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The stability of plane stationary waves in inhomogeneous media to three-dimensional 
perturbations is investigated. The most typical (and at the same time important in 
practice)example is taken to be a long solitary wave propagating on the surface of an ideal liquid 
over an uneven bottom. It is shown that the wave is unstable to parametric resonance between 
flexural perturbations of its front and "collisions" with the irregularities of the bottom. The factor 
that limits the instability is the backward emission of unstable perturbation by the soliton, so that 
solitary waves of sufficiently small amplitudes become stabilized. The growth rate of the 
perturbation and the shape of the neutral-stability curve are calculated. The theory developed for 
solitary waves on water is qualitatively generalized to include arbitrary media and wave solutions 
offour types: 1 ) solitons; 2) periodic waves; 3 )  (Burgers) shock waves with continuous profiles; 
4) discontinuous (gasdynamic) shock waves. In addition, the treatment is restricted to waves 
that are stable in the absence of inhomogeneities. Analysis has shown that wave solutions of the 
second and fourth type are apparently unstable in any medium with random or periodic smooth 
inhomogeneities, since they are unstable, just as in the case of solitons on water, only in a certain 
range of their amplitudes. 

1. INTRODUCTION 

Plane (one-dimensional) waves with stationary pro- 
files play a notable role in various branches of physics. The 
most important examples are shock waves in an ideal gas, 
solitary and periodic waves on the surface (ingthe interior) of 

o r 6  
a homogeneous (layered) liquid, and tidal gush (waves de- 
scribing the level drop of a liquid with a "breaker" on the 
front). Ion-sound and magnetosonic solitons and periodic 
waves are of considerable interest for plasma physics, the so- 
called fluxons are of interest for the theory of Josephson 
junctions, while shock waves with continuous profiles of the 
Burgers type are encountered in many problems of acous- 
tics, hydrodynamics, chemical kinetics, and combustion 
theory. 

All the foregoing plane-wave types have an important 
common property, viz., stability to longitudinal (one-di- 
mensional) and transverse (to the wave-propagation direc- 
tion) In particular cases that reduce to 
equations of the Kadomtsev-Petviashvili type (gravitational 
waves in a liquid, sound in a plasma), soliton stability was 
demonstrated in Refs. 1-4, and stability of periodic (cnoi- 
dal) waves in Refs. 5 and 6 .  The stability of Burgers waves 
was proved in the framework of the Zabolotskaya-Khokhlov 
equation in Refs. 7 and 8, while a stability criterion for shock 
waves in a gas was obtained in Ref. 9. Note that the question 
of the stability of any wave solution is of importance, since 
only stable solutions are realized in actual physical situa- 
tions. 

At the same time, real wave media have as a rule spatial 
inhomogeneities. These can be the roughness of the basin 
bottom in the case of waves in a liquid, turbulent wind in 
shock-wave propagation, fluctuations of ion density in a 
plasma, and others. The inhomogeneities of the medium act 
apparently as a destabilizing factor, but their effect on the 
stability of stationary waves has so far not been investigated. 

The main result of the present paper is the following 
statement; nonlinear waves (solitary, periodic, or shock) are 

unstable in a wide range of parameters if the medium con- 
tains sufficiently continuous spatial inhomogeneities (albeit 
small). The instability is transverse and is manifested in the 
case of both periodic and stochastic inhomogeneities. We 
shall elucidate the instability mechanism with a Korteweg- 
de Vries soliton and periodic fluctuations of a wave medium 
as the example. 

It is known2z3 that "secondary" waves of flexural type 
can propagate along a soliton front. If the length of these 
waves exceeds greatly the longitudinal spatial scale of the 
soliton, their dispersion equation has an "acoustic" form: 

where w and k are the frequency and wave number of the 
second sound, and c is its velocity (which depends on the 
soliton parameters). Note that relation ( 1 ) is valid only for 
media with negative dispersion (gravitational waves in a liq- 
uid, sound in a plasma). For media with positive dispersion 
(capillary waves, etc.) the second-sound frequency is pure 
imaginary (w = iclk I ), meaning that the soliton is unstable 
even in a homogeneous medium (in the absence of inhomo- 
geneities) . We do not deal with positive dispersion in the 
present paper. Consider now periodic, for simplicity one- 
dimensional, fluctuations of the parameters of the wave me- 
dium (the soliton propagation direction coincides with the 
parameter-variation direction, see Fig. 1 ) . We denote by To 
the time in which the wave negotiates one period of the fluc- 
tuations and introduce the frequency il = 2n-/To. It is easily 
seen that a secondary wave with wave number k. = il/2c 
enters into parametric resonance with the periodic inhomo- 
geneities of the medium: 

The amplitude of the secondary wave increases exponential- 
ly, and it is this which leads to instability of the initial soli- 
ton. In the case of stochastic fluctuations we have not one 
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frequency fl but a continuous spectrum, so that the spec- 
trum of the unstable secondary waves is no longer pointlike 
and occupies a rather broad region. Nor does the instability 
vanish in the other aforementioned wave media, as well as 
for other solutions (periodic or  shock waves). Indeed, all 
that is needed for instability development is the presence of 
second sound, and this is a property of all wave solutions that 
are stable in homogeneous media, and not only of the soliton 
solution (see, e.g., Refs. 10-12). Moreover, it can be stated 
that all the characteristic features of the evolution of second 
sound depend primarily on the type of solution, and not on 
the specifics of the actual wave medium. We shall distin- 
guish between four types of solution: solitons, periodic 
waves, and discontinuous and distributed (Burgers) shock 
waves. 

We emphasize that for the indicated instability to set in 
it is of principal importance that the inhomogeneities of the 
medium be smooth, i.e., that the characteristic spatial scale 
of the inhomogeneity be many times larger than the length of 
the nonlinear wave. This requirement is imposed by the 
long-wave character of second sound, and accordingly with 
low frequencies in relations ( 1 ) and ( 2 )  (k, w ,  fl--0, hence 
To -+ cc 1. 

Note also that the expected effect is of interest for one 
more reason, namely, the recent13 investigation of the propa- 
gation of nonlinearly weakly dispersive waves in media with 
small random fluctuations of the parameters. In the case of 
one spatial variable, a simplified equation was derived, con- 
taining only determined coefficients. However, a multidi- 
mensional generalization of the proposed asymptotic meth- 
od turned out to contain nonremovable divergences, due 
precisely to the long-wave (smooth) component of the fluc- 
tuations (see Ref. 13). This circumstance is now seen in a 
somewhat different light: it is most likely connected with the 
instability investigated in the present paper. Indirect evi- 
dence is provided by the fact that the characteristic instabil- 
ity development time coincides with the time scale of the 
onset of instabilities in the asymptotic theory of Ref. 13. This 
question seems worthy of further investigation. 

The present paper is devoted to a calculation of the in- 
stability parameters of nonlinear waves in inhomogeneous 
media, using as an example long surface solitons in a liquid 
over a randomly rough bottom. This example is chosen not 
only because of its practical i m ~ o r t a n c e , ~  but also because of 
the universality of the equation that describes this case (gen- 
eralized Kadomtsev-Petviashvili equation). In Sec. 2 we de- 
duce from this equation an asymptotic relation that de- 

FIG. 1. Formulation of problem: propagation of a solitary wave 
over the surface of an ideal liquid in a basin with an uneven 
bottom: a )  top view (solid line-soliton ridge, dashed-equal- 
depth line); b) side view. 

, , 

scribes second sound on a soliton propagating above a 
smoothly uneven bottom. The relation derived is used in Sec. 
3 to investigate the expected instability, whose growth rate is 
calculated. In Sec. 4 we consider effects that limit the insta- 
bility in the case of solitons and distributed shock waves, but 
are not accounted for by the theory developed. The equation 
for the growth rate will be accordingly refined. All the tech- 
nical details are relegated to Appendices 1 and 2. 

2. DERIVATION OF BASIC EQUATIONS 

The nondimensionalized equation for long-wave gravi- 
tational waves on the surface of an ideal liquid above an 
uneven bottom are (the derivation is in Appendix 1 ) : 

Here u is the deviation of the liquid surface from the unper- 
turbed level and H i s  the basin depth which depends, gener- 
ally speaking, on both horizontal spatial coordinates x and y. 
The "running" coordinate is defined as 

X 

where t is the time. Thus, Eq. ( 3 )  is written in a coordinate 
frame that moves with the velocity H1'* of the linear waves. 
Note that all the quantities (x, y, t ,  u, and H )  have been made 
dimensionless with the aid of the free-fall acceleration and 
the average basin depth. 

Equation (3 )  is a generalization of the known Kadomt- 
sev-Petviashvili equation, written in a somewhat unusual 
(evolutional in x )  form. The variables (x, 0, y )  are nonethe- 
less the most natural for spatially inhomogeneous media 
(see, e.g., Refs. 14-17). We note also that an equation of 
type (3 )  can describe also ion-sound or magnetosonic waves 
in an inhomogeneous plasma, but the connection between its 
coefficients and the parameters of the inhomogeneities re- 
quires additional refinement in these cases. 

We shall assume that the characteristic spatial scale of 
the wave field along they axis is much smaller than the hori- 
zontal scale of the roughnesses of the bottom. We can then 
neglect the dependence of the basin depth H on y and solve 
the problem locally, in the vicinity of a certain straight line 
y =yo.  Such a dependence follows in fact from the condi- 
tions for the validity of Eq. ( 3 ) ,  and thus does not "lower" 
the accuracy of the latter (see Appendix 1 for details). At 
the same time, we assume the roughnesses to be smooth and 
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put accordingly H = H(Ex), 0 < ~4 1. We now make a H(S,P),=(H'"P),, P=H'3r4u", 
change of variables 

( 5 4  
where P i s  proportional to the soliton momentum: 

5=ex, y"=&y, co 

where S has the meaning of the phase (the ridge displace- 
ment) of the soliton. The change (5)  is based on the hypoth- Equations (7)  and (12) constitute a closed system for the 

esis that the solution can be represented in the form of a 
determination of the unknowns S(x, y )  and u(x, y) .  It is 

smoothly bent soliton with a smoothly modulated amplitude easily seen that it is of the hyperbolic type and describes 

(it will be made clear that the amplitude modulations are nonlinear oscillations propagating along the soliton front, 

small compared with the inflection, meaning the modulation i'e.9 second sound. 

of the phase). A simplified equation for the phase function S Let us make more precise the physical meaning of S. It 

is usually derived by Whitham's geometric method (see is seen from (4)  and (5b) that S(x,y) is the difference be- 

Refs. which yields good results in similar problem, tween the dimensionless times at which a soliton and a wave 

but is mathematically not fully rigorous. We, however, use of infinitesimally small amplitude arrive at the point (x,y) 

direct perturbation theory, which enables us to develop a after starting from the same initial position. We note also 

systematic asymptotic procedure. that the parameter E has already performed its role as the 

substituting ( ) in and omitting the tildes we get "indicator" of the small terms in the initial equations, and 
we can set it equal to unity. Our variables now coincide with 

where 

is the local velocity of the soliton. (Actually v is a nonlinear 
correction to the phase velocity of waves of small amplitude 

The total soliton velocity in the lab is + v.) We 
seek the solution in the form of the asymptotic series 

Substituting (8)  in (6)  we obtain in zeroth order of pertur- 
bation theory 

Integration of (9)  is trivial and yields 

It is seen that Eq. (10) describes a smoothly bent 
Korteweg-de Vries soliton with parameters (amplitude, ve- 
locity, and length) that depend on x and y. In fact, all the 
wave parameters are expressed in terms of its local velocity v, 
which is connected in turn with the phase S by the relation 
(7).  The evolutional equation for S is  deduced from the next 
order of perturbation theory 

Equation ( 11 ) must be understood as an ordinary differen- 
tial equation (with a right-hand side) for u ( ' (19). For this 
equation to be solvable with respect to u'" ,  its right-hand 
side mustpe orthogonal to the eigenfunctions of the adjoint 
operator L + . It is easy to verify that the equation 

has only one solution f = u"', so that by multiplying ( 11) by 
u") and integrating with respect to 0 from - w to oo we 
have 

the physical (nondimensionalized) variables. 
Let us examine the generalization of the "soliton" equa- 

tions (7)  and (12) in the case of a periodic (cnoidal) wave 
propagating in an inhomogeneous medium. It is well 
known1' that for cnoidal waves there exist three modes (and 
not one) of second sound: longitudinally modulational, 
transversely m~dulational,~' and flexural. Accordingly, the 
analog of the system (7),  ( 12) should be a hyperbolic system 
of equations of second order in x,  and in addition, should 
contain derivatives with respect to if = EB. In turn, equa- 
tions for second sound in shock waves of both types (in inho- 
mogeneous media) are close to those for the soliton. 

Equations (7)  and ( 12) have an exact solution that is 
independent of the transverse variable y: 

u (x) = u ~ H - ~ / ~ ,  S (x) = uo j t I - ' i z ( ~ l )  dxf. (13) 
5 0  

meaning inverse proportionality of the soliton amplitude to 
the basin depth 

A (x) =2H"u"H-'(x), 

obtained in Refs. 17 and 18. Our next task is to investigate 
the transverse stability of the solution ( 13). 

3. SOLITON INSTABILITY 

To investigate the stability of a plane soliton we linear- 
ize Eqs. ( 7 ) and ( 12 ) against the background of the solution 
(13) 

X 

xo 

and assume a harmonic dependence of s on the transverse 
variable y: 

Here k is the second-sound wave number, and the factor 
H " '  was introduced for convenience. Omitting the tildes, 
we have 

where 
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is the dispersion dependence of the second sound in the ab- 
sence of inhomogeneities [it is seen from a comparison of 
( 15) and ( 1 ) that the second sound velocity is c = (f 
v ~ ) " ~ ) .  

With the aid of ( 14) we can investigate the case of peri- 
odic bottom irregularities of arbitary amplitude, and calcu- 
late the corresponding instability zones. We, however, are 
interested in small stochastic inhomogeneities, since they are 
the most typical for real wavy media. We put 

where h(x)  is a spatially homogeneous random centered 
function with a small mean squared value (variance) a: 
c? = (h 2 ,  4 1. From ( 14) we have 

Equation (17) is a second-order linear differential 
equation with a small random potential. An asymptotically 
rigorous theory of such equations, based on the method of 
many scales (see Ref. 19) is contained in Appendix 1. Here 
we note only that the leading term of the asymptotic expan- 
sion of S in powers of u satisfies the equality 

/ S ( x )  I=lS(O) IeT.", (18a) 
where the growth rate y + for the potential in ( 17) is given 
by 

r+ (0) = 9 / 8 ~ " ( 2 ~ ) .  (18b) 

Here N ( R )  is the Fourier transform of the correlation func- 
tion of the fluctuations h (x)  

(the angle brackets denote averaging over an ensemble of 
realizations). A schematic plot of y+ (k )  is shown in Fig. 2a. 
As expected, expression ( 18b) points to a patently paramet- 
ric character of the instability. Indeed, the growth rate of the 
harmonic with frquency w depends on the spectral density of 
the fluctuations at the doubled frequency 2w. We note one 
characteristic feature of the question: the instability growth 
rates of solitons of any amplitude (velocity) are equal. This 
follows from the fact that the parameter vo enters in (18b) 
not explicitly, but in the product w = (2~,/3)"~1k 1 .  Thus, 
when the soliton amplitude is varied only the wave number 
of the most unstable harmonic changes: 

We point out one more important feature of soliton in- 
stability in an inhomogeneous medium: it is easily seen that 

the growth rate y++O as k-0 [see (15) and ( l a ) ] .  This 
follows inevitably from the non-one-dimensionality of the 
effect. On the other hand, expression (18b) is valid only for 
small k and must not be changed by the substitution k- - k 
(isotropy of they axis). Thus, the instability growth rate 
should be proportional to the lowest even power of the per- 
turbation wave number, i.e., to its square. These quantitative 
arguments indicate that the growth rate of the transverse 
instability of any wave solution in any medium with smooth 
inhomogeneities is of the form 

Here Y andp characterize the specific properties of the actu- 
al medium and the parameters of the investigated solution, 
and N ( n )  is the spectral density of the fluctuations. 

4. "LAG" OFTHE UNSTABLE PERTURBATION RELATIVE TO 
THE SOLITON 

As already noted, the second-sound wavelength 
( - l/k) should be much larger than a certain power of the 
dimensionless width of the soliton (-vcl'*). In other 
words, the dispersion relation (15) is only the first term of 
the asymptotic expansion of the second sound in terms of the 
parameter kv; '. We can calculate also the second term of 
this expansion (see Refs. 2 and 3 ) : 

One can see readily that the imaginary correction to the 
frequency corresponds to damping of flexural waves on a 
solition, with a decrement 

This damping is due to the lag(backward emission) of 
the perturbations relative to a solitary wave, and is naturally 
independent of the fluctuations of the medium. We can 
therefore expect the lag of the unstable perturbations to be 
able to suppress the instability if the fluctuations are small 
enough.4' To derive an equation that takes second-sound 
damping into account it is necessary to include in the initial 
equation ( 3  ) from the very outset the hypothesis ( 16) that 
the roughnesses of the bottom are small, to assume the per- 
turbation amplitude to be likewise small, and to include one 
more order of perturbation theory. While the idea of this 
program is simple, the implementation is fraught with ap- 
preciable technical difficulties. On the other hand, in view of 
the aforementioned independence of the two effects, it is per- 
fectly clear that the growth rate (18b) and the decrement 
(20) enter in the general expression additively. Taking ( 15) 
into account, we have 

y (k) =3/4uokZN[ (8/3vO)"2k]-(2/27) Kvo-"ik2. (21) 

FIG. 2. Plots of the growth rate of flexural perturbations on a 
soliton: a-without allowance for perturbation damping; b- 
with allowance for the damping. 
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This expression is the final formulation of the main re- 
sult of the present paper. It is easily seen that the criterion for 
the instability of the soliton velocity v, in a basin with given 
bottom roughnesses is of the form 

To estimate the instability parameters, we specify the model 
correlation function of the bottom roughnesses in the form 

where a and R have the meaning of the variance and correla- 
tion radius of the roughnesses. In this case 

and the criterion (22) yields 

From the criteria for the applicability of the employed per- 
turbation theory we have R % 1 and d g  1 (smooth small 
irregularities). Thus only solitons in basins with very small 
bottom irregularities are stable. A y(k)  plot for the case 
when the criterion (24) is met is shown in Fig. 2b. For the 
instability boundary [in the model case (23) ] we have 

(the neutral-stability curve on the plane of the parameters 
(v,, k )  is shown in Fig. 3).  The maximum growth rate satis- 
fies the estimate 

I 

yrnnx-(~~IR. (26) 

Relations (24)-(26) give a quantitative idea of the param- 
eters of the observed instability. 

Note a very important circumstance from the stand- 
point of generalizations. Namely, the unstable perturbations 
lag the wave only in the case of solitons and distributed 
shock waves (with continuous profiles). For periodic solu- 
tions, however, the perturbations are not damped, and ac- 
cordingly all the terms of the frequency expansion in kv, ' 
(or in the analog of this parameter) are real. This fact has 
a clear physical intepretation: perturbations that lag some 
"crest" of a periodic wave land eventually on another and do 
not leave the region of our analysis. Thus, the instability due 
to the inhomogeneity of the medium is left without a "com- 
petitor" and it becomes manifested for all amplitude fluctu- 
ations, even the smallest ones. As noted above, the qualita- 
tive results of our analysis depend not on the initial 

Instability 

FIG. 3. Neutral-stability curve of a solitary surface wave over an uneven 
bottom. The point A corresponds to the the value v, = 0.2 u - ~ / ) R  - 2 1 3 .  

equations but on the type of investigated solution. It can be 
assumed therefore that all periodic waves in smoothly inho- 
mogeneous media are unstable, with an increment deter- 
mined by Eq. ( 19). 

The situation is exactly the same, although for another 
reason, for discontinuous shock waves. In this case the per- 
turbations are connected primarily with the discontinuity, 
which prevents them from lagging and propagating outside 
the discontinuity. Their frequency is accordingly real-see 
the exact dispersion relation for flexural ("corrugated") 
waves in Ref. 9. As to the qualitative conclusions concerning 
the evolution of discontinuous shock waves, they are perfect- 
ly analogous to the case of periodic solutions [instability 
with growth rate (19)l .  All the foregoing applies also to 
tidal breakers (discontinuous "shock waves" on shallow wa- 
ter) over an uneven bottom. 

5. CONCLUSION 

We have thus investigated the stability of plane nonlin- 
ear waves in smoothly inhomogeneous media. The case of a 
long-wave soliton on the surface of an ideal liquid in a basin 
with an uneven bottom was analyzed in detail. The trans- 
verse instability observed in this case has a clear physical 
meaning (parametric resonance), so that the results can be 
generalized to include wave solutions of other types in other 
inhomogeneous systems. This paper does not contain a 
quantitative investigation of these cases, but the general 
qualitative consideration suggests the following equation for 
the growth rate of transverse perturbations on a nonlinear 
wave 

where Y,  fl, andp depend on the parameters of the investigat- 
ed solution and the wave medium, and N ( a )  is the spectral 
density of the fluctuations [Eq. (27) summarizes Eqs. ( 19) 
and (20) I .  The first term in (27) describes the instability 
proper, and the second the competing lag of the unstable 
perturbation relative to the wave. A criterion of the instabil- 
ity of any specific solution is the inequality 

m a s  { N  ( Q )  ) >p/v. 

An important circumstance here is the vanishing of the coef- 
ficient p for discontinuous shock waves and periodic solu- 
tions. Solutions of this type are thus unstable in all smoothly 
inhomogeneous random media. 

The author is indebted to V. E. Zakharov and V. I. 
Shrira for valuable remarks. 

APPENDIX 1 

Derivation of Eq. (3). Long potential waves over an un- 
even bottom are described by the following system of Bous- 
sinesq equations14; 

Here S is a small parameter indicative of the weakness of the 
dispersion and of the nonlinearity, 
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where Ho is the average depth of the basin, and the prime 
denotes the dimensional variables (7' is the rise above the 
liquid surface and a' is the hydrodynamic potential). 

The presence of a small parameter notwithstanding, the 
system ( 1.1 ) is difficult to analyze without resorting to some 
hypothesis concerning the character of the irregularities 
H(x,y) of the bottom. The most interesting particular case is 

In this case the characteristic scale of the inhomogeneity 
( -S-') is equal to the nonlinearity and dispersion lengths, 
so that the interaction of the three effects is the strongest. In 
addition, we are interested in "quasi-plane" waves that trav- 
el with "near-sonic" velocity (close to unity). It is therefore 
convenient to change over to the variables 

X 

0 = j [H-'"(x', y )  - L]dxr+x-i, = x  y^=6y+y. 

(note that the longitudinal variable enters in 8 without the 
multiplier S, since the spatial scale of the field along the x 
axis remains - 1, despite the "stretching" 2 ) .  Accurate to 
O(S2) the system (1.1) yields (the tildes are omitted) 

We have then in the new variables 

We seek the solution in the form of asymptotic series 

In the zeroth order of perturbation theory we have the trivial 
equality rl'O' = Qc0' = -u, and in the first order we have equa- 
tions 7"' for and a'". 

We differentiate ( 1.3) once with respect to 8, ( 1.4) twice, 
and add them. The result is the desired evolutional equation 
for u: 

APPENDIX 2 

Asymptotic analysis of Eq. (1 7). We express ( 17) in the 
form 

where a = ( h  2, 112,a< 1 is the variance of h (x) . Equation 
(2.la) is frequently encountered in various branches of 
physics (in particular, it describes parametric excitation of a 
mathematical pendulum). As a result, (2. l a )  was investi- 
gated many times both by physicists (e.g., [20] ) and by 
mathematicians (see [21] and the references therein). The 
small-perturbation limit (a< 1 ) of interest to us, however, 
was considered only in [2 1 1, where the authors paid princi- 
pal attention to calculation of the "Lyapunov exponent" y,, 
without calculating the solution of the equation. In addition, 
they had to impose rather stringent constraints on the statis- 
tical properties of the potential a ( x ) .  We determine below 
y+ and solve also Eq. (2.la) with only one constraint, 
(a2)  S 1. 

We introduce the (as yet) undetermined real function 
p(x) 

I 

S=S exp [i J cp (xl) ax'] (2.2) 
3 

(the purpose of this transformation will be made clear be- 
low). Equation (2. l a )  yields (we omit the tildes) 

We analyze (2.3) by the asymptotic many-scale method.19 
We introduce besides the "fast" variable a hierarchy of 
"slow" ones: X = d x ,  X, = d + Jx, j = 1, 2, 3... . Accord- 
ingly, 

Leaving X, out of the formal lists of arguments, we seek the 
solution in the form 

S=A(X)+aS("(x, X) + . . . , cp=o+ ~ c p ' ~ ) +  . . . , (2.4) 

where A (x)  is a definite function. The principal terms of the 
series (2.4) describe a coherent wave with smoothly varying 
amplitude, propagating in the positive x direction. Substitu- 
tion of (2.4) in (2.3)  is satisfied identically in zeroth order, 
and yields in first order 

82s"' 

8z ""']A(x). (2.5) 
a (x) + 2 ~ ~ ( ' )  - i - 

ax2 d x 

In terms of the Fourier transforms 
It is evident that (1.5) depends on S only via the coefficient 
H [see ( 1.2) 1. Without using supplementary assumptions 
other than S 9 1, we have 

In other words, all the processes described by Eq. ( 1.5) 
can be studied locally, say in the vicinity of the line y = y o .  
We emphasize once more that there is no additional loss of 
accuracy in Eq. ( 1.5) we can express the solution of Eqs. (2.5) in the form 
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= (2n) -"' A (X) cordingly, returning to (2.6a), we put 

It is evident that the integrand in (2.7a) has singularities, 
generally non-integrable, at x = 0 and x = 2w. The first can 
be eliminated by stipulating satisfaction of the equality 

(this was in fact the reason for introducing the function p). 
This singularity is due to the geometric-optical fluctuation 
of the incident-wave phase 

[see (2.2) 1. Note that p '2', p '3', etc., correspond to phase 
fluctuations of not only the incident but also the reflected 
waves. From the formal viewpoint, however, they are deter- 
mined from the conditions for regularization of the analo- 
gous integrals in the higher approximations of the employed 
perturbation theory. The singularity in (2.7a) at ?t = 2w 
corresponds in turn to single resonant scattering and will be 
regularized below. As a result we have 

rn 

In the next order of perturbation theory we obtain 

d 3s"' 
- I  Ziws"))  = F ( I ,  X), 

d t  ? x  

The ellipsis in (2.8b) stands for terms proportional to p '*' 
(they will be shown below to be immaterial). It is easily seen 
that the solution of (2.8a) is bounded only if the "driving 
force" F averaged over x is zero: 

Using the ergodicity theorem, we replace in (2.9) the 
spatial averaging by an averaging over an ensemble of real- 
izations. Substituting now (2.7b) and (2.8b) in (2.9): 

where n ( x )  is defined by 

and the ellipsis corresponds to pure imaginary terms, which 
are unimportant, we get 

I il ( X )  1 = ( A  (0) I e7*", y+=Re I'. (2.11) 

The integrand in (2.10) is formally real, but it has the afore- 
mentioned singularity at x = 20. To regularize it, we recall 
that the incident wave propagates to the right, and assume 
that the scattering potential a ( x )  decreases infinitely slowly 
as x + - (this device is called adiabatic switching). Ac- 

and using the known equation of the theory of generalized 
functions22 

we substitute (2.12) in (2.10): 
OD 

where the integral f is taken in the sense of principal value. 
The first (real) term in (2.13) is the sought growth rate 

Thus, Eq. ( 18a) in the main text coincides with (2.1 I) ,  and 
expression ( 18b) for y+ is obtained by substituting in (2.14) 
the connection (2.1 b) between a and h. 

"Transverse perturbations are subdivided into "flexural" (corresponding 
to bending of the wave front) and "modulational" (modulating the wave 
amplitude along its front). 

"Long waves in a basin with an uneven bottom are the simplest model of 
tsunami wave propagation in the ocean. 

"The second sound of this mode is anisotropic and propagates only for- 
ward in the direction of the cnoidal wave. 

4'This circumstanq was pointed out to the author by V. I. Shrira and V. E. 
Zakharov. 
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