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Instability of quasi-geostrophic vortices in a
two-layer ocean with a thin upper layer
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Department of Mathematics, University of Limerick, Ireland

(Received 8 March 2001 and in revised form 30 August 2002)

We examine the stability of a quasi-geostrophic vortex in a two-layer ocean with a
thin upper layer on the f-plane. It is assumed that the vortex has a sign-definite swirl
velocity and is localized in the upper layer, whereas the disturbance is present in both
layers. The stability boundary-value problem admits three types of normal modes:
fast (upper-layer-dominated) modes, responsible for equivalent-barotropic instability,
and two slow baroclinic types (mixed- and lower-layer-dominated modes). Fast modes
exist only for unrealistically small vortices (with a radius smaller than half of the
deformation radius), and this paper is mainly focused on the slow modes. They
are examined by expanding the stability boundary-value problem in powers of the
ratio of the upper-layer depth to the lower-layer depth. It is demonstrated that the
instability of slow modes, if any, is associated with critical levels, which are located at
the periphery of the vortex. The complete (sufficient and necessary) stability criterion
with respect to slow modes is derived: the vortex is stable if and only if the potential-
vorticity gradient at the critical level and swirl velocity are of the same sign. Several
vortex profiles are examined, and it is shown that vortices with a slowly decaying
periphery are more unstable baroclinically and less barotropically than those with a
fast-decaying periphery, with the Gaussian profile being the most stable overall. The
asymptotic results are verified by numerical integration of the exact boundary-value
problem, and interpreted using oceanic observations.

1. Introduction
Vortices play an important role in the dynamics of the ocean, yet their stability

properties are still unclear. Apart from numerical studies of particular examples (e.g.
Ikeda 1981; Helfrich & Send 1988; Carton & McWilliams 1989; Ripa 1992; Dewar
& Killworth 1995), there is only one general result on the stability of baroclinic
vortices – namely, that vortices with small Burger numbers are unstable (Killworth,
Blundell & Dewar 1997; Benilov, Broutman & Kuznetsova 1998). Unfortunately, this
is not useful, as the Burger numbers of many real-life oceanic vortices are of the order
of unity (Olson 1991). Furthermore, models that yield instability do not resolve the
main paradox associated with oceanic eddies: how can they exist for years if they are
unstable? Thus, the only conclusion to be derived from the results of Killworth et al.
(1997) and Benilov et al. (1998) is that stable vortices may not have small Burger
number.

A more positive conclusion was obtained by Paldor & Nof (1990), who considered
the particular case of lenses with zero potential vorticity (PV) in a two-layer ocean,
and found them to be stable if they are sufficiently thin (it should be noted that most
oceanic eddies are indeed thin).
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However, the model of Paldor & Nof (1990) has an important shortcoming:
the zero-PV vortex has constant angular velocity, which rules out critical levels.
Unfortunately, this devalues the conclusion obtained, as critical levels are important
for hydrodynamic stability and should be taken into account by any realistic model.
Note also that the result of Paldor & Nof (1990) does not agree with the conclusion of
Ripa (1992), who predicted instability for all vortices with constant angular velocity,
regardless of their thicknesses.

The present paper examines the stability of vortices in a two-layer ocean with
a thin upper layer. Attention is focused on quasi-geostrophic vortices (a study of
ageostrophic vortices is in progress). Our approach is based on a single small param-
eter, the ratio of the depth of the upper layer to that of the lower layer. We consider
arbitrary vortex profiles, and thus examine the effect of critical levels.

In § 2, we shall formulate the governing equations and demonstrate why the usual
stability criterion (based on the monotonicity of potential vorticity) does not work
for the problem at hand. In § 3, it will be shown that the problem admits three types
of normal modes: fast (upper-layer-dominated) modes, responsible for equivalent-
barotropic instability, and two types of slow baroclinic modes (mixed- and lower-
layer-dominated modes). This paper is mostly devoted to the slow types: in §§ 4 and
5, we shall derive a stability criterion for these, and verify it by comparing with
the numerical solution of the exact equations. In § 6, the results obtained will be
interpreted using the observations of oceanic rings by Olson (1991).

2. Formulation
2.1. Governing equations

Consider a two-layer ocean with a rigid lid. Let the densities and depths of the layers
be ρ1,2 and H1,2 (the subscript 1 marks the upper layer). We shall assume that the
horizontal scale of the flow is of the order of the upper-layer deformation radius

Ld =
1

f

√
ρ2 − ρ1

ρ2

gH1,

where g is the acceleration due to gravity and f is the Coriolis parameter. Using Ld
and the characteristic velocity U of the flow in the upper layer, we introduce the
following non-dimensional variables:

t =
Ut∗
Ld

, (x, y) =
(x∗, y∗)
Ld

, ψ1,2 =
ψ∗1,2
LdU

,

where t is the time, (x, y) are the spatial coordinates, ψ1,2 are the streamfunctions, and
the asterisk marks the dimensional variables.

To describe vortices, we shall employ the standard quasigeostrophic equations on
the f-plane,

∂

∂t

(∇2ψ1 − ψ1 + ψ2

)
+ J(ψ1,∇2ψ1 + ψ2) = 0, (2.1)

∂

∂t
(∇2ψ2 − εψ2 + εψ1) + J(ψ2,∇2ψ2 + εψ1) = 0, (2.2)

where J(ψ1, ψ2) is the Jacobian operator and ε is the depth ratio,

ε =
H1

H2

.

We are concerned with the stability of radially symmetric vortices with respect to
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small disturbances,

ψ1,2 = Ψ1,2(r) + ψ′1,2(r, θ, t), (2.3)

where the capital-letter variables describe the vortex, the primed variables describe
the disturbance, and (r, θ) are polar coordinates. Then we linearize the governing
equations against the background of the vortex solution, i.e. substitute (2.3) into
(2.1)–(2.2) and omit the nonlinear terms,

∂

∂t
(∇2ψ′1 − ψ′1 + ψ′2) + J(Ψ1,∇2ψ′1 + ψ′2) + J(ψ′1,∇2Ψ1 +Ψ2) = 0,

∂

∂t
(∇2ψ′2 − εψ′2 + εψ′1) + J(Ψ2,∇2ψ′1 + εψ′1) + J(ψ′2,∇2Ψ1 + εΨ1) = 0.

We shall consider harmonic disturbances,

ψ′1,2(r, θ, t) = Re[ψ1,2(r) eik(θ−ct)],

where k and c are the azimuthal wavenumber and angular phase speed, respectively.
Then, the governing equations become

c

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 − ψ1 + ψ2

]
− 1

r
V1

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 + ψ2

]

+
1

r
ψ1

{
d

dr

[
1

r

d

dr
(rV1)

]
+ V2

}
= 0, (2.4)

c

[
1

r

d

dr

(
r
dψ2

dr

)
− k2

r2
ψ2 − εψ2 + εψ1

]
− 1

r
V2

[
1

r

d

dr

(
r
dψ2

dr

)
− k2

r2
ψ2 + εψ1

]

+
1

r
ψ2

{
d

dr

[
1

r

d

dr
(rV2)

]
+ εV1

}
= 0 (2.5)

where

V1,2 =
dΨ1,2

dr
are the swirl velocities in the layers.

Equations (2.4)–(2.5) should be supplemented by the usual boundary conditions,

ψ1,2(0) = ψ1,2(∞) = 0. (2.6)

Equations (2.4)–(2.6) form an eigenvalue problem, where c is the eigenvalue. If
Im c > 0, the vortex is unstable.

2.2. What do we want to achieve?

As usual, a stability criterion based on the monotonicity of potential vorticity (PV)
can be derived for (2.4)–(2.5) – see, for example, Dritschel (1988). In this subsection,
we shall demonstrate that this criterion does not work for the problem at hand, and
then outline how it can be improved.

First, rearrange equations (2.4)–(2.5) as follows:

d

dr

(
r
dψ1

dr

)
−
(
k2

r
+ r − dQ1/dr

V1/r − c
)
ψ1 = −rψ2, (2.7)

d

dr

(
r
dψ2

dr

)
−
(
k2

r
+ εr − dQ2/dr

V1/r − c
)
ψ2 = −εrψ1, (2.8)
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where the PV gradients in the upper/lower layers are given by

dQ1

dr
=

d

dr

[
1

r

d

dr
(rV1)

]
− V1 + V2,

dQ2

dr
=

d

dr

[
1

r

d

dr
(rV2)

]
− V2 + V1.

Next, consider the following combination of equations (2.7) and (2.8):

Im

∫ ∞
0

[
(2.7)× ψ∗1 +

1

ε
(2.8)× ψ∗2

]
dr,

where the asterisk denotes complex conjugate. Integrating by parts and using bound-
ary condition (2.6), we obtain

(Im c)

∫ ∞
0

[
dQ1/dr|ψ1|2

(V1/r −Re c)2 + (Im c)2
+

1

ε

dQ2/dr|ψ2|2
(V2/r −Re c)2 + (Im c)2

]
dr = 0. (2.9)

Now, if dQ1/dr and dQ2/dr do not change sign and are of the same sign,

dQ1

dr

dQ2

dr
> 0 for all r ∈ (0,∞), (2.10)

the vortex is stable (Im c = 0), which provides a necessary criterion of instability.
It turns out, however, that condition (2.10) does not hold for any realistic oceanic

vortex; given that their velocity decays rapidly with depth, we can assume that V2 = 0,
and the PV gradients become

dQ1

dr
=

d

dr

[
1

r

d

dr
(rV1)

]
− V1,

dQ2

dr
= V1. (2.11)

Next, assume that the vortex is smooth at the origin and decays at infinity, which
implies

V1(0) = 0, V1(∞) = 0.

Then one can see that V1(r) has at least one maximum, where it is positive, or at
least one minimum, where it is negative. Assuming, say, the former, we conclude that
there is a point r = rmax such that

(V1)r=rmax
> 0,

(
dV1

dr

)
r=rmax

= 0,

(
d2V1

dr2

)
r=rmax

6 0.

Then, (2.11) yields(
dQ1

dr

)
r=rmax

=

(
d2V1

dr2
+

1

r

dV1

dr
− 1

r2
V1 − V1

)
r=rmax

< 0,

(
dQ2

dr

)
r=rmax

= (V1)r=rmax
> 0.

Thus, at r = r
max

, the signs of the PV gradients are opposite, which makes all vortices
potentially unstable and renders the stability criterion (2.10) useless.

It should be noted, however, that (2.10) has been derived without any knowledge of
the properties of the eigenfunctions ψ1,2. In order to illustrate how they could affect a
stability criterion, assume, for the sake of argument, that |ψ1| � |ψ2|. In this case, (2.9)
results in a much tighter stability criterion, namely, that dQ1/dr be a sign-definite
function of r.

In what follows, the boundary-value problem (2.4)–(2.6) with V2 = 0 will be
examined asymptotically on the basis of the assumption that the upper layer is
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thin, i.e.

ε =
H1

H2

� 1.

Using asymptotic estimates of ψ1,2, we shall tighten up the usual instability criterion,
and make it necessary and sufficient.

3. Preliminary asymptotic analysis: three types of modes
Assume that the vortex is localized in the upper layer of the ocean, i.e.

V2 = 0.

Then (2.4)–(2.5) become

c

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 − ψ1 + ψ2

]
−1

r
V1

[
1

r

d

dr

(
r
dψ1

dr

)
− k2

r2
ψ1 + ψ2

]
+

1

r
ψ1

d

dr

[
1

r

d

dr
(rV1)

]
= 0, (3.1)

c

[
1

r

d

dr

(
r
dψ2

dr

)
− k2

r2
ψ2 − εψ2 + εψ1

]
+ ε

1

r
V1ψ2 = 0. (3.2)

We shall also assume that the upper-layer velocity is a smooth, fast-decaying function:

V1 = o(r−4) as r →∞,
and that the corresponding angular velocity is monotonic:

d

dr

(
1

r
V1

)
6= 0

(the latter condition guarantees that each normal mode has no more than one critical
level, i.e. a point where V1/r = Re c). We shall also assume that V1(r) is a sign-definite
function, which is usually the case in the ocean.

We shall seek the solution to the boundary-value problem (3.1)–(3.2), (2.6) in the
form

c = c(0) + εc(1) + ε2c(2) + · · · , ψ1,2 = ψ
(0)
1,2 + εψ

(1)
1,2 + · · · .

It can be readily seen that, if ω(0) 6= 0 and ψ(0)
2 6= 0, the leading order of the lower-layer

equation

c(0)

[
1

r

d

dr

(
r
dψ(0)

2

dr

)
− k2

r2
ψ

(0)
2

]
= 0,

has no bounded solutions. Thus, either ψ(0)
2 or c(0) or both have to be zero, depending

on which we shall consider three types of modes:
(i) If

ψ
(0)
2 = 0, c(0) 6= 0,

the upper-layer equation (3.1), to the leading order, decouples from its lower-layer
counterpart:

c(0)

[
1

r

d

dr

(
r
dψ(0)

1

dr

)
− k2

r2
ψ

(0)
1 − ψ(0)

1

]

−1

r

{
V1

[
1

r

d

dr

(
r
dψ(0)

1

dr

)
− k2

r2
ψ

(0)
1

]
− ψ(0)

1

d

dr

[
1

r

d

dr
(rV1)

]}
= 0. (3.3)
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It describes the usual equivalent-barotropic motion, and its solutions will be referred
to as upper-layer-dominated (ULD) modes.

(ii) If

ψ
(0)
2 6= 0, c(0) = 0,

equations (3.1)–(3.2) become

−V1

[
1

r

d

dr

(
r
dψ(0)

1

dr

)
− k2

r2
ψ

(0)
1 − ψ(0)

1 + ψ
(0)
2

]

+

{
d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
ψ

(0)
1 = 0, (3.4)

c(1)

[
1

r

d

dr

(
r
dψ(0)

2

dr

)
− k2

r2
ψ

(0)
2

]
+

1

r
ψ

(0)
2 V1 = 0. (3.5)

In this case, c(1) is fully determined by the lower-layer equation, which decouples from
its upper-layer counterpart. It describes oscillations in a layer with non-even upper
boundary, and its solutions will be referred to as lower-layer-dominated (LLD) modes
(although ψ1 and ψ2, in this case, are of the same order, the larger thickness of the
lower layer makes it dominant). They exist due to the curvature of the interface and,
dynamically, are not sensitive to the flow in the upper layer (just as waves trapped
by bottom irregularities are not sensitive to what happens below the bottom of the
ocean). The upper-layer equation (3.4), in turn, describes a disturbance forced by the
oscillations in the lower layer.

(iii) If

ψ
(0)
2 = 0, c(0) = 0,

the eigenvalue c, to the leading order, drops out from the upper-layer equation:

V1

[
1

r

d

dr

(
r
dψ(0)

1

dr

)
− k2

r2
ψ

(0)
1

]
− ψ(0)

1

d

dr

[
1

r

d

dr
(rV1)

]
= 0. (3.6)

c(1) is to be determined from the next-order equations:

c(1)

[
1

r

d

dr

(
r
dψ(0)

1

dr

)
− k2

r2
ψ

(0)
1 − ψ(0)

1

]

−1

r

{
V1

[
1

r

d

dr

(
r
dψ(1)

1

dr

)
− k2

r2
ψ

(1)
1 + ψ

(1)
2

]
− ψ(1)

1

d

dr

[
1

r

d

dr
(rV1)

]}
= 0, (3.7)

c(1)

[
1

r

d

dr

(
r
dψ(1)

2

dr

)
− 1

r2
ψ

(1)
2 + ψ

(0)
1

]
+

1

r
ψ

(1)
2 V1 = 0. (3.8)

Importantly, (3.7)–(3.8) include both leading-order eigenfunctions, ψ(0)
1 and ψ(1)

2 , hence
the corresponding solutions will be referred to as mixed modes.

Observe that the last two types of modes are both slow (c ≈ εc(1) � 1) and are
responsible for baroclinic instability, whereas fast ULD modes (c ≈ c(0) ∼ 1) are
responsible for equivalent-barotropic instability. It can be demonstrated (see below)
that the latter type of instability is not relevant to the mesoscale oceanic vortices
(which we are mostly interested in); therefore this paper is almost entirely devoted to
slow modes. Their properties will be examined in the next two sections.



Instability of quasi-geostrophic vortices in a two-layer ocean 309

4. Mixed modes
In this section, we shall examine mixed modes. Surprisingly, the first two orders

of the asymptotic expansion will turn out to be neutrally stable. In order to find the
growth rate, higher orders will have to be explored.

4.1. Zeroth-order results: a restriction to the first azimuthal wavenumber

The zeroth-order equation (3.6) should be supplemented by the boundary condition

ψ
(0)
1 (0) = ψ

(0)
1 (∞) = 0. (4.1)

Observe that the eigenvalue c(1) appears in neither the equation nor the boundary
condition, which makes it unlikely that (3.6), (4.1) has a solution.

The boundary-value problem (3.6), (4.1) has a solution only for the first azimuthal
wavenumber k = 1, in which case ψ(0)

1 = V1.

In order to prove the above statement, rewrite (3.6) in terms of a new variable χ:

ψ
(0)
1 = V1χ. (4.2)

Substituting (4.2) into (3.6), we obtain

d

dr

(
rV 2

1

dχ

dr

)
− k2 − 1

r
V 2

1 χ = 0.

Now, multiply this equation by χ∗ and integrate over 0 < r < ∞. Integrating by parts,
we obtain ∫ ∞

0

V 2
1

(
r

∣∣∣∣dχdr

∣∣∣∣2 +
k2 − 1

r
|χ|2
)

dr = 0.

Clearly, if k > 2, then

dχ

dr
= 0, χ = 0 at all points where V1 6= 0,

which makes χ zero everywhere (if a solution and its derivative of a second-order
ODE with continuous coefficients are both zero at the same point, this solution is
zero identically). If, however, k = 1, the solution evidently exists: χ = const. Putting
const = 1 and recalling (4.2), we obtain

ψ
(0)
1 = V1,

as required. (This solution often comes up in stability problems; it corresponds to an
infinitesimal shift of the vortex as a solid.)

Thus, we need to examine mixed modes for only the first azimuthal wavenumber,
k = 1.

4.2. First-order results: neutral stability?

For k = 1 and ψ(0)
1 = V1, the first-order equations (3.7)–(3.8) become

c(1)

[
1

r

d

dr

(
r
dV1

dr

)
− 1

r2
V1 − V1

]
− 1

r

{
V1

[
1

r

d

dr

(
r
dψ(1)

1

dr

)
− 1

r2
ψ

(1)
1 + ψ

(1)
2

]

−ψ(1)
1

d

dr

[
1

r

d

dr
(rV1)

]}
= 0, (4.3)
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c(1)

[
1

r

d

dr

(
r
dψ(1)

2

dr

)
− 1

r2
ψ

(1)
2 + V1

]
+

1

r
ψ

(1)
2 V1 = 0. (4.4)

It is convenient to eliminate ψ(1)
1 , which can be done by multiplying (4.3) by r2 and

integrating over 0 < r < ∞. Integrating by parts, we obtain∫ ∞
0

rV1ψ
(1)
2 dr + c(1)

∫ ∞
0

r2V1dr = 0. (4.5)

We shall also impose the usual boundary conditions

ψ
(1)
2 (0) = ψ

(1)
2 (∞) = 0. (4.6)

Equations (4.4)–(4.6) form an eigenvalue problem for ψ(1)
2 and c(1). In principle, the

integral condition (4.5) can be transformed into a usual type of (differential) boundary
condition (see Appendix A), which is more convenient numerically.

The main result of this subsection is as follows (its proof can be found in Appendix
B):

All eigenvalues of (4.4)–(4.6) are real.

Thus, to the leading order, all disturbances are neutrally stable.
Another important result can be obtained as a by-product of the above theorem

(it follows from identity (B 8) of Appendix B):

If V1(r) is sign definite, the eigenvalues of (4.4)–(4.6) are of the same sign as V1.

Finally, we shall briefly discuss the existence of solutions to the boundary-value
problem (4.4)–(4.6). It can be argued that (4.4)–(4.6) have an infinite sequence of
eigenvalues converging to zero. The argument is based on the fact that the limit
c(1) → 0 coincides with the WKB limit, using which one can calculate c(1) explicitly.
This calculation has been performed for the particular case of ‘vortices with finite
support’,

V1 = 0 if r > R,

with the additional assumption that

V1 → const(R − r)n as r → R − 0,

where n > 1. (The WKB method, of course, is applicable to any vortex profile, but,
unfortunately, the technical details depend on the specific form of the asymptotics of
V1(r) as r → ∞, and the issue of existence cannot be resolved in the general case.)
It is also worth mentioning that, in addition to vortices with finite support, several
cases of V1(r) were examined numerically (see below), and in all those cases the first-
order boundary-value problem, as expected, did have a sequence of real eigenvalues
converging to zero.

4.3. Higher-order approximations: critical levels

Observe that the problem at hand admits critical levels. Assuming for simplicity that
V1(r) is a sign-definite function (which is the case oceanographically), one can see that

(i) the zeroth-order angular phase speed of the disturbance is real and has the
same sign as V1/r,

(ii) the absolute value of the phase speed is smaller than the maximum absolute
value of V1/r (the former is O(ε), while the latter is O(1)).
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Hence, the angular phase speed, Re c, of the disturbance lies within the range[
min

{
1

r
V1(r)

}
, max

{
1

r
V1(r)

}]
,

and a critical level (critical radius) rc exists, such that

1

rc
V1(rc) = Re c.

It is well-known that critical levels of neutrally stable modes cause singularities.
However, our asymptotic equations have regular coefficients, and we have to conclude
that the leading-order approximation describes critical levels incorrectly.

In order to understand why this should be so, consider the exact equation (2.7) and
observe that, for neutrally stable eigenvalues, the last term in brackets is singular at
r = rc. To the leading order, however, this singularity cancels out. Indeed, as c = O(ε)
and V1/r = O(1), we should neglect the former in comparison with the latter. As a
result, the critical level moves to infinity, where the numerator of the singular term
vanishes as well, and the singularity cancels out.

The fact that the critical layer has not been ‘grasped’ by the first two orders of
our expansion indicates that its effect is weak: first, the critical layer is narrow and,
secondly, is located at the periphery of the vortex, where the eigenfunction is decaying.
It can be safely assumed that its contribution to the eigenvalue is small – but no
matter how small, it can be imaginary and, hence, cause instability. Mathematically,
this means that one of the higher-order corrections to c can be imaginary.

Unfortunately, the straightforward approach to higher-order calculations gives rise
to cumbersome algebra. Moreover, Im c may scale with a fractional power of ε, or
even be exponentially small, which would make the perturbation expansion extremely
awkward. Normally, this would mean that the problem at hand is intractable by
analytical means. It turns out, however, that this particular problem allows a ‘short-
cut’ to Im c, which bypasses the calculation of the higher-order eigenfunction.

We start from the exact identity (2.9), put V2 = 0, and simplify its second term by
assuming

ψ2 ≈ εψ(1)
2 , Re c ≈ εc(1) (4.7)

and

|Im c| � |Re c| (4.8)

(the latter inequality follows from the fact that, to the leading order, c has turned out
to be real). After simple algebra, we obtain∫ ∞

0

Im c

(Re c− V1/r)2 + (Im c)2

dQ1

dr
|ψ1|2 dr + (Im c)

∫ ∞
0

V1

(
ψ

(1)
2

c(1)

)2

dr ≈ 0. (4.9)

Observe that a naive substitution of (4.7)–(4.8) into the first term of (4.9) would cause
a divergence at the critical level r = rc.

In the remainder of this section, we shall rearrange and simplify the first term of
(4.9). The key point is the observation that the vortex can be subdivided into a core
and periphery:

1

r
V1 � Re c if r < rb,
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and

1

r
V1 . Re c if r > rb,

where rb is an approximate boundary separating the two regions. Accordingly,∫ ∞
0

dQ1

dr
|ψ1|2 Im c

(V1/r −Re c)2 + (Im c)2
dr = Icore + Iperi.

First, we shall consider

Icore =

∫ rb

0

dQ1

dr
|ψ1|2 Im c

(V1/r −Re c)2 + (Im c)2
dr.

The integrand of Icore can be simplified by omitting the small Re c and Im c in
the denominator. We can also replace ψ1 with its leading-order approximation:
ψ1 ≈ ψ(0)

1 = V1 and obtain

Icore ≈ (Im c)

∫ rb

0

r2 dQ1

dr
dr.

As dQ1/dr becomes small as r → ∞, we can move the upper limit of Icore to infinity.
Then, replacing dQ1/dr with its definition (2.11) and integrating by parts, we obtain

Icore ≈ − (Im c)

∫ ∞
0

r2V1 dr.

The periphery term,

Iperi =

∫ ∞
rb

dQ1

dr
|ψ1|2 Im c

(V1/r −Re c)2 + (Im c)2
dr,

is mainly composed of the contribution of the critical layer (where the denominator of
the integrand is small). This region is narrow, and the change of V1(r) over its width
is small; hence, we can expand V1/r, dQ1/dr, and |ψ1|2 about r = rc, for example,

1

r
V1(r) =

1

rc
V1(rc) +

[
d

dr

(
1

r
V1

)]
r=rc

(r − rc) + · · · .

We shall also move the lower limit of integration to −∞ (since the integrand decays
rapidly away from the critical level, this does not make much difference). Thus,

Iperi ≈ (Im c)

(
dQ1

dr
|ψ1|2

)
r=rc

∫ ∞
−∞

dr

{[(d/dr)(V1/r)]r=rc(r − rc)}2 + (Im c)2
.

Now, the integral can be evaluated:

Iperi ≈ π
[

dQ1/dr |ψ1|2
|(d/dr)(V1/r)|

]
r=rc

sign(Im c).

Substituting Icore and Iperi into (4.9), we obtain

π

[
(dQ1/dr) |ψ1|2
|(d/dr)(V1/r)|

]
r=rc

sign(Im c)− (Im c)

∫ ∞
0

r2V1 dr + (Im c)

∫ ∞
0

V1

(
ψ

(1)
2

c(1)

)2

dr ≈ 0.
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This equality can be rearranged using condition (4.5):

|Im c|
∫ ∞

0

V1(ψ
(1)
2 + c(1)r)2 dr ≈ −π(c(1))2

[
(dQ1/dr) |ψ1|2
|(d/dr)(V1/r)|

]
r=rc

. (4.10)

Equation (4.10) should be treated as an equation for Im c. As before, we assume that
V1(r) is a sign-definite function, in which case (4.10) has a solution if and only if V1(r)
and (dQ1/dr)r=rc are of opposite sign. If they indeed are, two solutions exist for Im c,
corresponding to two complex-conjugate eigenvalues, one of which is unstable. If, on
the other hand, V1 and (dQ1/dr)r=rc are of the same sign, no solutions exist for Im c.
This means that our boundary-value problem does not have eigenvalues (stable or
unstable), which should be interpreted as stability.

Observe, however, that the right-hand side of (4.10) depends on the unknown
quantities rc and (ψ1)r=rc , which do not allow one to find Im c. The value of rc can be
determined approximately, by assuming

1

rc
V1(rc) ≈ εc(1). (4.11)

The situation with (ψ1)r=rc is less straightforward, as its leading-order approximation,

ψ
(0)
1 = V1, is inapplicable near the critical level. It was obtained using the upper-layer

equation (3.6), where c was neglected and V1/r retained, but near the critical level
they are of the same order. This inconsistency is difficult to correct, as (ψ1)r=rc can
be found only using the method of matched asymptotic expansions – not only is this
task associated with cumbersome calculations but it also depends on the asymptotics
of V1(r) as r → ∞. The latter makes it impossible to derive a general formula for
(ψ1)r=rc , even though every particular case is (more or less) readily tractable.

In what follows, (4.10)–(4.11) will be used as a stability criterion.

4.4. Examples

In order to test a particular vortex profile V1(r) for stability with respect to mixed
modes, one needs to take the following steps:

(i) Solve the first-order boundary-value problem (4.4)–(4.6) and determine the
eigenvalues c(1) (in most cases, it is enough to compute the largest eigenvalue, which
loses stability first; in other cases, solving (4.4)–(4.6) can be bypassed altogether – see
below). However, even though (4.4)–(4.6) always have solutions (modes), the existence
of these solutions with respect to higher-order approximations remains to be verified.

(ii) To do so, determine the positions of the critical levels corresponding to the
eigenvalues found (i.e. find the points which satisfy condition (4.11)).

(iii) Check the sign of the PV gradient at the critical levels. The modes for which
it is opposite to the sign of V1 indeed exist and have non-zero Im c. The modes for
which the PV gradient at the critical level and V1 are of the same sign do not exist as
higher-order solutions.

Thus, a vortex is unstable if and only if there exists at least one first-order mode
one first-order mode (solution of (4.4)–(4.6)), for which the PV gradient at the
critical level is of the opposite sign to that of V1.

As the first example, we consider the Gaussian vortex,

V1 =
r

r0
exp

(
− r2

2r2
0

)
, (4.12)
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Figure 1. The asymptotic lower-layer eigenfunctions (solutions of (4.4)–(4.6)) for the Gaussian
vortex (4.12) with r = 1.5. The curves are labelled by the mode number.

where r0 is the radius of maximum swirl velocity. Another important parameter is
the depth ratio ε. For the particular case of

r0 = 1.5, ε = 0.1,

several first eigenvalues of the asymptotic boundary-value problem (4.4)–(4.6) were
found numerically:

c(1) = 0.16795, 0.06336, 0.03352, 0.02079 . . . .

The corresponding eigenfunctions are shown in figure 1 – observe that they satisfy
the ‘oscillation theorem’, i.e. the first eigenfunction (the one corresponding to the
largest eigenvalue) has one extremum, the second eigenfunction has two extrema, etc.
(this behaviour is typical for second-order equations with regular coefficients). The
oscillation theorem allows one to make sure that no eigenvalues have been missed in
computation (which is impossible to do for the exact eigenvalue problem). Note also
that the oscillation theorem is not applicable to the upper-layer eigenfunction – recall
that, to the leading order, ψ(0)

1 = V1, which is not oscillatory.
The positions of the critical levels for the above eigenvalues are shown in figure 2(a),

and the corresponding values of the PV gradient are shown in figure 2(b). Evidently,
all modes are stable. Let us now increase the depth ratio ε, keeping the radius r0 of
the vortex fixed. In this case, the eigenvalues c(1) are also fixed (they depend only on
the shape of the vortex), but the ‘full’ phase speed, c ≈ εc(1), scales with ε and, hence,
grows. As a result, the critical levels move towards the centre of the vortex, where
the angular velocity is larger. One after another, they enter the area of negative PV
gradient (see figure 2) and, according to our criterion, become unstable. Observe that
the first (largest) eigenvalue becomes unstable first, which makes it an ‘instability
indicator’.
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Figure 2. The angular velocity (a), and PV gradient (b) of Gaussian vortex (4.12) with r0 = 1.5.
Circles show the positions of the critical levels of the first four modes, for the depth ratio ε = 0.1.
As the PV gradient at all four critical levels is positive, the corresponding modes are stable.

Next, we shall fix ε and increase r0. In this case, definition (2.11) of dQ1/dr shows
that

dQ1

dr
→ −V1 as r0 →∞. (4.13)

Hence, the sign of the PV gradient becomes opposite to that of V1 (not only at the
critical level, but everywhere). We conclude that all large vortices† do not satisfy the
stability criterion derived (note that (4.13) holds for any vortex shape, not necessarily
Gaussian). In other words, a stable vortex could be made unstable by increasing its
radius.

The predicted properties of Gaussian vortices have been tested against the exact
solution, obtained through numerical integration of equations (3.1)–(3.2), (2.6). As

† Dimensionally, ‘large’ means (r0∗/Ld)2 � 1, where r0∗ is the dimensional radius of the vortex,
and Ld is the deformation radius.
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we were interested mostly in the cases of marginal stability, where the coefficients of
these equations are singular (at the critical levels), we used a numerical method based
on extending the spatial variable r to the complex plane (see Appendix C).

First, we checked that the first mixed mode indeed becomes unstable before all
other mixed modes, and the exact solution did confirm this asymptotic conclusion.
On increasing r0 or ε, the second and further modes soon follow, but their growth
rates still remain smaller than that of the first mode.

Secondly, we computed the marginal stability curve, separating the regions of
stability and instability with respect to the first mixed mode, on the (ε, r0)-plane
(figure 3a). One can see that the asymptotic and exact curves agree reasonably well
for ε . 0.2 (as they should). It is also worth noting that no modes, other than mixed
modes, were found for k = 1. (It will be proven in § 5 that LLD modes do not exist
for k = 1; and neither do ULD modes, as mentioned by Paldor (1999)†.)

We have also examined the profile

V1 =
r

r0
sech

(
r

r0

)
, (4.14)

which will be referred to as the ‘Sech profile’. The most important feature of this
vortex is that

if r0 > 1,
dQ1

dr
< 0 for all r.

Hence, vortices with r0 > 1 are unstable for any ε (in this case, no matter where the
critical levels are, the PV gradient there is negative). Furthermore, even after r0 has
crossed the threshold value of r0 = 1, the instability cannot disappear immediately
– as a result, the stability region on the (ε, r0)-plane for the Sech vortex is relatively
small (compare figures 3a and 3b). Interestingly, the asymptotic and exact marginal
stability curves for the Sech vortex coincide remarkable well, and not only for small ε,
but also for ε ∼ 1 (see figure 3b). Otherwise, the Sech vortex is similar to the Gaussian
vortex, including the property of the first mixed mode becoming unstable before the
other mixed modes.

It is worth noting that there are important classes of vortex profiles which can be
tested for stability without actually solving the first-order boundary-value problem.
Indeed, consider, for example, a vortex with algebraic periphery,

V1 →
(
r

r0

)−n
as r →∞. (4.15)

Calculating the asymptotics of the PV gradient,

dQ1

dr
→ (n2 − 1)

(
r

r0

)−n−2

−
(
r

r0

)−n
≈ −

(
r

r0

)−n
as r →∞,

one can see that its sign is opposite to that of V1. Hence, any mode with sufficiently
large coordinate of its critical level is unstable. And, of course, there are plenty
of such modes, as the asymptotic boundary-value problem has an infinite sequence
of solutions with phase speeds tending to zero (accordingly, the coordinates of the
critical levels tend to infinity). It should be noted though that the growth rate of these
higher modes is small, as their critical levels are located very far from the vortex core,
where the eigenfunction is small.

† Strictly speaking, Paldor’s (1999) claim was made for the equation describing barotropic
disturbances on a barotropic vortex, but mathematically it coincides with our equation (3.3).
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Figure 3. The curves of marginal stability with respect to the mixed mode k = 1. The solid line
shows the exact solution, the dotted line shows the asymptotic solution (obtained for the limit
ε→ 0). (a) Gaussian vortices (4.12); (b) Sech vortices (4.14).

Summarizing the results of this subsection, we note that a connection can be drawn
between the large-distance asymptotics of the vortex and its stability properties.
Indeed, the strongly decaying Gaussian vortex is the most stable of the three examples
considered, whereas the slowly decaying algebraic vortex is the most unstable one.
Overall, the crucial importance of the vortex periphery is not all that surprising, as
that is where the critical levels are located.

Having concluded that instability of thin vortices is caused by critical levels, we
shall now discuss the contradiction between the results of Ripa (1992) and Paldor



318 E. S. Benilov

& Nof (1990), regarding vortices with constant angular velocity. The crucial point
here is that they do not have critical levels, hence should be stable (provided they are
thin, of course, otherwise our results are not applicable). This appears to resolve the
contradiction in favour of Paldor & Nof (1990), although a conclusive answer can
be obtained only after we extend our approach to ageostrophic vortices (for which
both conflicting results have been obtained). Indeed, it is possible, in principle, that
ageostrophic effects give rise to an essentially ageostrophic unstable mode, which is
beyond the scope of our QG analysis.

Finally, we note that instability of vortices with respect to the first azimuthal
wavenumber k = 1 is sometimes believed not to inflict structural damage to the
vortex, but rather make it move laterally as a solid. This does not seem to be relevant
on the present case. First, only the leading-order eigenfunction corresponds to a shift
of the vortex as a whole, whereas the higher approximations do not. Secondly, the
frequency in the present case has a sizeable real part, which corresponds to periodic
oscillations of the vortex about a certain point. Since the frequency has an imaginary
part as well, the amplitude of the oscillations grows, and so does the dipole component
of the flow associated with the oscillations (the dipole component is, essentially, what
makes the vortex move). Eventually, it is difficult to imagine that the growing dipole
component can leave the vortex intact.

It should be admitted though that a conclusive answer to the question of long-
term evolution of a (k = 1)-unstable vortex can be given only by simulations of the
original nonlinear equations. For the present work, however, this issue is not overly
important, as the vortices under consideration are also unstable with respect to k > 2
(see § 5).

4.5. Discussion: Why do critical levels destabilize the vortex?

In this subsection, we shall briefly discuss why critical levels are so important for
stability properties of vortices.

The answer to this question can be found in the paper by Timofeev (1970), where
it was demonstrated that an extensive exchange of momentum between the mean
flow and disturbances occurs at critical levels. As a result, a disturbance may gain
momentum and grow. It should be emphasized, however, that the mere existence of a
critical level is not enough to cause instability, as the momentum given by the mean
flow is not necessarily of the same sign as that of the disturbance, i.e. instead of
causing growth it may cause decay.

It would be interesting to interpret our instability criterion in terms of angular
momentum exchange at critical levels (this work is in progress).

5. Lower-layer-dominated modes
LLD modes are described by the asymptotic equations (3.4)–(3.5), which are to be

solved with the usual boundary conditions,

ψ
(0)
1 (0) = ψ

(0)
1 (∞) = 0, ψ

(0)
2 (0) = ψ

(0)
2 (∞) = 0. (5.1)

5.1. Analytical results

It turns out that, in a sense, LLD and mixed modes complement each other: the
latter exist only for the first azimuthal wavenumber k = 1, whereas the former exist
only for the higher wavenumbers k > 2:
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The LLD boundary-value problem (3.4)–(3.5), (5.1) has no solution for k = 1.

In order to prove this statement, observe that

ψ
(0)
2 → const1 r

k +
const2

rk
as r →∞,

which follows from the lower-layer equation (3.5). The boundary conditions imply
that const1 = 0; we can also put (without loss of generality) const2 = 1 and obtain

ψ
(0)
2 → 1

rk
as r →∞. (5.2)

Now, multiply (3.4) by r and integrate over 0 < r < ∞. After integration by parts and
straightforward algebra, we obtain∫ ∞

0

rV1ψ
(0)
2 dr =

∫ ∞
0

k2 − 1

r
V1ψ

(0)
1 dr.

Next, we multiply (3.5) by rk+1 and integrate over 0 < r < ∞. Integrating by parts
and using condition (5.2), we obtain∫ ∞

0

rkV1ψ
(0)
2 dr = 2c(1).

Comparing the last two identities for k = 1, one can see that they are inconsistent,
unless c(1) = 0 – which, in turn, entails ψ(0)

2 = 0 (see (3.5)), and, hence, cannot hold for
an LLD mode (it should be recalled that, by definition, LLD modes have non-zero
leading-order amplitude in the lower layer).

Similarly to the mixed-mode case, it can be further proven that the asymptotic
boundary-value problem for LLD modes has only real eigenvalues, which are of the
same sign as that of V1. Hence, their stability properties depend on the structure of
the critical layer. In order to clarify that, we shall again simplify identity (2.2) by
putting

ψ2 ≈ ψ(0)
2 , Re c ≈ εc(1). (5.3)

It should be observed, however, that, in the present case, the lower-layer eigenfunction
is greater than that for mixed modes (compare (5.3) to (4.7)). As a result, the LLD
equivalent of (4.10) is

|Im c|
∫ ∞

0

V1(ψ
(0)
2 )2 dr ≈ −π(εc(1))2

[
dQ1/dr |ψ1|2
|(d/dr)(V1/r)|

]
r=rc

. (5.4)

Equation (5.4) should be treated as an equation for Im c: existence of solutions proves
instability, absence of solutions proves stability. Hence, the stability criterion for LLD
modes is exactly the same as that for mixed modes: the vortex is stable if and only if
the sign of (dQ1/dr)r=rc coincides with that of V1.

5.2. Examples and discussion

The above criterion has been tested against the exact marginal stability curve com-
puted numerically for k = 2, for the Gaussian and Sech vortices. As before, the mode
with the largest value of Re c always becomes unstable before the other modes with
the same value of k, and fast-decaying profiles are more stable than slowly decaying
profiles (which, of course, should have been expected, as the stability criterions for
LLD and mixed modes are essentially the same).



320 E. S. Benilov

Interestingly, in the Gaussian case, the LLD instability cannot be completely
separated from the ULD instability. There is no problem, of course, with separating
the two types of instability for small ε; if, however, the layers are of comparable
depths, the disturbance cannot be localized in a single layer. Therefore, it comes as no
surprise that the two (exact) marginal stability curves meet at ε ≈ 0.88 (see figure 4a).
Having this in mind, we have computed the asymptotic curve of marginal stability
for ULD modes as well (based on the equivalent-barotropic equation (3.3)). It can be
seen that, although the asymptotic curves of ULD and LLD modes do not meet at
ε ∼ 1, they work reasonably well for ε . 0.2.

It is interesting to interpret the results presented in figure 4(a) in terms of barotropic
and baroclinic instabilities. Consider, for example, a stable vortex within the stability
region in figure 4(a). If we begin to decrease its radius, sooner or later we reach the
area of instability caused by strong horizontal shear – hence, it should be interpreted
as equivalent-barotropic instability. If we go in the opposite direction, i.e. increase
the radius of the vortex, it also becomes unstable. In this case, the horizontal shear is
weak, and the instability is caused by vertical shear – hence, it should be interpreted
as baroclinic instability. Observe that, even though strong horizontal shear causes
instability, moderate horizontal shear inhibits it (that is what stabilizes vortices with
moderate values of r0). This probably occurs because horizontal shear tilts the
interface, emulating the stabilizing effects of a sloping bottom or the beta-effect.

We have also computed the k = 2 stability curve for the Sech vortex (see figure 4b).
Unlike its Gaussian counterpart, the Sech vortex turned out to be barotropically stable
no matter how small r0 is. In general, it appears that slowly decaying vortices are
more stable barotropically than fast-decaying vortices (which is the opposite to how
the structure of the vortex’s periphery affects baroclinic instability). This conclusion
agrees with the results obtained for a particular case of an (slowly decaying) algebraic
vortex,

V1 =
r

r0

[
1 +

(
r

r0

)2
]−3

,

which turned out to be barotropically stable, but unstable baroclinically for all r0 and
ε. On the other hand, a particular case of a vortex with finite support,

V1 =


r

r0

[
1−

(
r

r0

)2
]3

if r < r0,

0 if r > r0,

turned out to be relatively stable baroclinically, but very unstable barotropically (as a
result the two areas of instability close up and leave no stability region on the (ε, r0)-
plane at all). We conclude that the models of algebraic and finite-support vortices are
not relevant to the real ocean.

Finally, we shall discuss which of the three types of instability (ULD, LLD, or
mixed) is the strongest one and, hence, the most important. At a first glance, the
obvious candidate for the strongest instability is the equivalent-barotropic (ULD)
instability. Indeed, the growth rate of ULD modes scales with unity, whereas the
growth rates of the two slow types are much weaker (that is, weaker for thin vortices,
of course). However, ULD disturbances become unstable only for relatively small
r0: for example, for the Gaussian profile the threshold value is r0 ∼ 0.5, which,
dimensionally, corresponds to just half of the deformation radius. Indeed, none of the
35 oceanic rings catalogued by Olson (1991) come even close to being barotropically
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Figure 4. The curves of marginal stability with respect to upper/lower-layer-dominated modes
with k = 2. The solid line shows the exact solution, the dotted line shows the asymptotic solution
(obtained for ε� 1). (a) Gaussian vortices (4.12); (b) Sech vortices (4.14).

unstable within the framework of the Gaussian model (among the 35 rings, the
smallest value of r0 is 0.81).†

The remaining (LLD and mixed) types of instability will be compared in two ways.
First, we compare their marginal stability curves. Surprisingly, the curves for mixed
modes (k = 1) and for LLD modes with k = 2 turned out to be remarkably close for

† It should be noted, however, that Olson’s (1991) paper was focused on the so-called rings,
which are the largest of oceanic eddies. However, smaller vortices have also been observed in the
ocean (e.g. D’Asaro 1988), and those, of course, can be unstable barotropically.
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Figure 5. The (exact) curves of marginal stability with respect to modes with k = 1, 2, 3, 4.
(a) Gaussian vortices (4.12); (b) Sech vortices (4.14).

ε . 0.5 for both Gaussian and Sech vortices (see figure 5). The higher-k (k > 3) LLD
modes do not affect the region of global stability, as their curves of marginal stability
are located entirely within the instability region of the two low-k modes.

Secondly, we have compared the growth rates of mixed and LLD modes. Consider,
for example, a marginally stable Sech vortex and begin to increase its radius (see
figure 6b). In this case, the mixed mode (k = 1) becomes unstable first and dominates
the instability for some time. The LLD mode with k = 2 becomes unstable a little
later, but soon overtakes the mixed mode – only to be itself overtaken by the LLD
mode with k = 3. This pattern can be extended further, with the obvious conclusion
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Figure 6. The (exact) growth rates of the modes with k = 1, 2, 3. The depth ratio is ε = 0.1.
(a) Gaussian vortices (4.12); (b) Sech vortices (4.14).

that large vortices are mostly unstable with respect to higher-k modes. This is also
true for Gaussian vortices, with the only exception that the two low-k modes in this
case become unstable almost simultaneously, and the mixed mode is never the most
unstable one (see figure 6a).

6. Comparison with observations
As mentioned above, the Gaussian vortex is the most stable out of all profiles

considered. Still, it comes a little short of describing the stability properties of real
oceanic vortices.
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In order to compare our conclusions with observations, we used the results by
Olson (1991), who catalogued 35 oceanic rings. Unfortunately, the depth ratio ε,
which is one of the two important parameters (the other one is r0), is not provided in
that paper. We can only assume that

0.05 . ε . 0.1. (6.1)

On the basis of this estimate and the marginal stability curves for the Gaussian vortex
(figure 5a), we conclude that only six rings out of 35 are unconditionally stable, i.e.
their radii are small enough to make them baroclinically stable for any ε within the
above range. Another three vortices are stable at least for some values of ε within the
above range, while the remaining 26 are unconditionally unstable.

We have also computed (using the exact equations) the growth rate of the instability
for a vortex of 65 km in radius (which is the average radius of the rings described
by Olson 1991), in the ocean with deformation radius of 27 km (which is, again,
an average derived from Olson’s data). As mentioned above, Olson provides no
information about the depth ratio, and we chose the most unstable value of range
(6.1), ε = 0.1. Olson does provide the maximum velocity of the vortex, but we need
the maximum value of the velocity averaged over the depth of the upper layer (which
is the price we have to pay for using the two-layer model). Estimating it to be within
the range of 0.1–0.25 m s−1, we obtain the e-folding time of the instability within the
range of 89–36 days. This, probably, can explain why a vortex may look steady while
it is being measured (and then reported in the literature as existing in the ocean);
but it, clearly, contradicts the fact that some of the oceanic vortices last for up to
3 years.

There are three possible explanations of this result. First, a vortex profile may
exist which is more stable than the Gaussian profile for larger vortices. Secondly, it
is unclear how Olson (1991) defined the upper-layer deformation radius Ld for the
continuously stratified real ocean. As a result, the non-dimensional radius of the ring
derived from Olson’s data may be larger than what it was in reality (and larger
vortices are, generally, more unstable). Thirdly, our model assumes that the vortex
does not penetrate into the lower layer, and it is unclear how a deep circulation would
affect the stability of the vortex. Particular cases examined numerically by Dewar &
Killworth (1995) suggest that even a weak co-rotating circulation in the lower layer
can stabilize a vortex.

7. Summary and concluding remarks
Thus, we have examined the stability of quasi-geostrophic vortices localized in a

thin upper layer of a two-layer ocean. We assumed the disturbance to be harmonic
and reduced the governing equations to a boundary-value problem (3.1)–(3.2), (2.6).
The usual (based on monotonicity of PV) criterion of stability turned out to be useless
(§ 2.2), and the solution to the boundary-value problem was sought asymptotically, as
an expansion in powers of the depth ratio ε = H1/H2.

The results obtained can be subdivided into four categories.
(a) A complete classification of the modes of the problem has been developed

(§ 3, see also table 1). The properties of slow (mixed and LLD) modes, responsible
for baroclinic instability, have been examined in §§ 4–5, whereas fast (ULD) modes,
responsible for equivalent-barotropic instability, appear to be unimportant oceano-
graphically (they exist only for unrealistically small vortices, with a radius smaller
than half of the deformation radius).
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ψ1 ψ2 Re c kIm c k

Upper-layer-dominated modes O(1) O(ε) O(1) O(1) k > 2
Lower-layer-dominated modes O(1) O(1) O(ε) o(ε) k > 2
Mixed modes O(1) O(ε) O(ε) o(ε) k = 1

Table 1. The properties of the normal modes. ψ1,2 are the amplitudes of the streamfunctions in the
upper and lower layers, ε is the depth ratio, Re c is the angular phase velocity, k Im c is the growth
rate, and k is the azimuthal wavenumber.

The classification of modes is the foundation of all results obtained in this paper.
Not only has it been used in our asymptotic analysis, but it also helped to interpret
the results of numerical solution of the exact equations.

(b) We have derived an asymptotic criterion of stability for mixed and LLD modes.
In order to test a particular vortex profile V1(r) for stability, one needs to take the
following steps:

(i) Determine the first-order eigenvalues c(1) (for mixed modes, they are described
by equations (4.4)–(4.6), and for LLD modes by (3.4)–(3.5), (5.1)). It should be kept
in mind that, even though the first-order equations always have an infinite number
of solutions (modes), the existence of these solutions with respect to higher-order
approximations remains to be verified.

(ii) To do so, determine the positions of the critical levels corresponding to the
eigenvalues found, i.e. find the points rc which satisfy

1

rc
V1(rc) = εc(1)

(V1/r is assumed monotonic, hence there is only one critical level per mode). Most
importantly, the presence of ε on the right-hand side of this equation indicates that
critical levels are located at the periphery of the vortex, where the angular velocity is
small (this applies, of course, only to thin vortices and slow modes).

(iii) Determine the sign of the upper-layer PV gradient,

dQ1

dr
=

d

dr

[
1

r

d

dr
(rV1)

]
− V1,

at the modes critical levels. The modes, for which it is opposite to the sign of V1, do
exist and have non-zero Im c. The modes, for which (dQ1/dr)r=rc and V1 are of the
same sign, do not exist as higher-order solutions.

Thus, a vortex is unstable if and only if there exists one or more first-order solutions,
for which the sign of the PV gradient at the critical level is opposite to that of V1.

It is worth elaborating why the first-order boundary-value problem is simpler than
the exact equations. To begin with, the former has regular coefficients (singularities
associated with critical levels appear in higher orders). In addition, its solutions satisfy
the ‘oscillation theorem’, i.e. the first eigenfunction (the one corresponding to the
largest eigenvalue) has one extremum, the second eigenfunction has two extrema, etc.,
which allows one to make sure that no eigenvalues have been missed in computation.
(With the exact equations, one can never be sure that all modes have been computed,
which makes it difficult to prove stability.) Note also that, in most cases, it is enough
to compute the largest c(1) only, as it usually loses stability first; in other cases, solving
the first-order equations can be bypassed altogether.
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(c) This brings us to the third group of results: using the asymptotic stability
criterion, we have examined the stability properties of several classes of vortex
profiles in a wide range of parameters. In general, there is a link between the stability
properties of the vortex and the structure of its periphery (simply because the latter
is where the critical levels are located). Vortices with a slowly decaying periphery are
more baroclinically unstable than vortices with a fast-decaying periphery. As a result,
the Gaussian vortex,

V1 =
r

r0
exp

(
− r2

2r2
0

)
,

is more stable than the ‘Sech vortex’,

V1 =
r

r0
sech

(
r

r0

)
(see the marginal stability curves in figure 5); and the Sech vortex, is more stable than
vortices with algebraic periphery,

V1 →
(
r

r0

)−n
as r →∞

(which are always unstable).
Interestingly, this conclusion applies only to baroclinic instability (i.e. instability

with respect to LLD and mixed modes). In the case of equivalent-barotropic (ULD)
instability, the tendency is opposite: vortices with a slowly decaying periphery are
more stable than those with a fast-decaying periphery. Accordingly, the Sech vortex
is barotropically stable no matter how small its radius is, and the Gaussian vortex
is unstable only for some (small) values of r0, whereas the following example of a
‘vortex with finite support’:

V1 =


r

r0

[
1−

(
r

r0

)2
]3

if r < r0,

0 if r > r0,

is barotropically unstable over a wide range of parameters. Overall, baroclinically
and barotropically, the Gaussian vortex is the most stable one out of all profiles
considered.

(d ) Finally, the fourth group of results obtained in this paper is associated with
the numerical method used for solving the exact boundary-value problem. The main
difficulty in solving this and other problems of hydrodynamic stability is associated
with critical levels. In order to calculate the marginal stability curve (which is the
most important characteristic of instability), one has to deal with the cases where
Im c = 0 and the equations have singularities at critical levels. This is a well-known
problem, it has been mentioned, in particular, by Ikeda (1981), who had to ‘manually’
extrapolate Im c from the cases where it is non-zero.

In the present paper, the singularity associated with the case of neutral stability
was treated using the extension of the spatial variable r to complex values. In this
case, one is not restricted to the physical path of integration (along the real axis), but
can choose any path, provided it can be continuously transformed into the physical
one without crossing the singular points of the equations’ coefficients. As a result, one
can choose a path which lies far away from all singularities. For further details, we
refer the reader to Appendix C, and only mention that numerical integration of the
exact equations confirms that the asymptotic stability criterion works well for ε . 0.2,
which covers all oceanographically interesting cases.
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Appendix A. Reduction of (4.4)--(4.6) to a ‘usual’ boundary-value problem
There are two features that make boundary-value problem (4.4)–(4.6) unusual: the

non-homogeneous term V1 in (4.4) and the integral nature of condition (4.5). Both can
be changed to a more traditional form in the general case. However, we shall confine
ourselves to the (particularly simple) case where V1(r) is a function with compact
support, i.e.

V1 = 0 for r > R.

Observe that, in the context of numerical solution, this case is as good as general,
as one has to truncate the numerical solution somewhere anyway. Then, for r > R,
equation (4.4) becomes

1

r

d

dr

(
r
dψ(1)

2

dr

)
− 1

r2
ψ

(1)
2 = 0,

and can be readily solved:

ψ
(1)
2 =

const

r
for r > R.

Using this solution, the boundary condition at r = ∞ can be moved to r = R. To do
so, observe that ψ(1)

2 and its derivative should be continuous:

ψ
(1)
2 =

const

R
,

dψ(1)
2

dr
= −const

R2
at r = R.

Eliminating the constant, we obtain

ψ
(1)
2 + R

dψ(1)
2

dr
= 0 at r = R. (A 1)

Next, we replace ψ(1)
2 with

φ = ψ
(1)
2 + c(1)r. (A 2)

Substituting (A 2) and (4.4)–(4.6) we obtain

c(1)

[
1

r

d

dr

(
r
dφ

dr

)
− 1

r2
φ

]
+

1

r
φV1 = 0, (A 3)

φ = 0 at r = 0, (A 4)

φ+ R
dφ

dr
= 2c(1)R at r = R, (A 5)∫ ∞

0

rV1φ dr = 0. (A 6)

Now, consider the following combination of (A 3) and (A 6):∫ ∞
0

(A 3) r2 dr − (A 6).

Integrating by parts, we obtain

R
dφ

dr
− φ = 0 at r = R. (A 7)

This boundary condition can replace the integral condition (A 6).
Finally, observe, that the ‘normalizing’ condition (A 5) does not affect the eigenvalue

c(1) and, in principle, can be omitted. The boundary-value problem will then consist
of (A 3), (A 4), and (A 7).
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Appendix B. Properties of the eigenvalues of (4.4)--(4.6)
Rewrite (4.4)–(4.5) in the form

c(1)

[
1

r

d

dr

(
r
dφ

dr

)
− 1

r2
φ

]
+

1

r
V1φ = 0, (B 1)

∫ ∞
0

rV1φ dr = 0, (B 2)

where

φ = ψ
(1)
2 + c(1)r. (B 3)

Then, it follows from (B 1) that

φ→ A r + B r−1 + o(r−2), (B 4)

where A and B are constants. It can be further deduced from (B 3) that

A = c(1). (B 5)

In order to determine B, multiply (B 1) by r2 and integrate from r = 0 to r = R:

c(1)

(
r2 dφ

dr
− rφ

)
r=R

+

∫ R

0

rV1φ dr = 0.

Taking the limit R →∞ and taking into account (B 2), (B 4), we obtain

B = 0. (B 6)

Now, it follows from (B 4)–(B 6) that

r
dφ

dr
→ φ+ o(r−2) as r →∞ (B 7)

(this condition will be used later).
Next, multiply (B 1) by rφ∗ and integrate from r = 0 to r = R:

c(1)

[(
rφ∗

dφ

dr

)
r=R

−
∫ R

0

(
r

∣∣∣∣dφdr
∣∣∣∣2 +

1

r
|φ|2
)

dr

]
+

∫ R

0

V1 |φ|2 dr = 0.

Considering the limit R →∞ and taking into account (B 7), we obtain

c(1)

[(
|φ|2
)
r=R
−
∫ R

0

(
r

∣∣∣∣dφdr
∣∣∣∣2 +

1

r
|φ|2
)

dr

]
+

∫ R

0

V1 |φ|2 dr → 0 as R →∞.

Then, using the obvious identity

(|φ|2)r=R =

∫ R

0

(
dφ

dr
φ∗ +

dφ∗

dr
φ

)
dr,

and taking the limit R →∞, we obtain

c(1)

∫ ∞
0

r

∣∣∣∣dφdr − 1

r
φ

∣∣∣∣2 dr =

∫ ∞
0

V1 |φ|2 dr. (B 8)

Thus,

c(1) =
real quantity

another real quantity
,
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r

Figure 7. The path of integration on the complex r-plane, for the case where one of the critical
levels (shown by black squares) approaches the real axis (shown by the dotted line).

which proves that c(1) is real. To complete the proof, we need to demonstrate that the
‘other real quantity’ may not be zero, i.e.∫ R

0

r

∣∣∣∣dφdr − 1

r
φ

∣∣∣∣2 dr 6= 0.

Indeed, this would hold unless

φ = A r for all r,

which, in turn, holds only in the trivial case of

V1 = 0, ψ
(1)
2 = 0 for all r

(see (B 1)).

Appendix C. Numerical method for neutrally stable modes
For complex c, the exact equations (3.1)–(3.2) have two singular points: r = 0

and r = ∞. As the boundary conditions are set precisely at those points, we could
not ‘shoot’ the solution from one of them and adjust c by trying to satisfy the
condition at the other. Instead, the solution should be shot from the two boundaries
simultaneously and matched at one of the internal points. (In order to shoot the
solution from r = ∞, one needs to calculate its large-distance asymptotics and use it
to set a boundary condition at a large, but finite r.)

If, however, c is real, the equations become singular at yet another point, namely
at the critical level: if Im c = 0, the denominator of the second term of (2.7) vanishes
when

1

r
V1(r) = c. (C 1)

Theoretically, the singularity should be treated as if c had an infinitesimal imaginary
part, using which one could calculate the structure of the eigenfunction near the
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critical level and match it to the numerical solution in the outer region (this algorithm
was used for a similar, but simpler problem by Benilov (1995)). Unfortunately, the
numerical solution cannot approach the critical level too closely and, to maintain
accuracy, one needs to calculate many terms in the expansion of the eigenfunction
about rc, which is time-consuming and tedious.

Instead, one can extend the equations and their solution to the plane of complex
r and modify the path of integration in such a way that it bypasses the critical level
(this approach was initially used by Boyd 1985 for a Chebyshev numerical method,
and by Benilov & Sakov 1999 for the Runge–Kutta method, as in this paper). One
would still have to keep the endpoints fixed, and also make sure that the modified
path can be transformed back to the real axis without touching any of the singular
points of the equation. This would guarantee that the solution would arrive at its
final destination with the correct value.

In order to illustrate this algorithm, consider the Gaussian profile with r0 = 1,

V1 = r exp

(
−r

2

2

)
, (C 2)

and c = 0.5 + 0.01 i. Equation (C 1) with the left-hand side determined by (C 2) has
an infinite number of solutions

r = ±√−2 ln c+ 2iπn, n = 0,±1,±2 . . . ,

one of which (the closest to
√−2 ln |c|) represents the physical critical level.

An example of a modified path of integration for this case can be seen in figure 7.
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