover,
the growth rate of vortices that are still unstable has fallen dramatically. Consider
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Figure 3. The growth rate of the first mode of k = 2, for the ‘mean’ vortex (ε = 0.075,
r0 = 2.468), vs. the amplitude α of the lower-layer circulation. The lower-layer velocity is
determined by (3.9) (where α = 0 corresponds to compensated vortices, and α = 1 corresponds
to vortices with uniform PV in the lower layer); G, A, and S mark the Gaussian, Algebraic,
and Sech vortex profiles.

the three rings on the O91 list that have the largest values of r0,

r0 = 7.105, 6.000, 3.548 (3.10)

(in figure 4a, these values are marked by circles with numbers 1–3, respectively). The
corresponding values of the deformation radius, extracted from O91, are

Ld = 42, 10, 19 km.

We shall assume that

ε = 0.1, (3.11)

which is the most unstable value of the ε range considered before. Finally, we put

V∗1 max = 0.25 m s−1,

which is, again, the most unstable value of the range considered. For rings with these
parameters, with a Gaussian profile in the upper layer and profile (3.9) (α = 0.65) in
the lower layer, the (dimensional) e-folding times are 6.6 months, 8.9 months, and
14.4 years, respectively.

Thus, one of the rings is virtually stable, whereas the lifespan of the other two is
sufficiently large to fit with, at least, some observations.

3.3. Discussion: the mechanism of stabilization

Dewar & Killworth (1995) interpreted the stabilization of vortices with co-rotating
deep flow through an energy analysis of the linearized problem. They showed that
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Figure 4. Stability of non-compensated vortices with respect to the first mode of k = 2. In
the upper layer, the vortex is determined by (3.2), (3.3), or (3.4), and the lower-layer circulation
determined by (3.9) with α = 0.65. The notation is the same as in figure 2. (a) Gaussian vortex
(the circles mark vortices with parameters (3.10)–(3.11)), (b) Algebraic vortex.

vertical shear of the vortex supports a flux of energy from the vortex to the disturbance
(‘baroclinic release’), whereas horizontal shear supports a flux from the disturbance to
the vortex (‘barotropic gain’). For compensated vortices, the former is much stronger
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than the latter, which results in instability. A co-rotating deep circulation, in turn,
causes a sharp increase in the barotropic gain – until it matches the baroclinic release
and, thus, stabilizes the vortex.

There is little doubt that a similar analysis would yield similar results for the present
case. To begin with, the present compensated vortices are exactly the same as those
considered by Dewar & Killworth (1995), and the baroclinic release for them must
exceed the barotropic gain. For vortices with uniform lower-layer PV, in turn, the two
fluxes must be equal (because of stability). Hence, in our case and that of Dewar &
Killworth (1995), the dependence of the energy fluxes on the amplitude of the deep
flow must be very similar, even though the profiles of the deep flow are different. In
other words, the stabilization of vortices with uniform PV in the lower layer – just
like any other vortices with co-rotating deep circulation – occurs due to a balance of
baroclinic release of energy and its barotropic gain.

The above interpretation can be reinforced by observing that condition (3.7) of
uniformity of lower-layer PV can be viewed as a requirement that horizontal shear
be as strong as vertical shear. In particular, vortices with radii larger than the
deformation radius, for which the first term in (3.7) tends to zero, can be stable only
if the vertical shear (second and third terms) is also small. Physically, this implies
that the velocity field of large oceanic rings should decay slower with depth (and thus
penetrate deeper) than that of smaller rings.

An alternative (simpler) interpretation is based on representation of the unstable
disturbance by two phase-locked Rossby waves, rotating around the vortex in the
upper and lower layers. Then, if the lower-layer PV gradient is zero, it cannot support
the corresponding wave, and the instability is inhibited.

3.4. Discussion: do vortices with α �= 1 have physical meaning?

To answer this subsection’s title question, recall that most oceanic rings are shed by
frontal currents. When a ring separates from the current and arrives at a new location,
it displaces the interface and thus forces the lower layer to spin up (otherwise the
lower-layer particles would not preserve their PV). This scenario, however, does not
take into account friction – which can slow down the spin-up and prevent the lower
layer from reaching the swirl velocity prescribed by the condition of constant PV.
Circulation (3.9) with α < 1 appears to be a good model for such cases.

Generally, the case α < 1 can be viewed as a simple model of any non-uniformities of
PV in the lower layer, including those that are caused by background currents (which
are often present in the ‘real’ ocean). The existence of stable vortices with α < 1
demonstrates the robustness of the suggested mechanism and shows that stability
persists in the face of less than ideal conditions.

Finally, note that deep flow (3.9) is not the only possibility to stabilize the vortex:
Dewar & Killworth (1995) showed that a co-rotating Gaussian circulation has the
same effect. Our point is that (3.9) stabilizes the vortex and appears to be a realistic
model of oceanic rings. It should be emphasized, however, that full validation of the
hypothesis on uniform lower-layer PV should include analysis of the PV field of ‘real’
oceanic rings.

4. Asymptotic results: formulation of the problem
Assume that the upper layer is much thinner than the lower layer,

ε 	 1,
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and that the flow in the latter is weak, say, V2 = O(ε) (it may or may not correspond
to constant PV, as we shall first consider the general case). Accordingly,

V2 = εṼ2,

where Ṽ2 = O(1). Rewriting equations (2.4)–(2.5 ) in terms of Ṽ2 and omitting the
tildes, we obtain

(cr−V1)

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 −ψ1 +ψ2

]
+

{
d

dr

[
1

r

d

dr
(rV1)

]
−V1 + εV2

}
ψ1 =0, (4.1)

(cr − εV2)

[
1

r

d

dr

(
r
dψ2

dr

)
− k2

r2
ψ2 − εψ2 + εψ1

]

+ ε

{
d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + V1

}
ψ2 = 0. (4.2)

Mathematically, the eigenvalue problem (4.1)–(4.2), (2.6) is similar to the one des-
cribing compensated vortices. The latter has been thoroughly examined in B03, which
enables us to omit some of the technical details and present only the conclusions. In
particular, one can readily show that (4.1)–(4.2), (2.6) admit three types of modes:

1. lower-layer-dominated (LLD) modes, for which

ψ1 = O(1), ψ2 = O(1), c = O(ε); (4.3)

2. mixed (M) modes, for which

ψ1 = O(1), ψ2 = O(ε), c = O(ε); (4.4)

3. upper-layer-dominated (ULD, or equivalent-barotropic) modes, for which

ψ1 = O(1), ψ2 = O(ε), c = O(1). (4.5)

We shall assume (in all three cases) that, for k =1, the leading-order c is non-zero,
which eliminates the trivial solution

c = 0, ψ1 = V1, ψ2 = εV2 for k = 1. (4.6)

Equation (4.6) corresponds to an infinitesimal shift of the vortex as a whole and has
nothing to do with its stability.

5. Asymptotic results: the analysis
In this section, the three types of modes defined above will be examined

asymptotically. Non-mathematically minded readers can jump to the next section,
where the asymptotic results will be summarized.

5.1. Lower-layer-dominated modes

Estimates (4.3) suggest the following expansions:

ψ1 = ψ
(0)
1 + εψ

(1)
1 + · · · , ψ2 = ψ

(0)
2 + εψ

(1)
2 + · · · , c = εc(1) + · · · .

Then, (4.1)–(4.2), (2.6) yield

−V1

[
1

r

d

dr

(
r
dψ

(0)
1

dr

)
− k2

r2
ψ

(0)
1 − ψ

(0)
1 + ψ

(0)
2

]
+

{
d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
ψ

(0)
1 = 0,

(5.1)
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ψ
(0)
1 (0) = ψ

(0)
1 (∞) = 0, (5.2)

(
c(1)r − V2

) [
1

r

d

dr

(
r
dψ

(0)
2

dr

)
− k2

r2
ψ

(0)
2

]
+

{
d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
ψ

(0)
2 = 0, (5.3)

ψ
(0)
2 (0) = ψ

(0)
2 (∞) = 0. (5.4)

Observe that the lower-layer problem (5.3)–(5.4) is no longer coupled to the upper
layer and can be solved independently. Hence, the leading-order eigenvalue c(1)

depends only on the deep flow and curvature of the interface, and is independent of
the upper-layer PV field. Furthermore, the upper-layer disturbance is ‘enslaved’ by
its lower-layer counterpart (observe that the term −V1ψ

(0)
2 in equation (5.1) plays the

role of forcing).
The following theorem can be proved for equations (5.1)–(5.4):

Theorem 1. The boundary-value problem (5.1)–(5.4) does not have non-trivial
(c(1) �= 0) solutions for k = 1,

i.e. LLD-modes do not exist for the first azimuthal wavenumber (the proof of this
theorem can be found in Appendix B). It can be further proved that:

Theorem 2. If

Q
′(1)
2 =

d

dr

[
1

r

d

dr
(rV2)

]
+ V1

never changes sign, the eigenvalue problem (5.3)–(5.4) does not have complex (unstable)
eigenvalues,

which is the usual sufficient stability criterion for flows with monotonic PV (Dritschel
1988).

Theorem 2 appears to supply examples of vortices which are stable with respect to
LLD-modes. It remains to be seen whether these vortices are stable with respect to
the other two types of modes.

5.2. Mixed modes

In this case, the expansion of ψ2 should start from an O(ε) term (see (4.4)),

ψ1 = ψ
(0)
1 + εψ

(1)
1 + · · · , ψ2 = εψ

(1)
2 + · · · , c = εc(1) + · · · .

Unlike the previous case (where it was sufficient to consider the leading order only),
here we need to examine two orders of the eigenvalue problem (4.1)–(4.2), (2.6),

−V1

[
1

r

d

dr

(
r
dψ

(0)
1

dr

)
− k2

r2
ψ

(0)
1 − ψ

(0)
1

]
+

{
d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
ψ

(0)
1 = 0, (5.5)

ψ
(0)
1 (0) = ψ

(0)
1 (∞) = 0, (5.6)

c(1)r

[
1

r

d

dr

(
r
dψ

(0)
1

dr

)
− k2

r2
ψ

(0)
1 − ψ

(0)
1

]
− V1

[
1

r

d

dr

(
r
dψ

(1)
1

dr

)

− k2

r2
ψ

(1)
1 − ψ

(1)
1 + ψ

(1)
2

]
+

{
d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
ψ

(1)
1 + V2ψ

(0)
1 = 0, (5.7)
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ψ
(1)
1 (0) = ψ

(1)
1 (∞) = 0, (5.8)

(
c(1)r − V2

) [
1

r

d

dr

(
r
dψ

(1)
2

dr

)
− k2

r2
ψ

(1)
2 + ψ

(0)
1

]
+

{
d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
ψ

(1)
2 = 0,

(5.9)

ψ
(1)
2 (0) = ψ

(1)
2 (∞) = 0. (5.10)

It can be demonstrated (see Appendix B) that,

Theorem 3. The boundary-value problem (5.5)–(5.6) has a solution only for k =1, in
which case

ψ
(0)
1 = V1, (5.11)

i.e. M-modes exist only for the first azimuthal wavenumber and, in this respect,
complement LLD-modes. Observe also that (5.11) brings us dangerously close to the
meaningless trivial solution (compare (5.11) with (4.6)). Thus, to eliminate the trivial
solution, we shall have to ensure that c(1) �= 0.

Before formulating the next theorem, observe that ψ
(1)
1 can be eliminated from the

first-order set (5.7)–(5.10). Indeed, integrate (5.7) over 0 <r < ∞. Integrating by parts
(twice), using the boundary conditions (5.8), and takin into account (5.11), we obtain∫ ∞

0

rV1

(
c(1)r − V2

)
dr +

∫ ∞

0

rV1ψ
(1)
2 dr = 0. (5.12)

Finally, put k = 1 and substitute (5.11) into (5.9),

(
c(1)r − V2

) [
1

r

d

dr

(
r
dψ

(1)
2

dr

)
− 1

r2
ψ

(1)
2 + V1

]
+

{
d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
ψ

(1)
2 = 0.

(5.13)

Equations (5.10) and (5.12)–(5.13) form an eigenvalue problem, where c(1) is the
eigenvalue and ψ

(1)
2 is the eigenfunction.

Theorem 4. If

Q
′(1)
2 =

d

dr

[
1

r

d

dr
(rV2)

]
+ V1 and V1

never change sign, and

Q
′(1)
2 V1 � 0,

problem (5.10), (5.12)–(5.13) does not have complex (unstable) eigenvalues.

(The proof of this theorem can be found in Appendix B.)
Observe that Theorem 4 requires stronger conditions for stability than its LLD

counterpart (Theorem 2): if the former holds, the latter holds as well.

5.3. Upper-layer-dominated modes

In this case, estimates (4.5) suggest the following expansions:

ψ1 = ψ
(0)
1 + εψ

(1)
1 + · · · , ψ2 = εψ

(1)
2 + · · · , c = c(0) + · · · .
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Then, to the leading order, the upper layer decouples from the lower layer and is
described by the standard eigenvalue problem for equivalent-barotropic vortices,

(
c(0)r − V1

) [
1

r

d

dr

(
r
dψ

(0)
1

dr

)
− k2

r2
ψ

(0)
1 − ψ

(0)
1

]
+

{
d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
ψ

(0)
1 = 0,

(5.14)

ψ
(0)
1 (0) = ψ

(0)
1 (∞) = 0 (5.15)

(the lower-layer equations are omitted as they are not needed).
The following theorems can be proved:

Theorem 5. The eigenvalue problem (5.14)–(5.15) does not have non-trivial (c(0) �= 0)
solutions for k =1.

Theorem 6. If

Q
′(0)
1 =

d

dr

[
1

r

d

dr
(rV1)

]
− V1

never changes sign, problem (5.14)–(5.15) does not have complex (unstable) eigenvalues.

Theorem 5 has been formulated by Paldor (1999), and Theorem 6 is a particular case
of Dritschel’s (1988) general result.

6. Asymptotic results: discussion and summary
Thus, we have developed a seemingly complete asymptotic description of stability of

oceanic vortices. This description, however, is based on leading-order approximations,
and it is unclear whether a neutrally stable (to the leading order) vortex will remain
stable within the framework of higher-order approximations.

For compensated vortices, the answer to this question has been given in B03:
higher-order corrections to a real leading-order eigenvalue are either complex or do
not exist at all. The former means weak instability, whereas the latter should be
interpreted as stability (since absence of unstable modes is stability).

Unfortunately, extension of the higher-order results of B03 to non-compensated
vortices turned out to be a difficult task – there are cases, however, where it can
be bypassed. Assume, for example, that the leading-order equations do not have
solutions. Then, surely, the question of higher-order corrections is irrelevant, as there
are no neutrally stable eigenvalues that can be made unstable. In this case, neither
stable nor unstable solutions exist, which means stability.

We are now ready to summarize the asymptotic results obtained:
1. If the asymptotic eigenvalue problems for LLD- and M-modes ((5.3)–(5.4) and

(5.10), (5.12)–(5.13), respectively) have one or more complex eigenvalues, the vortex
is unstable, and the non-dimensional growth rate is k Im c = O(ε).

2. If the asymptotic problem for ULD-modes, (5.14)–(5.15), has one or more
complex eigenvalues, the vortex is unstable, and the growth rate is kIm c = O(1).

3. If the three asymptotic problems have non-trivial (c �= 0) real eigenvalues, but
no complex ones, no definitive conclusion can be drawn. The vortex can be either
stable or weakly unstable (due to higher-order corrections).

4. If the three asymptotic problems have neither complex nor non-trivial real
eigenvalues, the vortex is stable.
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In the next section, we shall demonstrate that vortices with uniform PV in the lower
layer fall into the fourth category.

7. Asymptotic results: vortices with uniform PV in the lower layer
Consider the eigenvalue problem (5.3)–(5.4) for LLD-modes and assume

d

dr

[
1

r

d

dr
(rV2)

]
+ V1 = 0 (7.1)

(which is what the condition of constant lower-layer PV amounts to at the leading
order). Then, (5.3) becomes

1

r

d

dr

(
r
dψ

(0)
2

dr

)
− k2

r2
ψ

(0)
2 = 0.

One can readily see that this equation has no bounded solutions.
Next, substitute (7.1) into the M-mode equation (5.13) and rewrite the latter as

d

dr

[
1

r

d

dr

(
rψ

(1)
2

)]
+ V1 = 0.

Comparing this equation with (7.1), one can deduce that

ψ
(1)
2 = V2 + Ark + Br−k. (7.2)

To satisfy the boundary conditions (5.10), put

A = 0, B = 0. (7.3)

Finally, we substitute (7.2)–(7.3) into the integral condition (5.12) and obtain

c(1)

∫ ∞

0

r2V1 dr = 0. (7.4)

Since the net upper-layer angular momentum is non-zero (see (2.7)), it follows from
(7.4) that c(1) = 0 (which is the trivial solution and should be discarded).

Thus, for monopolar vortices with uniform PV in the lower layer, the M-problem
admits only the trivial solution, and the LLD-problem does not admit any solutions
at all. We conclude that vortices with uniform PV are baroclinically stable.

The ULD-modes are not sensitive to deep flow (observe that V2 does not appear
in equation (5.14)). As a result, barotropic stability of a vortex is determined by its
profile in the upper layer, and the condition of constant lower-layer PV is unimportant
in this case. We shall not discuss ULD-modes in more detail, as barotropic effects
play no part in the instability of mesoscale rings (recall that, out of the three vortex
profiles considered, only the Gaussian profile was barotropically unstable and, even
in this case, none of the ‘real’ rings fell into the region of barotropic instability – see
figures 2a, 4a).

8. Ageostrophic vortices
8.1. Formulation of the problem

In this case, the flow is described by the layer depths h∗j , pressures p∗j , the radial
velocities u∗j , and the azimuthal velocities v∗j (where j = 1, 2 is the layer number
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and asterisks mark the dimensional variables). We shall introduce the following
non-dimensional variables:

t = f t∗, (x, y) =
(x∗, y∗)

Ld

, uj =
u∗j

f Ld

, vj =
v∗j

f Ld

,

h1 =
h∗1

H∗1

, h2 =
h∗2

H∗2

, pj =
p∗j

ρ0g′H∗1

,

where H∗j are the layer characteristic depths, Ld is the deformation radius based on
H∗1, ρ0 is the mean density of water, and g′ is the reduced acceleration due to gravity.
Then, the non-dimensional equations governing ageostrophic vortices on the f -plane
are

∂uj

∂t
+ uj

∂uj

∂r
+

1

r
vj

(
∂uj

∂θ
− vj

)
+

∂pj

∂r
= vj , (8.1)

∂vj

∂t
+ uj

∂vj

∂r
+

1

r
vj

(
∂vj

∂θ
+ uj

)
+

1

r

∂pj

∂θ
= −uj , (8.2)

r
∂hj

∂t
+

∂

∂r
(rujhj ) +

∂

∂θ
(vjhj ) = 0, (8.3)

p2 = p1 − h1, εh1 + h2 = 1 + ε, (8.4)

where, as before, ε = H∗1/H∗2. Following the usual scheme of linear stability analysis,
we represent the solution as a superposition of a steady state (vortex) and a small
disturbance,

uj (r, θ, t) = u′
j (r, θ, t), vj (r, θ, t) = Vj (r) + v′

j (r, θ, t), (8.5)

pj (r, θ, t) = Pj (r) + p′
j (r, θ, t), hj (r, θ, t) = Hj (r) + h′

j (r, θ, t), (8.6)

where the vortex satisfies the cyclostrophic, hydrostatic, and kinematic relations,

dPj

dr
= Vj +

1

r
V 2

j , P2 = P1 − H1, εH1 + H2 = 1 + ε. (8.7)

Substituting (8.5)–(8.7) into (8.1)–(8.4) and omitting nonlinear terms, we obtain

∂u′
j

∂t
+

1

r
Vj

(
∂u′

j

∂θ
− v′

j

)
− 1

r
v′

jVj +
∂p′

j

∂r
= v′

j , (8.8)

∂v′
j

∂t
+ u′

j

dVj

dr
+

1

r
Vj

(
∂v′

j

∂θ
+ u′

j

)
+

1

r

∂p′
j

∂θ
= −u′

j , (8.9)

r
∂h′

j

∂t
+

∂

∂r
(ru′

jHj ) +
∂

∂θ
(Vjh

′
j + v′

jHj ) = 0, (8.10)

p2 = p1 − h1, εh1 + h2 = 0. (8.11)

As before, we are interested in normal modes,

u′
j (r, θ, t) = Re

[
uj (r) eikθ−iωt

]
, v′

j (r, θ, t) = Re
[
vj (r) eikθ−iωt

]
, (8.12)

p′
j (r, θ, t) = Re

[
pj (r) eikθ−iωt

]
, h′

j (r, θ, t) = Re
[
hj (r) eikθ−iωt

]
, (8.13)

where ω is the frequency (which shall use it instead of c = ω/k). Substitution of
(8.12)–(8.13) into (8.8)–(8.11) yields

i

(
k

r
Vj − ω

)
uj −

(
1 +

2

r
Vj

)
vj +

dpj

dr
= 0, (8.14)
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i

(
k

r
Vj − ω

)
vj +

(
1 +

1

r
Vj +

dVj

dr

)
uj +

ik

r
pj = 0, (8.15)

i

(
k

r
Vj − ω

)
hj +

1

r

d

dr
(rHjuj ) +

ik

r
Hjvj = 0, (8.16)

p2 = p1 − h1, εh1 + h2 = 0. (8.17)

Next, it is convenient to eliminate the lower-layer velocities u2, v2. Using ((8.14)–
(8.15))j=2 to express them through p2,

u2 = −i

(
k

r
V2 − ω

)
dp2

dr
+

(
1 +

2

r
V2

)
k

r
p2(

1 +
1

r
V2 +

dV2

dr

)(
1 +

2

r
V2

)
−

(
k

r
V2 − ω

)2
,

v2 =

(
1 +

1

r
V2 +

dV2

dr

)
dp2

dr
+

(
k

r
V2 − ω

)
k

r
p2(

1 +
1

r
V2 +

dV2

dr

)(
1 +

2

r
V2

)
−

(
k

r
V2 − ω

)2
,

we substitute these expressions into (8.16)j=2. After cumbersome calculations, we
obtain

d

dr

(
rF2

dp2

dr

)
+




d

dr

[
k

r
(r + 2V2) F2

]
k

r
V2 − ω

− k2

r
F2


 p2 − rh2 = 0, (8.18)

where

F2 =
H2(

1 +
1

r
V2 +

dV2

dr

)(
1 +

2

r
V2

)
−

(
k

r
V2 − ω

)2
. (8.19)

Assume now that the flow in the lower layer is weak,

V2 = εṼ2, P2 = εP̃2. (8.20)

Substituting (8.20) into ((8.14)–(8.16))j=1, (8.17), (8.18)–(8.19), and (8.7), we obtain the
following set of ODEs (tildes omitted):

i

(
k

r
V1 − ω

)
u1 −

(
1 +

2

r
V1

)
v1 +

dh1

dr
+

dp2

dr
= 0, (8.21)

i

(
k

r
V1 − ω

)
v1 +

(
1 +

1

r
V1 +

dV1

dr

)
u1 +

ik

r
(h1 + p2) = 0, (8.22)

ir

(
k

r
V1 − ω

)
h1 +

d

dr
(rH1u1) + ikH1v1 = 0, (8.23)

d

dr

(
rF2

dp2

dr

)
+




d

dr

[
k

r
(r + 2εV2) F2

]
k

r
εV2 − ω

− k2

r
F2


 p2 + εrh1 = 0, (8.24)
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where

F2 =
1 + ε − εH1(

1 +
1

r
εV2 + ε

dV2

dr

)(
1 +

2

r
εV2

)
−

(
k

r
εV2 − ω

)2
, (8.25)

dH1

dr
= V1 +

1

r
V 2

1 − ε

(
V2 +

1

r
εV 2

2

)
, (8.26)

These equations should be supplemented by the smoothness conditions at the centre
of the vortex,

ikv1 + u1 = 0, h1 = 0, p2 = 0 at r = 0, (8.27)

which can be obtained by expanding equations (8.22) and (8.23) about r = 0. We shall
also impose the boundedness conditions at infinity,

u1, v1, h1, p2 → 0 as r → ∞. (8.28)

Equations (8.21)–(8.28) form an eigenvalue problem, where ω is the eigenvalue.

8.2. Discussion

Observe that the lower-layer part of the equations derived, (8.24)–(8.25), has small
parameters in exactly the same places as the quasi-geostrophic approximation.† As a
result of this similarity, all QG conclusions obtained for LLD-modes (§ 5.1) remain
intact. In particular, straightforward calculations show that the ageostrophic LLD-
problem differs from (5.3)–(5.4) only in notation: ψ2 → p2. Accordingly, the conclusion
regarding the stability of vortices with constant lower-layer PV with respect to LLD-
modes holds for the ageostrophic case as well.

The upper-layer equations (8.21)–(8.23), (8.26), in turn, differ significantly from
their QG counterparts – but this is unimportant, as equivalent-barotropic effects are
negligible for instability of mesoscale rings (it is implied here that ageostrophy does
not change barotropic effects too much).

Thus, we only need to clarify how ageostrophy affects M-modes (non-mathe-
matically minded readers can jump to the next section).

8.3. Mixed modes

The asymptotic expansion for this case is

u1 = u
(0)
1 + εu

(1)
1 + · · · , v1 = v

(0)
1 + εv

(1)
1 + · · · , h1 = h

(0)
1 + εh

(1)
1 + · · · ,

p2 = εp
(1)
2 + · · · , H1 = H

(0)
1 + εH

(1)
1 + · · · , ω = εω(1) + · · · .

Then, the first two orders of equations (8.21)–(8.26) yield

ik

r
V1u

(0)
1 −

(
1 +

2

r
V1

)
v

(0)
1 +

dh
(0)
1

dr
= 0, (8.29)

ik

r
V1v

(0)
1 +

(
1 +

1

r
V1 +

dV1

dr

)
u

(0)
1 +

ik

r
h

(0)
1 = 0, (8.30)

† Physically, quasi-geostrophy of the lower layer follows from the smallness of the displacement
of the interface (in comparison with H2), and the weakness of the lower-layer flow. Note also,
that the upper-layer flow may remain ageostrophic, as the displacement of the interface can be
comparable to H1.
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ikV1h
(0)
1 +

d

dr

(
rH

(0)
1 u

(0)
1

)
+ ikH

(0)
1 v

(0)
1 = 0, (8.31)

iku
(0)
1 − v

(0)
1 = 0, ikv

(0)
1 + u

(0)
1 = 0, h

(0)
1 = 0 at r = 0, (8.32)

ik

r
V1u

(1)
1 − iω(1)u

(0)
1 −

(
1 +

2

r
V1

)
v

(1)
1 +

dh
(1)
1

dr
+

dp
(1)
2

dr
= 0, (8.33)

ik

r
V1v

(1)
1 − iω(1)v

(0)
1 +

(
1 +

1

r
V1 +

dV1

dr

)
u

(1)
1 +

ik

r

(
h

(1)
1 + p

(1)
2

)
= 0, (8.34)

ikV1h
(1)
1 − iω(1)rh

(0)
1 +

d

dr

(
rH

(0)
1 u

(1)
1 + rH

(1)
1 u

(0)
1

)
+ ik

(
H

(0)
1 v

(1)
1 + H

(1)
1 v

(0)
1

)
= 0,(8.35)

iku
(1)
1 − v

(1)
1 = 0, ikv

(1)
1 + u

(1)
1 = 0, h

(1)
1 = 0 at r = 0, (8.36)(

ω(1)r

k
− V2

)[
1

r

d

dr

(
r
dp

(1)
2

dr

)
− k2

r2
p

(1)
2 + h

(0)
1

]
+

{
d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
p

(1)
2 = 0,

(8.37)

p
(1)
2 = 0 at r = 0, (8.38)

where

dH
(0)
1

dr
= V1 +

1

r
V 2

1 ,
dH

(1)
1

dr
= −V2. (8.39)

Unfortunately, we have been unable to rigorously prove that the zeroth-order upper-
layer eigenvalue problem (8.29)–(8.32) does not have a solution for k � 2 (which
would be the ageostrophic equivalent of Theorem 3). However, we have carried out
an extensive numerical study: for various vortex profiles, equations (8.29)–(8.32) were
solved as an eigenvalue problem, with k being the eigenvalue. In all cases, the only
solution found was k = 1. Hence, in what follows, we shall consider only the first
azimuthal wavenumber.

It can be verified by inspection that the zeroth-order upper-layer problem (8.29)–
(8.32), with k = 1, is satisfied by

u
(0)
1 = − i

r
V1, v

(0)
1 =

dV1

dr
, h

(0)
1 =

dH
(0)
1

dr
(8.40)

(which is the ageostrophic analogue of solution (5.11)). Substituting (8.40) and k = 1
into the first-order upper-layer equations, (8.33)–(8.36), we obtain

i

r
V1u

(1)
1 − ω(1) 1

r
V1 −

(
1 +

2

r
V1

)
v

(1)
1 +

dh
(1)
1

dr
+

dp
(1)
2

dr
= 0, (8.41)

i

r
V1v

(1)
1 − iω(1) dV1

dr
+

(
1 +

1

r
V1 +

dV1

dr

)
u

(1)
1 +

i

r

(
h

(1)
1 + p

(1)
2

)
= 0, (8.42)

iV1h
(1)
1 − iω(1)r

dH
(0)
1

dr
+

d

dr

(
rH

(0)
1 u

(1)
1 − iH (1)

1 V1

)
+ i

(
H

(0)
1 v

(1)
1 + H

(1)
1

dV1

dr

)
= 0, (8.43)

iu(1)
1 − v

(1)
1 = 0, iv(1)

1 + u
(1)
1 = 0, h

(1)
1 = 0. (8.44)

Equations (8.41)–(8.44) form a non-homogeneous boundary-value problem for u
(1)
1 ,

v
(1)
1 , and h

(1)
1 – generally speaking, it only has a solution subject to a certain
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orthogonality condition. To derive this condition, consider∫ ∞

0

[
(8.41) × irH (0)

1 + (8.42) × rH
(0)
1 + (8.43) × (r + V1)

]
dr.

Cumbersome, but straightforward, calculations (involving integration by parts and
use of (8.44), (8.39)) yield∫ ∞

0

(r + V1)V1

(
ω(1)r − V2

)
dr +

∫ ∞

0

(r + V1)V1p
(1)
2 dr = 0. (8.45)

Finally, substitute (8.40) and k = 1 into the first-order lower-layer equation (8.37),

(
ω(1)r − V2

) [
1

r

d

dr

(
r
dp

(1)
2

dr

)
− k2

r2
p

(1)
2 + h

(0)
1

]
+

{
d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
p

(1)
2 = 0.

(8.46)

Comparing (8.45)–(8.46) with their QG counterparts (5.12)–(5.13), one can see that
the latter follow from the former under the assumption |V1| 	 r (which is a part of
the QG approximation), and change p2 → ψ2, ω → c (the latter is allowable because
k = 1).

It can be readily shown that, if

d

dr

[
1

r

d

dr
(rV2)

]
+ V1 = 0,

the eigenvalue problem (8.45)–(8.46), (8.38) has no solution. Hence, ageostrophic
vortices with uniform PV in the lower layer are stable with respect to M-modes.

9. Concluding remarks
We have examined the stability of oceanic rings with zero potential vorticity in

the lower layer, with respect to harmonic disturbances (normal modes). Numerical
solution of the exact quasi-geostrophic equations suggests that barotropic disturbances
cannot destabilize mesoscale rings with realistic parameters, so our attention was
mostly focused on the two types of baroclinic disturbances (lower-layer dominated
and mixed modes, existing for k � 2 and k = 1, respectively). These were examined for
the QG case (numerically and asymptotically) and ageostrophic case (asymptotically).
In both cases, rings with zero potential vorticity in the lower layer turned out to be
stable, providing a model consistent with the observed lifespans of oceanic rings.

It should be emphasized that, everywhere in this paper, the upper layer of the ocean
was assumed thin (ε = H1/H2 	 1), and the flow in the lower layer was assumed weak –
which is inapplicable to, at least, some ‘real’ oceanic rings. Indeed, the depth ratio
of the Southern Ocean rings might be as large as ε ∼ 1, whereas some oceanic
cold-core rings are localized ‘in between’ the upper and lower layers (and should be
approximated by a three-layer model). In either case, uniform PV in the ‘passive’
layer(s) may or may not stabilize the ring, and these problems require a separate
study.

Finally, we comment that the strong effect of a weak deep flow on vortices should
not come as a surprise: the lower layer is thick, and its net characteristics (e.g. angular
momentum) can be comparable to, or even exceed, those in the upper layer.
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Figure 5. The locations of critical levels (shown by black circles) for a marginally stable
(Im c = 0) non-compensated vortex. The angular velocity profiles in the upper and lower layers
are marked with 1 and 2, respectively. The dotted line shows the angular phase speed of the
disturbance.

Appendix A. Computation of marginal stability curves for (2.4)–(2.6)
Unfortunately, the solution of the eigenvalue problem (2.4)–(2.6) is very difficult to

compute for marginally stable (Im c = 0), non-compensated vortices. The problem is
that, in this case, the lower-layer critical level happens to be located at the centre of
the vortex, i.e.

c = lim
r→0

{
1

r
V2

}
(see a schematic in figure 5). As a result, the coefficient of the highest-order derivative
in equation (2.5) vanishes at r = 0, which is one of the endpoints of the path of
integration. A similar singularity is associated with the upper-layer critical level, but
it is located in one of the interior points – it can be bypassed by moving the path of
integration into the plane of complex r (which is how the curves of marginal stability
have been computed for compensated vortices, which have critical levels only in the
upper layer – see B03).

Since we cannot compute the solution for marginally stable cases, we had to use
the following extrapolation procedure:

1. Using a shooting method described in B03, four curves of equal growth rate,
γ = k Im c, on the (ε, r0)-plane were computed, such that

γ = 0.0001, 0.0002, 0.0003, 0.0004 (A 1)

(see figure 6).
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Figure 6. Curves of equal growth rate γ for non-compensated vortices, on the (ε, r0)-plane.
Curves 1–4 (γ =0.0001, 0.0002, 0.0003, 0.0004) are computed using the eigenvalue problem
(2.4)–(2.6), while curve 0 (γ = 0, the marginal stability curve) is obtained by extrapolating
curves 1–4.

2. Since strongly varying curvature hampers extrapolation, curves (A 1) were re-
drawn in terms of new coordinates. This was done in two steps. First, we introduced

ε′ =
ε̂ − ε


ε
, r ′

0 =
r̂0 − r0


r0

, (A 2)

where (ε̂, r̂0) are the coordinates of a suitable centre on the (ε, r0)-plane, and 
ε, 
r0

are constants ‘equilibrating’ the scales of ε and r0. We used

ε̂ = 0.12, r̂0 = 7.3

(which are the coordinates of the top right corner of figures 2, 4, 6). 
ε and 
r0 were
chosen to ensure that all four curves would fit into the unit square [0, 1] × [0, 1] of
the

(
ε′, r ′

0

)
-plane. Secondly, we introduced polar coordinates (φ, R), such that

ε′ = R cosφ, r ′
0 = R sin φ. (A 3)

On the (φ, R)-plane, curves (A 1) look much flatter (see figure 7).
3. Next, the function R(γ, φ) was approximated by

R(γ, φ) = A0(φ) + A1(φ) γ + A2(φ) γ 2 + A3(φ) γ 3, (A 4)

where the coefficients A0,1,2,3 were found by matching (A 4) to the four curves defined
by (A 1). The marginal stability curve is then given by

R(0, φ) = A0(φ). (A 5)

4. Finally, curve (A 5) was ‘moved’ back to the (ε, r0)-plane.
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Figure 7. Curves of equal growth rate γ for non-compensated vortices, on the (φ,R)-plane
(defined by (A 2)–(A 3)). The curves are marked similarly to figure 6.

Appendix B. Proofs of Theorems 1, 3, and 4
B.1. Proof of Theorem 1 (non-existence of LLD-modes for k = 1)

Multiply equation (5.1) by r and integrate with respect to r over 0 <r < ∞. Integrating
by parts, we obtain ∫ ∞

0

k2 − 1

r
V1ψ

(0)
1 dr =

∫ ∞

0

rV1ψ
(0)
2 dr. (B 1)

Then, multiply (5.3) by rk and also integrate with respect to r . After cumbersome
calculations, we obtain[(

c(1)r − V2

)
rk dψ

(0)
2

dr
− rψ

(0)
2

d

dr

(
c(1)r − V2

)
rk−1

]r→∞

r=0

+

∫ ∞

0

[
2(k − 1)rk−2

(
V2 − dV2

dr
r

)
+ rkV1

]
ψ

(0)
2 dr = 0. (B 2)

It follows from the boundary conditions (5.4) and equation (5.3) that

ψ
(0)
2 → const r−k at r → ∞,

or, without a loss of generality,

ψ
(0)
2 → r−k at r → ∞.
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Then, (B 2) becomes

−2kc(1) +

∫ ∞

0

[
2 (k − 1) rk−2

(
V2 − dV2

dr
r

)
+ rkV1

]
ψ

(0)
2 dr = 0. (B 3)

Comparing (B 3) to (B 1) for k =1, we see that they are consistent only if c(1) = 0,
which corresponds to the trivial solution (4.6) and should be discarded.

B.2. Proof of Theorem 3 (non-existence of M-modes for k � 2)

Put

ψ
(0)
1 = V1χ (B 4)

and rewrite (5.5)–(5.6) in terms of χ ,

d

dr

(
rV 2

1

dχ

dr

)
− k2 − 1

r
V 2

1 χ = 0, (B 5)

V1χ → 0 as r → 0, ∞. (B 6)

Multiply (B 5) by χ∗ and integrate over 0 <r < ∞. Integrating by parts (twice) and
using (B 6), we obtain ∫ ∞

0

V 2
1

(
r

∣∣∣∣dχ

dr

∣∣∣∣
2

+
k2 − 1

r
|χ |2

)
dr = 0.

Clearly, if k � 2, then

dχ

dr
= 0, χ = 0 at all points where V1 �= 0,

which makes χ zero everywhere (if a solution and its derivative of a second-order
ODE with continuous coefficients are both zero at the same point, this solution is
zero identically). If, however, k = 1, the solution evidently exists: χ = const. Putting
const= 1 and recalling (B 4), we obtain

ψ
(0)
1 = V1,

as required.

B.3. Proof of Theorem 4 (stability criterion for M-modes)

Multiply (5.13) by

rψ
(1)∗
2

c(1)r − V2

,

and integrate over 0 < r < ∞. Integrating by parts, using the boundary conditions
(5.10), and taking the imaginary part, we obtain

(
Im c(1)

) ∫ ∞

0


r2V1 − Q

′(1)
2∣∣∣∣c(1) − 1

r
V2

∣∣∣∣
2

∣∣ψ (1)
2

∣∣2

 dr = 0, (B 7)

where

Q
′(1)
2 =

d

dr

[
1

r

d

dr
(rV2)

]
+ V1
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is the leading-order lower-layer PV gradient. One can see that, if V1 and Q
′(1)
2 are

sign-definite and V1Q
′(1)
2 � 0, it follows from (B 7) that Im c(1) = 0 (stability).
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