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The dynamics of a near-surface vortex
in a two-layer ocean on the beta-plane
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Department of Mathematics, University of Limerick, Ireland

(Received 29 March 1999 and in revised form 4 March 2000)

The dynamics of a near-surface vortex are examined in a two-layer setting on the
beta-plane. Initially, the vortex is radially symmetric and localized in the upper layer.
Two non-dimensional parameters govern its evolution and translation: the ratio δ of
the thickness of the vortex to the total depth of the fluid, and the non-dimensional
beta-effect number α = βL/f (f and β are the Coriolis parameter and its meridional
gradient respectively, L is the radius of the vortex). We assume, as suggested by
oceanic observations, that α � δ � 1. A simple set of asymptotic equations is
derived, which describes the beta-induced translation of the vortex and a dipolar
perturbation developing on and under the vortex (in both layers).

This set was solved numerically for oceanic lenses, and the following features
were observed: (i) The meridional (southward) component of the translation speed
of the lens rapidly ‘overtakes’ the zonal (westward) component. The former grows
approximately linearly, whereas the latter oscillates about the Nof (1981) value (i.e.
about the speed of translation of a vortex in a one-layer reduce-gravity fluid). (ii)
Vortices of the same shape, but different radii and amplitudes, follow the same
trajectory. The amplitude and radius affect only the absolute value, but not the
direction, of the translation speed. (iii) In the lower layer below the vortex, a ‘region’
is generated where the velocity of the fluid is growing linearly with time. The velocity
field in the region becomes more and more homogeneous (and equal to the translation
speed of the vortex).

1. Introduction
Much attention has been paid recently to the influence of the beta-effect upon

oceanic vortices. The formulation of this problem is straightforward: what happens
with an initially radially symmetric vortex on the beta-plane? In the one-layer set-
ting, the answer to this question has been obtained in two parts. First, Nof (1981)
demonstrated that warm-core near-surface lenses (i.e. vortices which outcrop onto the
surface of the ocean) translate steadily westwards and calculated the speed of trans-
lation. Secondly, Benilov (1996) found the spatial structure of the translating lens and
also extended all the results obtained to eddies (i.e. to vortices in a layer of non-zero
background thickness). These steady solutions agree with oceanic observations, which
indicate that vortices in the ocean exist for years.

It should be noted, however, that the (more realistic) baroclinic setting changes
the problem quite significantly, as it does not support steadily translating monopole
solutions (Flierl et al. 1983). Given that there is no reason to believe that the ‘real’
oceanic vortices have zero net angular momentum, the no net angular momentum
theorem leads to the conclusion that they are non-steady. It is unclear though how
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long they remain coherent and spatially localized, and how the time scale of their
evolution compares with the scale observed in the ocean (up to 2–3 years).

The first attempt to examine the evolution of vortices in a baroclinic ocean was
made by Flierl (1984). As the present paper is an extension of Flierl’s work, we shall
describe the latter in some detail: it considered a near-surface lens surrounded by a
layer of a heavier fluid, within the framework of the two-layer model. It was assumed,
as suggested by oceanic observations, that the size of the lens is comparable to the
Rossby radius LR associated with the thickness H1 of the lens:

LR =
√
g′H1/f,

where g′ is the reduced acceleration due to gravity, and f is the Coriolis parameter.
The beta-induced motion was shown to depend on two non-dimensional parameters:

the ‘beta-effect number’,

α = βLR/f, (1.1)

where β is the meridional gradient of the Coriolis parameter;
and the relative depth of the upper layer:

δ = H1/H0, (1.2)

where H0 is the total depth of the ocean.
In the ‘real’ ocean, both parameters are small. It is also important to know how

they compare to each other. Flierl (1984) examined the case where

α & δ (1.3)

and put forward the following scheme:
(i) initially, Nof’s (1981) mechanism makes the lens propagate westwards, inducing

a flow around it in the lower layer;
(ii) then, the lower-layer motion generates Rossby waves, resulting in an energy

flux directed away from the lens;
(iii) finally, the Rossby-wave field causes a drag force which makes the lens slowly

drift equatorwards.
This simple and clear scheme appeals to one’s physical intuition, but is extremely

difficult to express in mathematical terms – and, as a result, relatively few quantitative
predictions were obtained in Flierl’s (1984) paper. Still, the above scheme was found
useful in simpler oceanographic problems, the most recent example of which was
considered by Swaters (1998), who was able to justify Flierl’s scheme for a lens on a
sloping bottom.

The main goal of the present paper is to examine the original problem formulated
by Flierl (1984) and provide a consistent mathematical description for it. It should be
noted, however, that assumption (1.3) contradicts oceanic observations, which suggest
the opposite limit,

α� δ (1.4)

(the typical oceanic values of α and δ are 0.01 and 0.1, respectively). Flierl (1984)
was aware of this contradiction, but considered (1.3) anyway, remarking that (1.4)
‘appears to be a difficult limit to take’.

In the present paper, the more realistic limit (1.4) will be examined. The new
assumption turns out to lead to new conclusions, the most unexpected of which
seems to concern the unimportance of radiation. Interestingly, this can be established
at an early stage of the analysis, immediately after the scaling (§ 2). In the absence of
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Figure 1. The formulation of the problem: a near-surface vortex in a two-layer ocean.
Lenses correspond to h1 = 0.

radiation, the main mechanism causing the vortex to evolve is the direct interaction
with the lower-layer flow, which it induces itself. As usual, the solution can be
represented by a steadily translating monopole vortex with small dipolar corrections,
and in § 3, we shall derive a set of relatively simple equations describing the evolution
of those corrections and translation of the vortex. These equations will be examined
analytically and numerically (§ 4).

2. Scaling
2.1. Introductory remarks

Consider a thin near-surface vortex (a lens or an eddy) on top of a thick layer of
heavier fluid, on the beta-plane (see figure 1). The mathematical complexity of this
problem is mainly due to the presence of three distinct time scales.

First, there is the advection time

T0 =
L

U1

,

where L is the radius of the vortex and U1 is the upper-layer velocity scale. Assuming
that

L = LR and U1 =
√
g′H1,

which correspond to ageostrophic mesoscale motion, we obtain

T0 = f−1.

It can be demonstrated that, at this time scale, the beta-effect changes the translation
speed of the vortex from zero to, approximately, Nof’s (1981) value, and adjusts the
form of the vortex to Benilov’s (1996) solution (this will be discussed in more detail
later). As the flow in the lower layer is generated by the motion of the vortex, it
develops at the same time scale, but is still too weak to affect the vortex. As a result,
one can examine this stage of the evolution using the one-layer governing equations.
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Secondly, there is the time scale

Tδ = f−1δ−1,

at which the growing flow in the lower layer begins to affect the vortex. Still, the lower-
layer flow is relatively weak, as it is generated by the beta-induced translation of the
vortex and should coincide, in order of magnitude, with the speed of translation (i.e.
with the Nof speed). This argument leads to the following estimate of the lower-layer
velocity scale:

U2 = α
√
g′H1.

Observe that, at this stage, the influence of the lower-layer flow (characterized by
U2/U1) and the beta-effect are approximately of the same strength:

U2

U1

= α.

Thirdly, there is the time scale associated with the beta-effect,

Tα = f−1α−1.

In order to estimate the corresponding flow in the lower layer, we assume that U2

keeps growing at the same rate as previously, which yields

U2 = δ
√
g′H1.

This indicates that the flow in the lower layer has become, in a sense, stronger than
the beta-effect:

U2

U1

= δ � α.

It turns out, however (see § 4 below), that the spatial structure of the lower-layer flow
is such that it does not affect the zonal component of the translation speed (which
continues to oscillate near the Nof (1981) value). However, the meridional component
is affected, and soon the southward motion of the vortex becomes much faster than
the westward motion:

Cx

Cy
∼ α

δ
,

where Cx and Cy are the zonal and meridional components of the translation speed,
respectively.

Strictly speaking, we should also introduce the time scale

Trad = f−1α−1δ−1,

at which the Rossby-wave radiation in the lower layer affects the vortex (observe
that, in the one-layer setting this scale would be f−1α−1, but, in our problem, the
flow in the lower layer is weak, hence the discriminating factor δ−1). As a result, all
radiation-related effects are too slow to seriously affect the vortex.

The present paper is mainly devoted to step (ii) of the scheme in § 1. We require
that all faster processes (∼ T0) have died out, which is mathematically equivalent,
as we shall see, to using the one-layer steady solution of Nof (1981) and Benilov
(1996) as the initial condition. Thus, we assume that this solution is an attractor
for any vortex – or we simply admit, for more incredulous readers, that we deal with
a particular solution. The latter interpretation reduces the generality of the results
obtained, but on the other hand allows one to clearly understand the limitations of
the conclusions derived.
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To conclude this subsection, we mention that step (iii) of the above scheme is the
most difficult mathematically, and no quantitative results will be presented on it here
(this part of the work is in progress). We shall offer only some qualitative results in
§ 4.4.

2.2. Scaling

We shall use Flierl’s (1984) set of governing equations, which consists of the standard
primitive equations for the flow in the upper layer (i.e. for the vortex):

∂u1

∂t
+ u1 · ∇u1 + ∇p1 = (f + βy) u1 × k, (2.1)

∂h1

∂t
+ ∇ · (h1u1) = 0, (2.2)

and a quasi-geostrophic (QG) equation for the lower layer:

∂

∂t

(
f

H0

h1 + ∇2ψ2

)
+ β

∂ψ2

∂x
+ J

(
ψ2,

f

H0

h1 + ∇2ψ2

)
= 0, (2.3)

where u1, p1, and h1 are the velocity, pressure, and depth of the upper layer, k is the
unit vector directed upwards, ψ2 is the streamfunction of the lower layer, (x, y) are
the dimensional Cartesian coordinates, and J(ψ, φ) is the Jacobian operator. As ψ2 is
proportional to the lower-layer pressure:

p2 = fψ2,

it is related to p1 and h1 by the hydrostatic condition:

p1 = g′h1 + fψ2. (2.4)

Note, that the QG approximation is legitimate for the lower layer because the
displacement of the interface caused by the vortex is much smaller than the depth of
the lower layer, and the beta-induced drift of the vortex is slow, hence the flow in
the lower layer is weak and the corresponding Rossby number is small. We shall not
discuss this matter in further detail, but refer the reader to the paper by Flierl (1984).

Next, we shall introduce the (beta-induced) displacement (X(t), Y (t)) of the vortex
from its initial position and change the coordinate system such that its origin is linked
to the vortex:

x∗ = x−X(t), y∗ = y − Y (t), t∗ = t.

We rewrite equations (2.1)–(2.4) in terms of the new variables (asterisks omitted):(
∂

∂t
− Ẋ ∂

∂x
− Ẏ ∂

∂y

)
u1 + u1

∂u1

∂x
+ v1

∂u1

∂y
+

∂

∂x

(
g′h1 + fψ2

)
= (f + βy) v1, (2.5)

(
∂

∂t
− Ẋ ∂

∂x
− Ẏ ∂

∂y

)
v1 + u1

∂v1

∂x
+ v1

∂v1

∂y
+

∂

∂y

(
g′h1 + fψ2

)
= − (f + βy) u1, (2.6)(

∂

∂t
− Ẋ ∂

∂x
− Ẏ ∂

∂y

)
h1 +

∂

∂x
(h1u1) +

∂

∂y
(h1v1) = 0, (2.7)(

∂

∂t
− Ẋ ∂

∂x
− Ẏ ∂

∂y

)(
f

H0

h1 + ∇2ψ2

)
+ β

∂ψ2

∂x
+ J

(
ψ2,

f

H0

h1 + ∇2ψ2

)
= 0, (2.8)

where Ẋ = dX/dt, Ẏ = dY /dt.
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Next we shall introduce non-dimensional variables:

(x̃, ỹ) =
(
x/L, y/L

)
, t̃ = t/T , ( ˜̇X, ˜̇Y ) = (Ẋ/Cx, Ẏ /Cy), (2.9)

(ũ1, ṽ1) =
(
u1/U1, v1/U1

)
, h̃1 = h/H1, ψ̃2 = ψ2/Ψ2, (2.10)

where L, T , Cx,y, U1, H1, and Ψ2 are the characteristic values of the corresponding
variables. We shall assume that the radius of the vortex is comparable to the Rossby
radius,

L =

√
g′H1

f
, (2.11)

and that the Rossby number in the upper layer is of the order of unity, which leads
to

U1 =
√
g′H1. (2.12)

As mentioned above, we are interested in the medium-term evolution, i.e.

T = δ−1f−1, (2.13)

when the translation speed of the vortex is comparable to the Nof speed, which leads
to

Cx = Cy = α
√
g′H1. (2.14)

It can be demonstrated that we are now left with no other possibility, but to put

Ψ2 = α
g′H1

f
, (2.15)

otherwise the leading order of the governing equations would become inconsistent
for the most interesting case

1� δ � α.

Substituting (2.9)–(2.15) into (2.5)–(2.8) and omitting all tildes and subscripts, we
obtain[

δ
∂

∂t
− α

(
Ẋ
∂

∂x
+ Ẏ

∂

∂y

)]
u+ u

∂u

∂x
+ v

∂u

∂y
+

∂

∂x
(h+ αψ) = (1 + αy) v, (2.16)

[
δ
∂

∂t
− α

(
Ẋ
∂

∂x
+ Ẏ

∂

∂y

)]
v + u

∂v

∂x
+ v

∂v

∂y
+

∂

∂y
(h+ αψ) = − (1 + αy) u, (2.17)[

δ
∂

∂t
− α

(
Ẋ
∂

∂x
+ Ẏ

∂

∂y

)]
h+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2.18)[

∂

∂t
− α

δ

(
Ẋ
∂

∂x
+ Ẏ

∂

∂y

)](
h+

α

δ
∇2ψ

)
+
α2

δ2

∂ψ

∂x
+
α

δ
J
(
ψ, h+

α

δ
∇2ψ

)
= 0. (2.19)

The most interesting feature of the scaled equations is the smallness of the term
responsible for the Rossby-wave radiation in the lower layer (i.e. the term involving
∂ψ/∂x in equation (2.19)). As we shall see in the next section, it will have to be
omitted (together with all other terms proportional to α2/δ2).

3. Asymptotic analysis of the governing equations
In the first subsection of this section, we shall derive a set of asymptotic equations

describing the translation of the vortex and development of small dipolar circulation
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on and under the vortex (those not interested in the mathematical development can
skip it). In the second subsection, we shall discuss the properties of the equations
derived.

3.1. Derivation of asymptotic equations

Instead of two independent small parameters α and δ, it is now convenient to introduce
a single parameter ε such that

δ = ε, α = ε2 (3.1)

(which agrees with the oceanic values of δ ≈ 0.1 and α ≈ 0.01). Next we shall
introduce the polar coordinates:

x = r cos θ, y = r sin θ (3.2)

and the polar variables:

u = U cos θ − V sin θ, v = U sin θ + V cos θ, h = H, ψ = Ψ. (3.3)

Substitution of (3.1)–(3.3) into (2.16)–(2.19) yields

ε
∂U

∂t
+ (U − ε2Ẋ cos θ − ε2Ẏ sin θ)

∂U

∂r
+

1

r
(V + ε2Ẋ sin θ − ε2Ẏ cos θ)

(
∂U

∂θ
− V

)
+
∂

∂r

(
H + ε2Ψ

)
=
(
1 + ε2r sin θ

)
V , (3.4)

ε
∂V

∂t
+ (U − ε2Ẋ cos θ − ε2Ẏ sin θ)

∂V

∂r
+

1

r
(V + ε2Ẋ sin θ − ε2Ẏ cos θ)

(
∂V

∂θ
+U

)
+

1

r

∂

∂θ

(
H + ε2Ψ

)
= − (1 + ε2r sin θ

)
U, (3.5)

εr
∂H

∂t
+
∂

∂r
[r(U − ε2Ẋ cos θ − ε2Ẏ sin θ)H] +

∂

∂θ
[(V + ε2Ẋ sin θ − ε2Ẏ cos θ)H] = 0,

(3.6)

∂H

∂t
+ ε

[
∂∇2Ψ

∂t
+

(
−1

r

∂Ψ

∂θ
− Ẋ cos θ − Ẏ sin θ

)
∂H

∂r

+
1

r

(
∂Ψ

∂r
+ Ẋ sin θ − Ẏ cos θ

)
∂H

∂θ

]
= O(ε2), (3.7)

where

∇2Ψ =
1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2

∂2Ψ

∂θ2

and O(ε2) on the right-hand side of (3.7) denotes the terms proportional to α2/δ2.
Equations (3.4)–(3.7) should be supplemented by the usual boundary conditions at
the centre of the vortex:

U+
∂V

∂θ
= 0, V− ∂U

∂θ
= 0,

∂H

∂θ
= 0,

∂Ψ

∂θ
= 0 at r = 0, (3.8)

and at infinity:

U,V → 0, H,Ψ → H,Ψ as r →∞, (3.9)
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where the constants H and Ψ are the background values of the upper-layer depth
and streamfunction, respectively. The case of lenses (where the interface outcrops
onto the surface of the ocean) is included in the consideration as the limiting case
H = 0 (this approach provides a perfectly legitimate way to bypass derivation of the
boundary condition at the outcropping).

Next we expand the solution in powers of ε:

(U,V ,H) = (U,V ,H)(0) + ε(U,V ,H)(1) + · · · ,
Ψ = Ψ (0) + · · · , (Ẋ, Ẏ ) = (Ẋ, Ẏ )(0) + · · · ,

and assume that the zero-order solution is radially symmetric and steady (i.e. we deal
with a nearly steady, nearly circular vortex):

U(0) = 0, V (0) = V (0)(r), H (0) = H (0)(r).

Equations (3.4)–(3.6) yield, as they should, the requirement that any steady vortex be
in the state of cyclostrophic balance:

dH

dr
= V +

1

r
V 2,

where the superscript (0) has been omitted.
Now when we assumed that the zero-order solution is steady, it becomes evident

that the largest perturbation to equations (3.4)–(3.6) is O(ε2), hence

U(1) = V (1) = H (1) = 0.

For the second-order solution, equations (3.4)–(3.7) yield

1

r
V

(
∂U(2)

∂θ
− V (2)

)
+

1

r
(V (2) + Ẋ(0) sin θ − Ẏ (0) cos θ)(−V )

+
∂

∂r
(H (2) +Ψ (0)) = V (2) + (r sin θ)V , (3.10)

(U(2) − Ẋ(0) cos θ − Ẏ (0) sin θ)
dV

dr
+

1

r
V

(
∂V (2)

∂θ
+U(2)

)
+

1

r

∂

∂θ
(H (2) +Ψ (0)) = −U(2),

(3.11)

∂

∂r
[r(U(2) − Ẋ(0) cos θ − Ẏ (0) sin θ)H]

+
∂

∂θ
[VH (2) + (V (2) + Ẋ(0) sin θ − Ẏ (0) cos θ)H] = 0, (3.12)

∂∇2Ψ (0)

∂t
+

(
−1

r

∂Ψ (0)

∂θ
− Ẋ(0) cos θ − Ẏ (0) sin θ

)
∂H

∂r
= 0. (3.13)

As always, the first non-zero correction to a monopole vortex represents a weak
dipolar circulation, in accordance with which we can separate r and θ as follows:

U(2) = Φc(r, t) cos θ + Φs(r, t) sin θ, V (2) = Λc(r, t) cos θ + Λs(r, t) sin θ, (3.14)

H (2) = Γc(r, t) cos θ + Γs(r, t) sin θ, Ψ (0) = Pc(r, t) cos θ + Ps(r, t) sin θ. (3.15)

Substitution of (3.14)–(3.15) into (3.10)–(3.13) and straightforward calculations yield



Near-surface vortex in a two-layer ocean 285

(the superscript (0) is omitted from Ẋ(0) and Ẏ (0)):

1

r
V (Φs − Λc)− 1

r
(Λc − Ẏ )V +

∂

∂r
(Γc + Pc) = Λc, (3.16)

1

r
V (−Φc − Λs)− 1

r
(Λs + Ẋ)V +

∂

∂r
(Γs + Ps) = Λs + rV , (3.17)

(Φc − Ẋ)
dV

dr
+

1

r
V (Λs + Φc) +

1

r
(Γs + Ps) = −Φc, (3.18)

(Φs − Ẏ )
dV

dr
+

1

r
V (−Λc + Φs)− 1

r
(Γc + Pc) = −Φs, (3.19)

∂

∂r
[r(−Ẋ)H] + [VΓs + (Λs + Ẋ)H] = 0, (3.20)

∂

∂r
[r(Φs − Ẏ )H]− [VΓc + (Λc + Ẏ )H] = 0, (3.21)

∂

∂t

[
1

r

∂

∂r

(
r
∂Pc

∂r

)
− 1

r2
Pc

]
−
(

1

r
Ps + Ẋ

)
dH

dr
= 0, (3.22)

∂

∂t

[
1

r

∂

∂r

(
r
∂Ps

∂r

)
− 1

r2
Ps

]
−
(
−1

r
Pc + Ẏ

)
dH

dr
= 0. (3.23)

The boundary conditions (3.8), (3.9) become

Φc + Λs = 0, Λc − Φs = 0, Γc,s = 0, Pc,s = 0 at r = 0, (3.24)

(Φ,Λ, Γ , P )c,s → 0 as r →∞. (3.25)

System (3.16)–(3.25) is composed of an initial-value problem for Pc,s(r, t), (3.22)–(3.23),
and two boundary-value problems for (Φc, Λs, Γs) and (Φs, Λc, Γc): (3.17), (3.18), (3.20)
and (3.16), (3.19), (3.21), respectively. The initial-value problem depends on the
boundary-value problems only through the components Ẋ and Ẏ of the translation
speed (see the schematic in figure 2). Ẋ and Ẏ are also unknown – they should be
determined as eigenvalues of the corresponding boundary-value problems (it is shown
how this can be done below). It turns out, however, that all the unknowns but Pc,s
can be eliminated from the governing equations!

In order to eliminate (Φc, Λs, Γs) and relate Ẋ to Ps, we rewrite equations (3.17),
(3.18), and (3.20) as follows:

−VΦc − (r + 2V )Λs + r
∂Γs

∂r
= r2V + ẊV − r ∂Ps

∂r
, (3.26)(

r + V + r
dV

dr

)
Φc + VΛs + Γs = Ẋr

dV

dr
− Ps, (3.27)

∂

∂r
(rHΦc) +HΛs + VΓs = Ẋr

dH

dr
. (3.28)

This is a system of linear inhomogeneous ODEs for (Φc, Λs, Γs) , and it has a solution
only if the vector of right-hand sides is orthogonal to the solutions of the adjoint
homogeneous boundary-value problem (if any). Omitting the details, we note that the
(unique) adjoint solution is

Φ+
c = H, Λ+

s = H, Γ+
s = r + V .
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(3.17), (3.18), (3.20): Given Ps fixes Φc, Λs, Γs, X·

(3.22), (3.23): Given X·, Y· fixes Pc, Ps

(3.16), (3.19), (3.21): Given Pc fixes Φs, Λc, Γc, Y·

Figure 2. The structure of set (3.16)–(3.23).

One does not need to verify this (by inspection or otherwise); it is sufficient to just
consider the following expression:∫ ∞

0

[(3.26)×H + (3.27)×H + (3.28)× (r + V )] dr,

then integrate it by parts, use the boundary conditions (3.24)–(3.25), and eventually
make sure that Φc, Λs, and Γs disappear from the resulting relationship. We end up
with a formula relating Ẋ to Ps:

Ẋ = −
∫ ∞

0

(
rPs

dH

dr
+ r2VH

)
dr

/∫ ∞
0

r2 dH

dr
dr . (3.29)

Following a similar procedure for Φs, Λc, and Γc, one can obtain a relationship for Ẏ
and Pc:

Ẏ =

∫ ∞
0

rPc
dH

dr
dr

/∫ ∞
0

r2 dH

dr
dr . (3.30)

Equations (3.22) and (3.23) are equivalent to the corresponding expressions, (13) and
(15), of (Flierl 1984), despite the fact that those were obtained for a different limit
(α & δ).

Equations (3.22)–(3.23) and (3.29)–(3.30) form a closed system for Pc, Ps, Ẋ, and Ẏ .

3.2. Discussion

Rewrite equations (3.22)–(3.23), (3.29)–(3.30) in the form

∂

∂t

[
∂

∂r

(
r
∂Pc

∂r

)
− 1

r
Pc

]
=

dH

dr
(rẊ + Ps), (3.31)

∂

∂t

[
∂

∂r

(
r
∂Ps

∂r

)
− 1

r
Ps

]
=

dH

dr
(rẎ − Pc), (3.32)

Ẋ =
1

M

∫ ∞
0

r
dH

dr
Psdr +

A

M
, (3.33)

Ẏ = − 1

M

∫ ∞
0

r
dH

dr
Pcdr, (3.34)
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where

A =

∫ ∞
0

r2VHdr, M = −
∫ ∞

0

r2 dH

dr
dr. (3.35)

are the non-dimensional net angular momentum and mass anomaly of the vortex,
respectively (recall that V (r) and H(r) are the swirl velocity and thickness of the
vortex). We shall use the simplest initial condition

Pc = Ps = 0, X = Y = 0 at t = 0, (3.36)

i.e. the evolution starts from a radially symmetric, unperturbed vortex. The boundary
conditions (3.24)–(3.25) yield

Pc = Ps = 0 as r → 0,∞. (3.37)

(i) Consider the following combination of the governing equations:∫ ∞
0

[(3.31)× Pc − (3.32)× Ps] dr.

Integrating by parts and using the boundary conditions, we obtain

−1

2

d

dt

∫ ∞
0

[
r

(
∂Pc

∂r

)2

+
1

r
P 2
c + r

(
∂Ps

∂r

)2

+
1

r
P 2
s

]
dr

= Ẋ

∫ ∞
0

r
dH

dr
Pc dr +

∫ ∞
0

dH

dr
PsPc dr + Ẏ

∫ ∞
0

r
dH

dr
Psdr −

∫ ∞
0

dH

dr
PcPsdr.

Then take into account (3.33), (3.34), integrate with respect to t, and use the initial
conditions to obtain

1

2

∫ ∞
0

[
r

(
∂Pc

∂r

)2

+
1

r
P 2
c + r

(
∂Ps

∂r

)2

+
1

r
P 2
s

]
dr = AY . (3.38)

The left-hand side of this identity is non-negative (it represents, in fact, the kinetic
energy of the lower-layer flow), hence anticyclones (warm-core vortices, for which
A < 0) drift southwards (Y 6 0), whereas cyclones drift northwards. Invariant (3.38)
will be used later to monitor the accuracy of simulation of our equations.

(ii) Observe that at t = 0, the zero initial condition for the lower layer reduces the
speed of the vortex to the non-dimensional Nof (1981) value:

Ẋ =
A

M
, Ẏ = 0,

and also eliminates the effect of the lower layer from the upper-layer equations (3.16)–
(3.21) (which then coincide with the corresponding one-layer equations of Benilov
(1996)). Thus, the initial condition for our asymptotic equations describes the steadily
translating one-layer vortex. This implies that we have ‘skipped’ the first stage of
the evolution of the vortex, when it adjusts its speed and shape to the beta-effect.
Mathematically, this occurred due to the requirement that the time scale of the motion
be slow, which made the time-derivative terms in the upper-layer equations negligible.

(iii) One should also be very careful in applying our results to eddies. In contrast
to lenses, for which the upper-layer dipolar flow always remains bounded, the case of
eddies is much more complicated. As demonstrated by Benilov (1996), most cyclonic
eddies have their speeds of translation inside the range of allowable Rossby waves
and the beta-effect destroys them through radiation. Mathematically, this is reflected
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r0 r0

Figure 3. A lens (left) and an eddy with compact support (right).

by the unboundedness of the upper-layer dipolar solution:

Φc,s, Λc,s, Γc,s = O(r) as r →∞
(the orthogonality of the right-hand sides of equations (3.26)–(3.28) to the adjoint
solution has removed the exponential, but not the linear, growth of (Φc, Λs, Γs)).
However, anticyclonic vortices (of which lenses can be treated as a limiting case)
translate faster than the fastest Rossby wave and are thus unaffected by the radiation.

In what follows, it is implied that we consider only anticyclonic vortices.

4. Eddies with compact support and lenses
In this section we shall concentrate on eddies with compact support and lenses, i.e.

on vortices for which
dH

dr
= 0 if r > r0,

where r0 is the radius of the vortex (see the schematic in figure 3). For the sake of
brevity, both types of vortices will be referred to as ‘lenses’.

4.1. Conditions at the boundary of the lens

Although we assumed that there is no radially symmetric monopolar flow on the
outside of the lens, it does not mean that the dipolar circulation also stays inside. In
order to find the structure of the flow for r > r0, we multiply (3.31) and (3.32) by r
and integrate them with respect to r, from 0 to r. After straightforward calculations
involving integration by parts we obtain

r
∂

∂t

(
r
∂Pc

∂r
− Pc

)
=

∫ r

0

r′
dH(r′)

dr′
[r′Ẋ + Ps(r

′)]dr′,

r
∂

∂t

(
r
∂Ps

∂r
− Ps

)
=

∫ r

0

r′
dH(r′)

dr′
[r′Ẏ − Pc(r′)]dr′.

For the region on the outside of the lens, we then obtain

r
∂

∂t

(
r
∂Pc

∂r
− Pc

)
= −MẊ +

∫ r0

0

r′
dH(r′)

dr′
Ps(r

′)dr′ if r > r0,



Near-surface vortex in a two-layer ocean 289

r
∂

∂t

(
r
∂Ps

∂r
− Ps

)
= −MẎ −

∫ r0

0

r′
dH(r′)

dr′
Pc(r

′)dr′ if r > r0.

Substitution of (3.33) and (3.35) into these equations yields

r
∂

∂t

(
r
∂Pc

∂r
− Pc

)
= −A if r > r0,

r
∂

∂t

(
r
∂Ps

∂r
− Ps

)
= 0 if r > r0,

which can be integrated with respect to t using the initial condition (3.35), and then
solved using the boundary condition at r = ∞ (see (3.37)):

Pc =
A

2r
t if r > r0, (4.1)

Ps = 0 if r > r0. (4.2)

4.2. Discussion

The linearly growing boundary condition (4.1) has far-reaching consequences, as it
somewhat limits the applicability of our asymptotic expansion. It should be clearly
understood though, that numerical simulations (see below) demonstrate that this
growth is relatively slow, and the error does not exceed 15% even for a relatively
long-term evolution (∼6 months). Also, all previous asymptotic theories for vortices
influenced by weak beta-effect predict exactly the same linear growth at infinity (e.g.
Reznik & Dewar 1994 or Sutyrin & Flierl 1994)†. This had not been noticed only
because no-one considered lenses – instead, all authors considered eddies with ‘tails’
at r →∞, for which this growth is not apparent!

In order to illustrate this property of the beta-plane equations, consider the (sim-
plest) model of one-layer QG dynamics examined previously by Reznik & Dewar
(1994). In the non-dimensional form, it is

∂∇2ψ

∂t
+ J

(
ψ,∇2ψ

)
+ α

∂ψ

∂x
= 0. (4.3)

As usual, we change to the reference frame moving with the vortex:

∂∇2ψ

∂t
− Ẋ ∂∇

2ψ

∂x
− Ẏ ∂∇

2ψ

∂y
+ J

(
ψ,∇2ψ

)
+ α

∂ψ

∂x
= 0. (4.4)

Assuming the beta-effect to be weak (α� 1) and hence the beta-induced translation
to be slow, we introduce ˜̇X = Ẋ/α, ˜̇Y = Ẏ /α. (4.5)

Substituting (4.5) into (4.4) and omitting tildes, we obtain

∂∇2ψ

∂t
− αẊ ∂∇

2ψ

∂x
− αẎ ∂∇

2ψ

∂y
+ J

(
ψ,∇2ψ

)
+ α

∂ψ

∂x
= 0.

Next we expand the solution in powers of α:

ψ = ψ(0) + αψ(1) + · · ·
† This claim does not include the papers by Flierl (1984) and Swaters (1998), who considered

the case of strong beta-effect, where the beta-term is included in the leading-order equations.
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where ψ(0) represents a steadily translating radially symmetric vortex:

ψ(0) = H(r),

and ψ(1) represents the dipolar correction:

ψ(1) = Pc(r, t) cos θ + Ps(r, t) sin θ.

Straightforward calculations yield

∂

∂t

[
1

r

∂

∂r

(
r
∂Pc

∂r

)
− 1

r2
Pc

]
+

1

r2

[
dH

dr

∂

∂r

(
r
∂Ps

∂r

)
− Ps d

dr

(
r
d2H

dr2

)]
=

1

r
Ẋ

[
d

dr

(
r
d2H

dr2

)
− 1

r

dH

dr

]
− dH

dr
, (4.6)

∂

∂t

[
1

r

∂

∂r

(
r
∂Ps

∂r

)
− 1

r2
Ps

]
− 1

r2

[
dH

dr

∂

∂r

(
r
∂Pc

∂r

)
− Pc d

dr

(
r
d2H

dr2

)]
=

1

r
Ẏ

[
d

dr

(
r
d2H

dr2

)
− 1

r

dH

dr

]
(4.7)

(in deriving (4.6)–(4.7), we used the identity

d

dr

[
1

r

d

dr

(
r
dH

dr

)]
=

1

r

d

dr

(
r
d2H

dr2

)
− 1

r2

dH

dr
,

which can be verified by inspection). Next we multiply (4.6) by r2 and integrate with
respect to r, from 0 to r. Straightforward calculations involving integration by parts
yield

r
∂

∂t

(
r
∂Pc

∂r
− Pc

)
+ r

(
dH

dr

∂Ps

∂r
− Psd

2H

dr2

)
= Ẋr

(
r
d2H

dr2
− dH

dr

)
−
∫ r

0

r′2
dH(r′)

dr′
dr′.

(4.8)

For the region on the outside of an eddy with compact support, this can be reduced
to

r
∂

∂t

(
r
∂Pc

∂r
− Pc

)
= M if r > r0, (4.9)

where, as before,

M = −
∫ r0

0

r2 dH(r)

dr
dr

is the net mass anomaly of the vortex. Equation (4.9) can be readily solved:

Pc = −M
2r
t if r > r0, (4.10)

which is equivalent to (4.1) (it should be kept in mind here that, in the QG approxi-
mation M ≈ A). If, however, the vortex has tails, i.e. if

dH

dr
6= 0 for all r,

one cannot reduce (4.8) to (4.9) and thus obtain solution (4.10). It does not, of course,
mean that in this case the solution remains bounded as t→∞ – it still grows, although
not linearly. As demonstrated by Reznik & Dewar (1994) for certain long-distance
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behaviours of H(r), a proper choice of the translation velocity (Ẋ, Ẏ ) can reduce the
growth to a logarithmic or slower-than-linear algebraic growth.

In conclusion of this subsection, we reiterate that the linear growth of the solution
has little effect on the validity of our asymptotic method up to relatively large
timescales – see the results of numerical modelling in the next subsection.

4.3. Numerical solution

In order to avoid solving our asymptotic equations in an unbounded domain, it is
convenient to formulate a boundary conditions based on the outside-lens solution
(4.1)–(4.2):

Pc =
At

2r0
, Ps = 0 at r = r0.

The resulting initial/boundary-value problem was solved using the second-order
Runge–Kutta scheme for the time derivatives, and the Simpson integration routine
for the inversion of the linear operators on the left-hand sides of (3.31) and (3.32).
Invariant (3.38) was used to monitor the numerical accuracy (the non-conservation
never exceeded 0.1%). We considered two types of lens: the solid-body rotating vortex

V (r) =

{
Vmax

(
r/r0

)
if r < r0

0 if r > r0,
(4.11)

and a differentially rotating vortex

V (r) =

{
2Vmax

(
r/r0

)
exp

[
3(4r2−r2

0)
8(r2−r2

0)

]
if r < r0

0 if r > r0,
(4.12)

where Vmax is the maximum swirl velocity of the lens and r0 is its size (see figure 4).
Equation (4.11) was chosen because it is the simplest profile possible and has been
used many times by other researchers. We shall use it to examine the theoretical
properties of the equations derived, but ( 4.11) is not a very realistic model of oceanic
lenses, as its outer ‘slope’ is infinitesimally thin. The differentially rotating vortex
(4.12) is free from this shortcoming, as its parameters are adjusted in such a way that
the maximum of V (r) is located exactly at r = 1

2
r0.

Our equations have only one spatial variable, and the processor time was not an
issue – which enabled us to examine a wide range of parameters of lenses. We shall
present here the most interesting results, which were obtained for

0.55 6 Vmax 6 0.85 m s−1, 55 6 1
2
r0 6 70 km,

which represent medium sized, strong but not the strongest, oceanic rings. The
parameters of the ocean in all cases were

ρ2 − ρ1

ρ2

= 0.0005, H0 = 5000 m, latitude = 45◦,

where (ρ2 − ρ1) /ρ2 is the relative density difference, and H0 is the total depth of the
ocean. In all cases, we let the simulations run for 180 days.

We observed the following features of the evolution of lenses.
(i) As t→∞, the solution always approaches the following limiting regime:

Ps and Ẋ remain bounded, Pc → At

2r2
0

r, Ẏ → At

2r2
0

for r < r0. (4.13)

It can be readily verified that this regime is asymptotically consistent with the
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Figure 4. The profiles of lenses used in our simulations: (1) solid-body rotating lens (4.11);
(2) differentially rotating lens (4.12). (a) Thickness; (b) swirl velocity.
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Pc = Atr/2r2
0 Pc = At/2r

Figure 5. The limiting solution (4.13), (4.1).

governing equations. It implies, however, that Pc has a ‘spike’ at r = r0 (see figure 5).
Clearly, the spike cannot develop from a smooth initial condition, which means that
there must be a transitional region inside the lens, near its boundary (see figure 6).

The physical meaning of solution (4.13) becomes clear if we look at the lower-layer
flow:

ψ = Pc cos θ + Ps sin θ ≈ At

2r2
0

r cos θ =
At

2r2
0

x ⇒ v ≈ At

2r2
0

.

Thus, (4.13) describes a ‘circle’ of lower-layer fluid with meridional velocity constant
in space and linearly growing in time. At the boundary of the circle, there is a
transitional region which matches the circle to the flow around the lens.

The co-moving flow in the lower layer under the lens has a simple physical
explanation. Recall that, in terms of the velocity field, the lens is initially localized in
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Figure 6. A typical evolution of the dipolar circulation associated with a solid-body rotating lens
with Hmax = 400 m, r0 = 120 km. The solution is scaled by t to ‘remove’ the linear growth; the
dashed line shows the limiting solution (4.13); the dotted line shows the boundary of the lens; the
labels of the curves show the number of months since the beginning of the evolution (all other
variables are non-dimensional).

the upper layer:

ψ2 = 0 at t = 0.

If, however, we look at the potential vorticity (PV) of the lower layer,

PV2 = α∇2ψ + δh+ αy, (4.14)

it becomes clear that the PV of particles under the lens (where h 6= 0) differs
significantly from that of the ‘outside’ particles. As the displacement h is caused by
the lens and therefore translates with the lens, the particles below have to follow it –
otherwise they would not be able to preserve their anomalous PV values. Interestingly,
the trapping of second-layer particles below the eddy has been noted within the
framework of other vortex models – see the paper by Sutyrin & Dewar (1992), who
considered eddies of radius much larger than the deformation radius, in a setting
similar to ours (two-layer fluid on the beta-plane).

Generally speaking, the growth of ψ as t→ ∞ (see solution (4.13)) can enable the
lower-layer vortex to break free from the lens. When the first term in (4.14) becomes
comparable to the second one, the lower-layer particles can move away from the lens
and balance the ‘loss’ of h by a ‘gain’ in ∇2ψ. It should be emphasized though that, if
the two terms of PV2 are of the same order, our asymptotic equations are no longer
applicable, as the previous scaling of ψ becomes invalid. This question is discussed in
more detail in § 4.4 below.

Finally, consider the parameter range of Flierl (1984), α � δ, in which case the
planetary vorticity term dominates (4.14). The PV-contours are no longer closed in
the lower layer, hence the fluid is not trapped under the eddy and Rossby (planetary)
waves can be effectively radiated.

(ii) Physically, the most unexpected result is that the meridional component of the
translation speed rapidly ‘overtakes’ the zonal component (see figure 7). The former



294 E. S. Benilov

t (days)

4

3

2

1

0 30 60 90 120 150

1

2

180

X
, Y

 (
cm

 s
–1

)

.

.

Figure 7. The zonal (2) and meridional (1) components of the translation speed of a solid-body
rotating lens with Hmax = 400 m, r0 = 120 km. The dashed line shows the large-t asymptotic solution
(4.13).
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Figure 8. The error of our asymptotic method for different solid-body rotating lenses:
(1) Hmax = 400 m, r0 = 120 km; (2) Hmax = 300 m, r0 = 120 km.

grows approximately linearly (in accordance with the large-t solution (4.13)), whereas
the latter oscillates about the Nof value. This question is discussed in more detail in
§ 4.4 below.

(iii) The error of our asymptotic method accumulates relatively slowly (see figure 8).
In order to understand how the error was measured, observe that the most ‘dangerous’
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1 2

Figure 9. The trajectories of lenses of different shapes: (1) solid-body rotating lens (4.11);
(2) differentially rotating lens (4.12).

terms omitted from the exact equations were

α2

δ2
Ẏ
∂∇2ψ

∂y
and

α2

δ2
J
(
ψ,∇2ψ

)
(both appear in equation (2.19)). According to the above large-t solution, these terms
are proportional to t2, whereas the other terms omitted are proportional to t. In order
to make sure that these terms are smaller than some of the terms retained, say

α

δ
Ẏ
∂h

∂y
and

α

δ
J (ψ, h) ,

it is enough to ensure that

|h| � α

δ

∣∣∇2ψ
∣∣ .

Thus, the error of our asymptotic method can be defined as

error =
α

δ

max
{∣∣∇2ψ

∣∣}
max {H} ,

and, in our simulations, it has never exceeded 15% (over a period of 6 months of
vortex evolution). It should also be observed that thinner vortices ‘generate’ error
slower than thicker vortices (see figure 8).

(iv) Figure 9 shows the trajectories of lenses, and it is found that all lenses of
profile (4.11), regardless of their thickness and size, fall onto curve (1), whereas all
lenses described by (4.12) fall onto curve (2). Thus, given the same shape of the lens,
its trajectory does not depend on its parameters – those affect only how far the lens
travels along the trajectory. This property, in fact, follows from the invariance of our
governing equations with respect to the following scaling transformation:

r → γ1r̃, H → γ2H̃,



296 E. S. Benilov

1
2
r0 = 55 km 1

2
r0 = 70 km

Hmax = 280 m Hmax = 380 m
Vmax = 0.55 m s−1 ∆x = 50 km ∆x = 70 km

∆y = 145 km ∆y = 235 km

Hmax = 385 m Hmax = 530 m
Vmax = 0.85 m s−1 ∆x = 70 km ∆x = 125 km

∆y = 330 km ∆y = 510 km

Table 1. The zonal and meridional displacements (∆x and ∆y) of oceanic lenses from their initial
positions. The profile of the lenses is given by (4.12) (differential rotation); Vmax and Hmax are the
maximum swirl velocity and thickness of the lens, respectively; 1

2
r0 is the radius corresponding to

Vmax. The displacements computed correspond to the period of 6 months. The top left cell models
a particular Gulf Stream ring (WCR82B 4/82) observed by Olson (1991).

where γ1,2 are arbitrary constants. Correspondingly, the mass of the lens transforms
as

M → γ2
1γ2M̃.

It is impossible, however, to derive a similar formula for the net angular momentum of
the lens (its transformation is not scaling-like), so we have to introduce an independent
coefficient γ3 for it:

A→ γ3Ã.

All three arbitrary constants, γ1,2,3, can be eliminated from the governing equations
by the transformation

t→ 1

γ2

t̃, Ẋ → γ3

γ2
1γ2

˜̇X, Ẏ → γ3

γ2
1γ2

˜̇Y , Pc,s → γ3

γ1γ2

P̃c,s.

Observe that Ẋ and Ẏ transform in exactly the same way, which means that the
trajectory of the lens remains the same for all values of γ1,2,3.

(v) The results of our simulations show that sufficiently large and strong lenses
are capable of travelling significant distances in the ocean (see table 1). Generally,
stronger and larger lenses travel faster than weaker and smaller ones. It appears
though that the important factors are the net angular momentum and mass, rather
than the strength and thickness as such.

4.4. Discussion

There are two crucial questions associated with the physical interpretation of the
results obtained: What causes the meridional drift of lenses? What is the impact of
the growing dipolar flow on the lens?

(i) The strong meridional drift of lenses is caused, no matter how paradoxical this
sounds, by their weak zonal drift. When the Nof mechanism forces the lens to move
westwards, it creates a zonal gradient in the pressure of the lower layer (an increase
of pressure in front of the lens and a decrease behind). In turn, the pressure gradient
gives rise to a geostrophic flow in the lower layer. Given the sign of the gradient, this
flow is directed equatorwards, and it carries the lens with it.

Observe that the meridional translation of the lens does not create a pressure
gradient in the lower layer as, in this direction, the lens goes with the lower-layer
flow. A pressure gradient can be created only if the lens moves ‘by itself ’ (through Nof ’s
mechanism) and thus ‘pushes’ the lower-layer particles.
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The fact that the meridional translation accelerates with t can be explained using
equations (3.31) and (3.34). The latter links the meridional speed with the cos-
component Pc of the streamfunction, and the former indicates that the growth rate of
Pc is proportional to the zonal speed Ẋ. Since the zonal speed is, roughly, constant,
this suggests that Pc (and Ẏ ) grow, roughly, linearly. In other words, the meridional
acceleration of the lens is proportional to its zonal speed.

The possibility of strong meridional movement of eddies in a two-layer fluid has
been discussed by Dewar & Gailliard (1994). It should be noted, however, that the
meridional motion in that case was caused by a strong deep flow included in the model
(whereas, in the present paper, the lower layer is initially at rest). The conclusions of
both papers qualitatively agree with Armi et al. (1989), who tracked a Mediterranean
salt lens in the Atlantic and showed that its trajectory is, mainly, meridional – but
there is no evidence indicating which effect is responsible for it. On the other hand,
Chassignet & Cushman-Roisin (1991) observed (numerically) almost exclusively zonal
translation of eddies, which can possibly be accounted for by the zonal wind included
in their model.

(ii) A physical interpretation of the growing dipolar flow is much more unclear so
the second question is less straightforward to answer than the first.

In the one-layer case, one is left with no other possibility but to assume that the
vortex loses its radial symmetry and evolves into a fully asymmetric patch (it is clear,
of course, that the growing dipolar flow will generate a quadrupolar circulation, etc.).
Our multi-layer problem is somewhat less clear, as the dipolar solution may saturate
at a finite, albeit relatively large, level. Indeed, in contrast to the one-layer case, the
two-layer problem has a parameter which could ‘set’ this level, namely δ. Accordingly,
recall that the lower-layer streamfunction was scaled by α (see (2.15)) – which turned
out to be too small as t→∞ and should therefore be replaced by

Ψ2 = δ
g′H1

f
.

The meridional component of the translation speed should also be rescaled as

Cy = δ
√
g′H1,

whereas the zonal component should remain the same:

Cx = α
√
g′H1

(recall that Ẋ does not grow with t). Next, the growth becomes important only as
t→∞; therefore, the scaling of t should also be ‘extended’:

T = α−1f−1

(compare this with the old scaling (2.13)). The rescaled version of equations (2.16)–
(2.19) is[

α

(
∂

∂t
− Ẋ ∂

∂x

)
− δẎ ∂

∂y

]
u+ u

∂u

∂x
+ v

∂u

∂y
+

∂

∂x
(h+ δψ) = (1 + αy) v,

[
α

(
∂

∂t
− Ẋ ∂

∂x

)
− δẎ ∂

∂y

]
v + u

∂v

∂x
+ v

∂v

∂y
+

∂

∂y
(h+ δψ) = − (1 + αy) u,

[
α

(
∂

∂t
− Ẋ ∂

∂x

)
− δẎ ∂

∂y

]
h+

∂

∂x
(hu) +

∂

∂y
(hv) = 0,
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α

δ

(
∂

∂t
− Ẋ ∂

∂x

)
− Ẏ ∂

∂y

] (
h+ ∇2ψ

)
+
α

δ

∂ψ

∂x
+ J

(
ψ, h+ ∇2ψ

)
= 0.

Unfortunately, this set is much more complicated than the original equations and, at
the moment, it is unclear how to analyse it. On the other hand, it is needed only for
a description of long-term (longer than 6 months) vortex evolution. At this timescale,
however, near-surface vortices are affected by external currents, bottom topography,
wind, etc., and the whole approach has to be revised.

5. Conclusion
In this section, we recall the main results obtained in the present work. We were

concerned with near-surface vortices in a two-layer fluid on the beta-plane. Initially,
vortices are radially symmetric and localized in the upper layer. Two non-dimensional
parameters govern their evolution and translation: the non-dimensional beta-effect
number α (given by (1.1)) and the ratio δ of the thickness of the vortex to the
total depth of the fluid (given by (1.2)). As suggested by oceanic observations, we
considered the case α � δ � 1. It turned out that, in this limit, the beta-term in
the lower-layer equation is negligible, which indicates physically that the effect of
barotropic Rossby-wave radiation on the dynamics of the vortex is weak.

Using a suitable asymptotic technique, we considered the most realistic case, α� δ,
and concentrated mainly on anticyclonic eddies with compact support and lenses, for
which the thickness H(r) of the vortex satisfies the condition

dH

dr
= 0 for r > r0.

The following features were observed:
(i) The meridional (equatorward) component of the translation speed of the vortex

rapidly ‘overtakes’ the zonal (westward) component. The former grows approximately
linearly, whereas the latter oscillates about the Nof (1981) value (i.e. about the speed of
translation of a vortex in a one-layer fluid). The growth of the meridional component
has a simple physical explanation based on the pressure difference in the lower layer
in front of and behind the lens (see § 4.4).

(ii) Vortices of the same shape, but different radii and amplitudes, follow the same
trajectory. The amplitude and radius affect only the absolute value, but not the
direction, of the translation speed.

(iii) In the lower layer below the vortex, a ‘region’ is generated where the velocity
of the fluid is growing linearly with time. The velocity field in this region becomes
more and more homogeneous (and equal to the translation speed of the vortex).

The last conclusion is easier to understand if we observe that, even though the initial
velocity field of the vortex is localized in the upper layer, the potential vorticity has
a strong anomaly in the lower layer below the vortex (due to the displacement of
the interface). As the displacement translates along with the vortex, the lower-layer
particles must follow the vortex too – otherwise they cannot preserve their initial PV
values. This argument appears to imply that the vortex ‘drags’ the lower-layer particles
with it; however, one can look at it the other way around and assume that the flow
of particles in the lower layer is what moves the vortex along its trajectory.

I would like to thank G. M. Reznik for stimulating discussions.
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