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Waves on the beta-plane over sparse topography

By E. S. B E N I L O V
Department of Mathematics, University of Limerick, Ireland

(Received 13 January 2000 and in revised form 15 June 2000)

This paper deals with linear waves on the beta-plane over topography. The main
assumption is that the topography consists of isolated radially symmetric irregularities
(random or periodic), such that their characteristic radii are much smaller than the
distances between them. This approximation allows one to obtain the dispersion
relation for the frequency of wave modes; and in order to examine the properties
of those, we consider a particular case where bottom irregularities are cylinders of
various heights and radii. It is demonstrated that if all irregularities are of the same
height, h, there exist two topographic and one Rossby modes. The frequency of one
of the topographic modes is ‘locked’ inside the band (−fh/2H0, fh/2H0), where f
is the Coriolis parameter and H0 is the mean depth of the ocean. The frequencies
of the other topographic mode and the barotropic Rossby mode are ‘locked’ above
and below the band, respectively. It is also demonstrated that if the heights of
cylinders are distributed within a certain range, (−h0, h0), no harmonic modes exist
with frequencies inside the interval (−fh0/2H0, fh0/2H0). The topographic and Rossby
modes are ‘pushed’ out of the ‘prohibited’ band.

1. Introduction
Bottom irregularities exist everywhere in the ocean and play an important role in the

dynamics of oceanic waves. Even small-amplitude, short-horizontal-scale topography
can strongly affect planetary motions and support the so-called topographic wave
modes. The latter type of wave was discovered by Rhines & Bretherton (1973) for the
case of one-dimensional topography (i.e. such that the isobaths are straight lines). Since
then, their results have been generalized for the two-layer case (McWilliams 1974;
Samelson 1992; Reznik & Tsybaneva 2000), the linearly stratified case (Bobrovich &
Reznik 2000), and for waves in zonal currents (Benilov 2000a, b).

It turned out, however, that the natural extension of Rhines & Bretherton’s (1973)
results to the general case of two-dimensional topography is much more difficult.
There are only two papers examining this case. In their original work, Rhines &
Bretherton (1973) considered the ‘quasi-one-dimensional’ case, where one of the
horizontal scales of topography is much larger than the other. A particular case of
fully two-dimensional topography was examined numerically by Samelson (1992) –
however, this author concentrated on bottom irregularities with horizontal scales
comparable to the wavelength, i.e. it was not short-scale topography which is the
subject of this work.

The present paper examines two-dimensional short-scale topography. The main
assumption, which has enabled us to make a notable advance, is that the topography
is sparse, i.e. consists of isolated, radially symmetric features separated by large
distances. In § 2, we introduce and scale the governing equations. In § 3 we perform
the usual (similar to Rhines & Bretherton 1973) asymptotic analysis and demonstrate
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why the two-dimensional case is much more difficult than the one-dimensional case.
In § 4, the notion of sparse topography is introduced and used to derive the dispersion
relation for the topographic and barotropic Rossby waves. Finally, in § 5, we present
a detailed study of the particular case where the bottom irregularities are cylinders
of various heights and radii.

2. Governing equations and scaling
The standard linear equation which describes quasi-geostrophic (QG) flows on the

beta-plane over topography is

∇2ψt +
f

H0

J (ψ, d) + βψx = 0, (2.1)

where (x, y) and t are the Cartesian coordinates and time, ψ(x, y, t) is the streamfunc-
tion, f and β are the Coriolis parameter and its meridional gradient, and d(x, y) is
the deviation of the ocean depth H(x, y) from its mean value H0:

d = H −H0.

We are concerned with oscillations that are harmonic in t, but not in x and y.
However, for convenience, we shall separate the harmonic dependence on the spatial
variables from the dependence ‘induced’ by topography:

ψ(x, y, t) = φ(x, y) exp (ikx+ ily − iωt), (2.2)

where ω and (k, l) are the frequency and wavevector, and φ(x, y) describes the effect
of bottom irregularities (in particular, if d = 0, then φ = const). Substituting (2.2)
into (2.1), we obtain

−iω[∇2φ+2i(kφx+lφy)−(k2+l2)φ]+
f

H0

[φxdy−φydx+i(kdy−ldx)φ]+β(φx+ikφ) = 0.

(2.3)
Next, we introduce non-dimensional variables:

x∗ = x/L, y∗ = y/L, k∗ = kΛ l∗ = lΛ, ω∗ = ωT , d∗ = d/D,

where L and D are the horizontal spatial scale and characteristic height of the
topography, and Λ and T are the wavelength and period of the wave mode. Rewriting
(2.3) in terms of the new variables and omitting asterisk, we obtain

εωω[∇2φ+ 2iεk(kφx + lφy)− ε2k(k2 + l2)φ]

+εd[i(φxdy − φydx)− εk(kdy − ldx)φ] + εβ(iφx − εkkφ) = 0, (2.4)

where

εω =
1

Tf
, εk =

L

Λ
, εd =

D

H0

, εβ =
βL

f
. (2.5)

Following the usual approximation of a ‘rough-bottomed’ ocean (Rhines & Bretherton
1973), we introduce the ‘formal’ small parameter ε and assume that

εω = εk = εd = ε, εβ = αε2, (2.6)

where α = O(1) is a constant. (Assumption (2.6) corresponds to small-amplitude,
short-scale bottom irregularities with parameters L ∼ 5 − 10 km, D = 100 − 300 m –
see Rhines & Bretherton 1973.)
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Substituting (2.6) into (2.4), we obtain

ω∇2φ+ i(dyφx − dxφy) = ε[(kdy − ldx)φ− 2iω(kφx + lφy)− iαφx]

+ε2[αk + ω(k2 + l2)]φ. (2.7)

3. Asymptotic analysis
Let us expand the eigenfunction and eigenvalue of equation (2.7) in powers of ε:

φ = φ(0) + εφ(1) + ε2φ(2) + . . . , ω = ω(0) + εω(1) + ε2ω(2) + . . . .

At the zeroth order, we can assume that the wave mode is not affected by topography:

φ(0) = 1. (3.1)

At the next order, we obtain the following equation for φ(1):

ω(0)∇2φ(1) + i(dyφ
(1)
x − dxφ(1)

y ) = kdy − ldx. (3.2)

If the isobaths are straight lines, i.e. if

d = d(ξ), ξ = const1 x+ const2 y,

the solution to equation (3.2) can be sought in the form

φ(1)(x, y) = φ(1)(ξ).

The Jacobian in (3.2) disappears, and the resulting equation can be readily solved
(see Rhines & Bretherton 1973).

In the general case, where d(x, y) is an arbitrary function, (3.2) has no ‘simple’
solutions and thus becomes the main stumbling block of the two-dimensional problem.
We shall postpone its discussion until the next section, and proceed to the next order
of perturbation expansion. Taking into account (3.1), we obtain

ω(0)∇2φ(2) + ω(1)∇2φ(1) + i(dyφ
(2)
x − dxφ(2)

y )

= (kdy − ldx)φ(1) − 2iω(0)(kφ(1)
x + lφ(1)

y )− iαφ(1)
x + αk + ω(0)(k2 + l2). (3.3)

As usually happens, the solution φ(2) of equation (3.3) is not necessarily bounded at
infinity. To demonstrate this, average (3.3) over the (x, y)-plane, i.e. consider

lim
S→∞

1

4S2

∫ S

−S

∫ S

−S
(3.3) dx dy.

Integrating by parts and assuming that φ(1) and φ(2) are bounded as x, y → ∞, one
can see that the left-hand side of (3.3) vanishes when S →∞, and we end up with

〈(kdy − ldx)φ(1) − 2iω(0)(kφ(1)
x + lφ(1)

y )− iαφ(1)
x + αk + ω(0)(k2 + l2)〉 = 0,

where 〈. . .〉 denotes spatial averaging. The second and third terms in this equation are
full derivatives and therefore have zero average, which yields the following equality:

〈(kdy − ldx)φ(1)〉+ αk + ω(0)(k2 + l2) = 0. (3.4)

Dispersion relation (3.4) and the ‘definition’ of φ(1) (equation (3.2)), determine the
frequency of the wave modes (if any).
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Figure 1. The formulation of the problem: an oceanic bottom with radially symmetric
(but not necessarily cylindrical) isolated irregularities.

4. The approximation of sparse topography
Equation (3.2) is a linear PDE with variable coefficients and it does not appear

to have an analytical solution in the general case (at least, no-one has been able to
obtain one since 1973, when Rhines & Bretherton derived (3.2)). In the present paper,
(3.2) will be analysed asymptotically for the case of sparse topography.

Assume that the topography consists of an infinite number of radially symmetric
irregularities

d(x, y) =

∞∑
n=1

fn(rn), (4.1)

where

rn =

√
(x− xn)2 + (y − yn)2

and (xn, yn) are the coordinates of the centre of the nth irregularity (see figure 1). We
shall also assume for simplicity that the irregularities are localized within circles of
various radii:

fn = 0 if rn > Rn.

Introducing the distance between the centres of irregularities,

Rnm =

√
(xn − xm)2 + (yn − ym)2,

we assume that they are rare and far apart, i.e.

Rn � Rnm,

where Rn and Rnm are the typical values of Rn and Rnm respectively.† Thus, the
solution to (3.2) can be approximated by a sum of the contributions of individual

† It should be emphasized that both Rnm and Rn should be smaller than the wavelength (which
was our original assumption), i.e. Rn � Rnm � Λ.
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irregularities:

φ(1) ≈
∞∑
n=1

φ(1)
n (rn), (4.2)

ω(0)∇2φ(1)
n + i

(
∂fn

∂y

∂φ(1)
n

∂x
− ∂fn

∂x

∂φ(1)
n

∂y

)
= k

∂fn

∂y
− l ∂fn

∂x
. (4.3)

Rewriting (4.3) in terms of the polar variables associated with the centre of the nth
irregularity,

x = xn + rn cos θn, y = yn + rn sin θn,

we obtain

ω(0)

[
1

rn

∂

∂rn

(
rn
∂φ(1)

n

∂rn

)
+

1

rn

∂2φ(1)
n

∂θ2
n

]
− i

1

rn

dfn

drn

∂φ(1)
n

∂θn
= (k sin θn − l cos θn)

dfn
drn

.

It is clear that φ(1)
n can be represented in the form

φ(1)
n (rn, θn) = Bn(rn) sin θn + Cn(rn) cos θn, (4.4)

where Bn and Cn satisfy

ω(0)

[
1

rn

d

drn

(
rn

dBn
drn

)
− 1

r2
n

Bn

]
+

i

rn

dfn
drn

Cn = k
dfn
drn

, (4.5)

ω(0)

[
1

rn

d

drn

(
rn

dCn
drn

)
− 1

r2
n

Cn

]
− i

rn

dfn
drn

Bn = −ldfn
drn

. (4.6)

The boundary conditions reflect the usual requirements of regularity at the origin and
decay at infinity:

Bn(0) = Cn(0) = 0, (4.7)

Bn, Cn → 0 as rn →∞. (4.8)

It is also convenient to rewrite the dispersion relation (3.4) in terms of Bn and Cn.
Substituting (4.1)–(4.2) and (4.4) into (3.4), we obtain〈 ∞∑

n=1

∞∑
m=1

(k sin θn − l cos θn)
dfn
dr

(Bm sin θm + Cm cos θm)

〉
+ αk + ω(0)(k2 + l2) = 0.

As the irregularities (described by fn) are separated by large distances, we can safely
omit those terms in this equation for which m 6= n:〈 ∞∑

n=1

(k sin θn − l cos θn)
dfn
dr

(Bn sin θn + Cn cos θn)

〉
+ αk + ω(0)(k2 + l2) = 0.

Finally, we assume that the spatial average in this equation can be replaced by
the mean contribution from a single irregularity, multiplied by the density ρ of
irregularities per unit area:

ρ

∫ ∞
0

∫ 2π

0

(k sin θn − l cos θn)
dfn
drn

(Bn sin θn + Cn cos θn)rndθndrn + αk + ω(0)
(
k2 + l2

)
= 0,

where the bar denotes averaging over the ensemble of fn. Performing the integration
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with respect to θn, we obtain (subscripts and superscripts omitted)

πρ

∫ ∞
0

r
df

dr
(kB − lC) dr + αk + ω(k2 + l2) = 0. (4.9)

This dispersion relation should be solved with the boundary-value problem (4.5)–(4.8),
which we also rewrite without subscripts and superscripts:

ω

[
1

r

d

dr

(
r
dB

dr

)
− 1

r2
B

]
+

i

r

df

dr
C = k

df

dr
, (4.10)

ω

[
1

r

d

dr

(
r
dC

dr

)
− 1

r2
C

]
− i

r

df

dr
B = −ldf

dr
. (4.11)

B(0) = C(0) = 0, (4.12)

B,C → 0 as r →∞. (4.13)

In the next section, set (4.9)–(4.13) will be solved for a particular case.

5. Cylindrical bottom irregularities
The simplest particular case to explore is that of cylindrical irregularities of various

heights h and radii R:

f(r) =

{
h if r 6 R
0 if r > R.

At all points, except for r = R, equations (4.10), (4.11) become

1

r

d

dr

(
r
dB

dr

)
− 1

r2
B = 0,

1

r

d

dr

(
r
dC

dr

)
− 1

r2
C = 0

and can be immediately solved. Taking into account the boundary conditions at
r = 0,∞, we obtain

B(r) =

{
B−r if r < R
B+r

−1 if r > R,
C(r) =

{
C−r if r < R
C+r

−1 if r > R,

where B± and C± are constants. We shall require B and C to be continuous at r = R:

B(R + 0) = B(R − 0), C(R + 0) = C(R − 0),

which implies

B−R = B+R
−1, C−R = C+R

−1. (5.1)

In order to derive the matching condition for dB/dr and dC/dr, we observe that

df

dr
= −hδ(r − R),

where δ(r) is the Dirac delta-function. Next, integrating (4.10), (4.11) over the in-
finitesimal interval (R − 0, R + 0) we obtain

ω

[
dB

dr

∣∣∣∣
r=R+0

− dB

dr

∣∣∣∣
r=R−0

]
− i

R
hC(R) = −kh,

ω

[
dC

dr

∣∣∣∣
r=R+0

− dC

dr

∣∣∣∣
r=R−0

]
+

i

R
hB(R) = lh,



Waves on the beta-plane over sparse topography 269

0

–1

–2
0 1 2 3 4 5

k

x 1

2

3

Figure 2. The dispersion curves for the case of cylindrical irregularities of identical heights
(dispersion relation (5.6) with h0 = 1, A = 0.15, α = 1, l = 0). Curves 1 and 2 show mixed
topographic–Rossby modes, curve 3 shows a purely topographic mode. The dashed line shows the
unperturbed (flat-bottom) dispersion curve of the barotropic Rossby waves, the dotted lines show
the ‘topographic’ frequency ωtopo = ± 1

2
h, where h is the height of irregularities.

which yields

ω(−B+R
−2 − B−)− ihC− = −kh, ω(−C+R

−2 − C−)− ihB− = lh. (5.2)

Solving (5.1) and (5.2) for B±, C±, we have

B+ =
(−2ωk − ilh)h

h2 − 4ω2
, B− =

(−2ωk − ilh)hR2

h2 − 4ω2
, (5.3)

C+ =
(2ωl − ikh)h

h2 − 4ω2
, C− =

(2ωl − ikh)hR2

h2 − 4ω2
. (5.4)

Now, we substitute B(r), C(r), and f(r) into (4.9) and obtain

2πρω
R2h2

h2 − 4ω2
+

αk

k2 + l2
+ ω = 0 (5.5)

(recall that the bar denotes averaging over the ensemble of allowable R and h).

5.1. Periodic topography

In this case all irregularities have the same height and radius, and the bar in equation
(5.5) can be omitted:

2Ah2ω

h2 − 4ω2
+

αk

k2 + l2
+ ω = 0, (5.6)
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where

A = πR2ρ

represents the proportion of the area of the bottom covered with irregularities. Observe
that no dispersion curve ω(k) can cross the lines ω = ± 1

2
h (if it could, the first term in

(5.6) would be infinite with no other term to balance it). This conclusion is illustrated
by figure 2, where (5.6) was solved numerically. The upper curve is entirely associated
with topography. The middle curve is associated with topography only in the small-k
region, and approaches the Rossby-wave curve for large k. The lower curve exhibits
the opposite behaviour.

5.2. Random topography

In this case, it is convenient to introduce the distribution Γ (R, h) of heights and radii
of cylindrical irregularities and rewrite (5.5) as

2πρω

∫ ∞
0

∫ ∞
−∞
Γ (R, h)

R2h2

h2 − 4ω2
dh dR +

αk

k2 + l2
+ ω = 0. (5.7)

The simplest particular case to consider is

Γ (R, h) =


1

2h0R0

if − h0 < h < h0, 0 < R < R0,

0 otherwise.
(5.8)

Substituting (5.8) into (5.7) and evaluating the integrals with respect to h, we obtain

2Aω

(
1 +

2ω

h0

ln
2ω − h0

2ω + h0

)
+

αk

k2 + l2
+ ω = 0, (5.9)

where A = ρπR2 = 1
3
πρR2 is, as before, the proportion of the area of the bottom

covered with irregularities. The numerical solution to equation (5.9) is shown in
figure 3. One can see that no curves are located within the band − 1

2
h0 6 ω 6

1
2
h0.

6. Discussion
First, note that

ωtopo = 1
2
h

is the frequency of the first topographic eigenmode supported by an isolated cylindrical
irregularity (Jansons & Johnson 1988). Thus, the non-existence of free waves with
ω = ωtopo can be explained since they get captured by the irregularities as if those
were ‘resonators’ tuned to the frequency of the incident wave. This argument applies
equally to the periodic and random cases.

In the periodic case, our asymptotic method implies a restriction: ω should not be
close to ωtopo. This follows from the fact that the eigenfunctions B and C become
singular as ω → ωtopo (see (5.3)–(5.4)). Thus, those parts of the dispersion curves in
figure 2 that are close to ωtopo are not reliable. Still, one can be sure that the exact
curves remain close to ωtopo – because if they did not, our method would have been
valid for them and shown their location elsewhere.

Rhines & Bretherton (1973) demonstrated that, for the case of one-dimensional
random topography, the asymptotic method they (and everybody else after them) used
fails. Specifically, the short-wave component of the wave field included a divergent
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Figure 3. The dispersion curves for the case of irregularities with randomly distributed (within an
interval −h0 < h < h0) heights (dispersion relation (5.8) with h0 = 1, A = 0.15, α = 1, l = 0). Curve
1 shows the topographic–Rossby mode, curve 2 shows the purely topographic mode. The dashed
line shows the unperturbed (flat-bottom) dispersion curve of the barotropic Rossby waves. The area
‘filled’ with topographic frequencies is shaded.

integral: (
φ(1)
)2

= ∞.
In the present case, however, φ(1) is finite. Indeed, using (4.2), one can show that

(
φ(1)
)2 ≈

[ ∞∑
n=1

φ
(1)
n (rn)

]2

≈
∞∑
n=1

[
φ

(1)
n (rn)

]2

(6.1)

(recall that rn is the distance between the nth irregularity and the current point). It
can be shown that

φ(1)
n = O(r−1

n ) as r →∞.
Accordingly, if the irregularities are distributed spatially homogeneously, (6.1) con-
verges.

It is interesting to estimate the dimensional value corresponding to the characteristic
topographic frequency

ωtopo = 1
2
h. (6.2)

Assuming that the depth of the ocean is 5000 m, the latitude is 30◦, and the height of
the topography is 200 m, we obtain the period of 50 days.

Thus, our results suggest that some long-period oceanic oscillations do not propa-
gate freely and are trapped by topographic features. It should be admitted, however,
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that we are at present unable to predict the proportion of trapped waves in the bal-
ance of oceanic wave energy, as this would require a much more realistic calculation
than the one presented.

Finally, we shall discuss what happens to a disturbance if the distribution of the
heights of irregularities covers all values, −∞ < h < ∞. In this case, the ‘prohibited’
band expands to infinity and no harmonic waves appear to be possible.

Indeed, observe that, for real ω, the integral in the first term of the dispersion
relation (5.7) diverges at h = ±2ω – which is why (5.7) may not have real solutions.
Nor can (5.7) have solutions with positive imaginary part (Reω > 0), as this would
correspond to a growing (unstable) wave and thus be inconsistent with energy con-
servation. Finally, (5.7) does not have solutions with negative imaginary part – for, if
it does, one can readily show that the conjugate ω∗ also satisfies (5.7), which would
be inconsistent with energy conservation.

In order to find out how the wave evolves in this case, one needs to examine the
initial-value problem for the wave field (instead of assuming the harmonic behaviour
from the start). This is a much more difficult task than what we have done in this
paper; however, one can speculate on it by using the analogy with the well-known
examples of disturbances in plane Couette flow (Case 1960) and the Landau damping
of waves in plasma (e.g. Landau & Lifshitz 1979). Similarly to the problem at
hand, no harmonic modes (discrete spectrum) exist in those cases, and the evolution
of an initial disturbance is described by a continuous spectrum. Still, the solution
can be represented approximately by a harmonic wave, with a complex frequency
corresponding to slow exponential decay. Using the analogy with the Couette flow
(Case 1960) and the analytical properties of the left-hand side of (5.5), one can obtain
an estimate of this frequency:

ω ≈ ωRo − 2iπAω2
Ro

[∫ ∞
−∞
Γ (R, 2ωRo) dR +

∫ ∞
−∞
Γ (R,−2ωRo) dR

]
, (6.3)

where Γ (R, h) is the distribution of R and h, and

ωRo = − αk

k2 + l2

is the frequency of Rossby waves over a flat bottom. As expected (6.3) corresponds
to a slowly decaying Rossby-wave oscillation. Mathematically, this decay is due to
interlacing frequencies of the modes of a continuous spectrum; and from a physical
viewpoint, the coherent harmonic wave loses energy to random oscillations captured
by isolated topographic features.

This question deserves more rigorous investigation.

7. Conclusions
We have examined the linear waves on the beta-plane over sparse topography,

i.e. over sparsely distributed, radially symmetric bottom irregularities. A dispersion
relation for the frequency of the eigenmodes was derived. As a particular example
of radially symmetric irregularities, we considered randomly/periodically distributed
cylinders of various heights and radii.

The main results of the paper are as follows (the dimensional variables are here-
inafter marked with hats).

(i) If cylindrical irregularities are of the same height ĥ, no eigenmode can have its
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frequency equal to the ‘topographic’ frequency,

ω̂topo = ± fĥ

2H0

,

where H0 is the mean depth of the ocean and f is the Coriolis parameter (this equality
is the dimensional equivalent of (6.2)).

(ii) Physically, ω̂topo is the ‘natural frequency’ of an oscillation trapped by an
individual irregularity, which explains why free waves cannot have this frequency
(they get captured by topography).

(iii) If the height of cylindrical irregularities is randomly distributed between −ĥ0

and ĥ0, the frequency of the eigenmodes cannot be within the band(
− fĥ0

2H0

,
fĥ0

2H0

)
(for the same reason as in the case of irregularities of identical height).
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