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Abstract We examine rimming flows, i.e. flows of a liquid film on the inside of a horizontal rotating cylinder. So
far this problem has mostly been explored using the so-called lubrication approximation (LA). It was shown that,
if the volume of the liquid in the cylinder exceeds a certain threshold, then a shock similar to a tidal bore appears in
the lower half of the cylinder on its rising side. The position of the shock can be characterized by the polar angle θs,
with a value between θs = −90◦ (the bottom of the cylinder) and θs = 0◦ (the horizontal direction). In this study, we
examine rimming flows without the LA, by solving numerically the exact Stokes equations. It is shown that a steady
solution describing a (smoothed) shock exists only if −60◦ � θs < 0◦. Shocks with lower locations overturn, so no
steady solution exists. It is also shown that smoothed-shock solutions have an oscillating structure upstream from
the shock. If, however, capillary effects are taken into account, the range of θs where solutions overturn contracts,
and if surface tension is sufficiently strong, solutions exist for all values of θs.

Keywords Liquid films · Rimming flows · Wave overturning

1 Introduction

Rimming flows, i.e. flows of a liquid film on the inside of a rotating horizontal cylinder, have important industrial
applications and are also of significant interest to a theoretician. They were first examined by Moffatt [1] using the
so-called lubrication approximation (LA), i.e. an assumption that the film is thin, the Reynolds number is small,
and so is the slope of the film surface relative to the cylinder wall. Assuming also that surface tension is negligible
and the flow is uniform in the direction of the cylinder axis, Moffatt demonstrated that, if the volume V of the liquid
does not exceed a certain threshold V1, the liquid is fully entrained by the cylinder rotation and is spread smoothly
over its surface (see Fig. 1a). If, however, V = V1, then a corner appears in the profile of the flow (see Fig. 1b).
Using the same model, [2,3] examined the case V > V1 and showed that a shock similar to a tidal bore forms in
the lower half of the cylinder, on its rising side (see Fig. 1c).
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Fig. 1 A schematic illustrating types of rimming flows: a smooth flow, b flow with a corner, c flow with a shock

Note, however, that the discontinuity of shock solutions is an artifact introduced by the omission of surface
tension and non-lubrication effects1 from the model—if present, either would smooth the discontinuity. To remedy
this problem, surface tension was introduced to the model and its effect on the shock solutions was studied in [4,5].
Non-lubrication effects, in turn, were explored in [6,7] using phenomenological models.

Note also that, in addition to V1, there is another threshold V2 > V1: if the liquid volume exceeds V2, the shock
cannot hold on to the rising side of the cylinder, and the liquid pools at the cylinder bottom. Unlike the smooth and
shock solutions, those with pools do not satisfy Moffatt’s model [1] as they are crucially affected by non-lubrica-
tion effects and/or surface tension. The latter has been examined in [4,8] and the former, in [6,7]. Note also that
smoothing of the corner solution (shown in Fig. 1b) by the non-lubrication effects has been examined by Wilson
et al. [9], and non-stationary shock-like solutions smoothed by surface tension have been examined in [10].

In this article, we shall re-examine how the shock solutions are affected by the non-lubrication effects (the corner
and pool solutions will not be discussed). Unlike [6,7], we shall explore the structure of shock waves through direct
numerical simulations. We shall also discuss how they are affected by surface tension.

2 Formulation

Consider a thin film of liquid (of density ρ, kinematic viscosity ν, and surface tension σ ) on the inside of a cylinder
of radius R with a horizontal axis, rotating about this axis with a constant angular velocity Ω . The problem also
involves the acceleration due to gravity, g, so three dimensionless parameters can be introduced, say,

ε = RΩ2

g
, γ = σ

ρνΩ R
, α =

(
νΩ

gR

)1/2

, (1)

where ε is the ratio of the centrifugal force to gravity, γ is the dimensionless capillary coefficient, and the parameter
α was shown by Benjamin et al. [2] to represent the ratio of the characteristic film thickness in a shock solution to
the cylinder radius R.

2.1 The governing equations

We are concerned with two-dimensional flows, depending on the time t∗ (asterisks denote dimensional variables)
and polar coordinates (r∗, θ∗) where θ∗ = 0 corresponds to the horizontal. We shall also introduce the radial and
azimuthal velocities, v∗ and u∗, pressure p∗, and the film thickness h∗.

1 Here and hereinafter, the effects associated with the slope of the free surface being finite (as opposed to infinitesimal) will be referred
to as non-lubrication effects.
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The following dimensionless variables will be used:

y = R − r∗
αR

, θ = θ∗, t = Ωt∗, (2)

v = − v∗
αRΩ

, u = u∗
RΩ

, p = αp∗
ρνΩ

, h = h∗
αR

(3)

(observe the minus in the expression for the radial velocity v, matching the minus in the expression for the radial
coordinate y). In terms of variables (2–3), the Navier–Stokes equations are

ε

[
α

∂v

∂t
+ αv

∂v

∂y
+ u

1 − αy

(
α

∂v

∂θ
+ u

)]
+ ∂p

∂y
= sin θ

+α

[
∂2v

∂y2 − α

1 − αy

∂v

∂y
+ α

(1 − αy)2

(
α

∂2v

∂θ2 − αv + 2
∂u

∂θ

)]
, (4)

ε

[
∂u

∂t
+ v

∂u

∂y
+ u

1 − αy

(
∂u

∂θ
− αv

)]
+ α

1 − αy

∂p

∂θ
= − cos θ

+ ∂2u

∂y2 − α

1 − αy

∂u

∂y
+ α2

(1 − αy)2

(
∂2u

∂θ2 − u − 2α
∂v

∂θ

)
, (5)

(1 − αy)
∂v

∂y
− αv + ∂u

∂θ
= 0. (6)

The no-normal-velocity and no-slip conditions at the cylinder wall are

v = 0, u = 1 at y = 0. (7)

The following standard boundary conditions will be imposed at the free surface,

nTSn = γα2C, τTSn = 0 at y = h, (8)

where

n = 1√
1 +

(
α

1 − αh

∂h

∂θ

)2

⎡
⎣ 1

α

1 − αh

∂h

∂θ

⎤
⎦ , τ =

⎡
⎣

α

1 − αh

∂h

∂θ

−1

⎤
⎦ (9)

are the unit normal vector and a tangent vector (not necessarily unit) to the free surface, the superscript T denotes
matrix transposition,

S =

⎡
⎢⎢⎢⎣

2α
∂v

∂y
− p − α

1 − αh

(
α

∂v

∂θ
+ u

)
− ∂u

∂y

− α

1 − αh

(
α

∂v

∂θ
+ u

)
− ∂u

∂y

2α

1 − αh

(
∂u

∂θ
− αv

)
− p

⎤
⎥⎥⎥⎦ (10)

is the stress tensor, and

C =
(1 − αh)2 + α (1 − αh)

∂2h

∂θ2 + 2α2
(

∂h

∂θ

)2

α

[
(1 − αh)2 + α2

(
∂h

∂θ

)2
]3/2 (11)

is the dimensionless curvature of the free surface. The scalar conditions (8) can be re-written in the form of a single
vector condition,(

S − γα2CI
)

n = 0 at y = h, (12)
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where I is the unit matrix. Substituting (9–10) into (12), we obtain

2α
∂v

∂y
− p − γα2C −

[
α

1 − αh

(
α

∂v

∂θ
+ u

)
+ ∂u

∂y

]
α

1 − αh

∂h

∂θ
= 0 at y = h, (13)

α

1 − αy

(
α

∂v

∂θ
+ u

)
+ ∂u

∂y
−

[
2α

1 − αh

(
∂u

∂θ
− αv

)
− p − γα2C

]
α

1 − αh

∂h

∂θ
= 0 at y = h. (14)

Finally, we shall impose the kinematic condition at the free surface,

∂h

∂t
+ u

1 − αh

∂h

∂θ
− v = 0 at y = h. (15)

2.2 The lubrication approximation

The LA requires that inertia be weak and the film be thin. Estimating the material derivatives (describing inertia)
in the Navier–Stokes Eqs. 4–5, one can deduce that inertia is small if
ε

α
� 1 (16)

(it can be shown that ε/α is, essentially, the Reynolds number). Then, recalling how the film thickness was scaled
[see (3)], one can write the condition that the film be thin as

α � 1. (17)

The LA also requires that the slope of the free surface relative to the cylinder wall be small. Recalling again
non-dimensionalization (2–3), one can see that this requirement amounts to

α

∣∣∣∣∂h

∂θ

∣∣∣∣ � 1. (18)

Assuming (16–18), [2] (see also [11,12]) reduced Eqs. 4–7, 13–15 to

∂

∂t

(
h − 1

2αh2
)

+ ∂

∂θ

[
h − 1

3 h3 cos θ + α

(
1
2 h4 cos θ − 1

2 h2 + 1
3 h3 ∂h

∂θ
sin θ

)]
= O(ε, α2, γ α3). (19)

We are interested in steady flows. Assuming in (19) ∂h/∂t = 0 and omitting also the small terms, we obtain

h − 1
3 h3 cos θ + α

(
1
2 h4 cos θ − 1

2 h2 + 1
3 h3 dh

dθ
sin θ

)
= Q, (20)

where Q is a constant of integration (physically, it represents the dimensionless flux of liquid along the circumference
of the cylinder).

3 The results

Following most studies of rimming flows (including most references cited in this article), we shall employ assump-
tions (16–17). We shall also distinguish two regimes: γ � 1, for which surface tension is fully negligible, and;
γ ∼ 1, for which capillary effects are important in the shock region but negligible elsewhere.

3.1 The leading-order lubrication solution

In the lubrication limit (16–17), [2,3] have shown that rimming flows with shocks correspond to

Q = 2
3 . (21)
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Thus, for α → 0, Eqs. 20–21 reduce to a cubic equation [1],

h − 1
3 h3 cos θ = 2

3 . (22)

It can be shown that, for θ ∈ (−π,− 1
2π

)
and θ ∈ ( 1

2π, π
)
, Eq. 22 admits a single positive root and, for θ ∈(− 1

2π, 1
2π

)
, two positive roots. Accordingly, a shock solution is described by Benjamin et al. [2] and O’Brien and

Gath [3]

h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

the only positive root of (22) if θ ∈ [−π,− 1
2π

]
,

the smaller positive root of (22) if θ ∈ (− 1
2π, θs

)
,

the larger positive root of (22) if θ ∈ [θs, 0] ,

the smaller positive root of (22) if θ ∈ (
0, 1

2π
)
,

the only positive root of (22) if θ ∈ [ 1
2π, π

]
.

(23)

This solution involves a discontinuity at θ = θs (see Fig. 1c).
Note that the volume of the liquid in the cylinder can be characterized by

V =
2π∫

0

h dθ.

For solution (23), V depends on θs and varies within the limits

V1 ≤ V < V2,

where V1 ≈ 4.44 and V2 ≈ 6.93 correspond to θs → 0 and θs → − 1
2π , respectively. Note also that Eq. 22 has no

solutions with V > V2.

3.2 The shock region

It is clear that, in the vicinity of the shock, the derivative in Eq. 20 cannot be omitted and, thus, the truncated Eq. 22
is invalid. The full Eq. 20 is not valid either, as a simple estimate shows that the applicability condition (18) does
not hold near the shock. Thus, the LA [which was used to derive (20)] is invalid.

To derive a consistent equation describing the shock, we need to re-scale the azimuthal coordinate θ to the
anticipated width of the jump (∼α) and, accordingly, the curvature of the free surface. Furthermore, the radial and
azimuthal velocity near the jump should be comparable—hence, the former should be scaled up [recall that, in the
original non-dimensionalization (3), v was scaled down by a factor of α]. Finally, the time derivative can be retained
in the governing equations only if the time variable is re-scaled as well. Overall, we have

x = θ − θs

α
, Cinner = α2C, vinner = αv, tinner = t

α
. (24)

Re-writing Eqs. 4–7, 11, and 13–15 in terms of the new variables, omitting the subscript inner, taking into account
that ε � α � 1, and assuming that γ may be O(1), we obtain, to leading order,

∂p

∂x
= − cos θs + ∂2u

∂x2 + ∂2u

∂y2 ,
∂p

∂y
= sin θs + ∂2v

∂x2 + ∂2v

∂y2 , (25)

∂u

∂x
+ ∂v

∂y
= 0, (26)

u = 1, v = 0 at y = 0, (27)

−
(

2
∂u

∂x
− p − γ C

)
∂h

∂x
+ ∂u

∂y
+ ∂v

∂x
= 0 at y = h, (28)

−
(

∂u

∂y
+ ∂v

∂x

)
∂h

∂x
+ 2

∂v

∂y
− p − γ C = 0 at y = h, (29)
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C =
[

1 +
(

∂h

∂x

)2
]−3/2

∂2h

∂x2 , (30)

∂h

∂t
+ u

∂h

∂x
− v = 0 at y = h. (31)

To match the solution of (25–31) to the outer solution (23), we require

h → h± as x → ±∞, (32)

where the constants h± are the right/left limits of the outer solution near the shock, i.e.

h± − 1
3 h3± cos θs = 2

3 , h+ > h−. (33)

Equations 25–33 describe a shock wave propagating down a plate which is moving upwards with the same velocity,
so the absolute velocity of the wave is zero. Physically, the plate is tangent to the cylinder at the point where the
outer solution has a discontinuity—thus, the plate is inclined at an angle θs + 90◦ to the horizontal. Observe also
that, if γ ∼ 1, surface tension contributes to Eqs. 28–29 and, thus, affects the shock.

In what follows, we shall need the far-field asymptotics of u, v, and p. To find them, assume that the unknowns
in Eqs. 25–33 are independent of x and solve the resulting set of ordinary differential equations, which yields

u → ( 1
2 y2 − yh±

)
cos θs + 1,

v → 0,

p → (y − h±) sin θs

⎫⎪⎬
⎪⎭ as x → ±∞. (34)

Unlike the LA (where the y-structure of the flow is resolved), Eqs. 25–33 involve two spatial variables and a free
boundary, making them difficult to examine analytically. We integrated them numerically, using the finite-element
solver available in the COMSOL Multiphysics package, version 3.4. The computations were carried out using the
Moving Mesh mode incorporating the Arbitrary Lagrangian-Eulerian method, which allows the mesh to track the
moving boundary. Within the domain, the motion of the nodes was unconstrained and computed by the software
to optimize the element quality. Typically, the discretized problem included about 50,000 degrees of freedom, and
the error of the numerical solution was approximately 10−3.

We used the module for solving the Navier–Stokes equations and set the Reynolds number, Re, to be small—so
the results obtained would provide an accurate approximation of the Stokes equations 25–26. Test simulations
showed that Re = 10−3 would provide the same accuracy as the COMSOL Multiphysics solver, but Re = 10−5

was used as insurance.
The boundary conditions (34) were moved from infinity to x = ±X , where X was large and such that a further

increase by a factor of 2 would change the global characteristics of the solution by less than 10−3.
For the initial condition, we generally used the steady-state solution for a case with similar parameter values. If

such was not available, a smoothed step function was used for h, the hydrostatic pressure distribution for p, and
the expressions predicted by the LA for u and v. Even though such conditions did not exactly satisfy the Stokes
equations, they were automatically adjusted by the software and a self-consistent initial flow was generated. Then,
the Navier–Stokes equations were integrated until a steady state was established.

Three main conclusions have been drawn, two of which apply to the case with zero surface tension, γ = 0, and
one applying to the case γ = O(1).

(1) For γ = 0, for each θs from the range

− 60◦ � θs < 0◦, (35)

a steady solution exists. Examples can be seen in Fig. 2: observe that some solutions have oscillatory structure,
which is particularly pronounced for the range −30◦ � θs < 0◦. In most of the remainder of the range (35), up to
a certain threshold near −60◦, the oscillations are also present, but they decay so quickly that they are not visible
in Fig. 2.
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Fig. 2 Examples of smoothed-shock solutions of Eqs. 25–33 for γ = 0 and various θs. The dotted line corresponds to h−
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Fig. 3 Examples of smoothed-shock solutions of Eqs. 25–33 for γ = 0 (solid line), compared to those of the lubrication equation 36
(dotted line)

The oscillatory structure of the solution comes as a surprise, since the problem involves neither capillary nor
gravity waves (the latter are eliminated by neglecting inertia in Eq. 25). The nature of the oscillations will be clarified
in the next section.

It is instructive to compare the inner (smoothed-shock) solution derived through the Stokes equations to that
obtained through the LA (20). To do so, re-write (20) in terms of the inner variables (24), omit the subscript inner,
and keep the leading-order terms only, which yields

h − 1
3 h3 cos θs + 1

3 h3 dh

dx
sin θs = Q. (36)

This equation can be solved by separation of variables, but it is simpler to solve it numerically. Typical solutions are
shown in Fig. 3 together with their analogs computed using the Stokes equations 25–33. Unlike the latter solutions,
the former are strictly monotonic for all θs (which can also be verified analytically using Eq. 36). We conclude that,
for rimming flows with shocks, the LA is neither quantitatively nor qualitatively correct.

(2) For γ = 0, no matter what initial conditions were used to simulate the range

− 90◦ < θs � −60◦, (37)

the shock always overturned (i.e. ∂h/∂x became infinite at some values of x and t). We conclude that set (25–33)
with γ = 0 does not have steady solutions for range (37).
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(3) We have also carried out simulations with γ �= 0. Generally, if γ increases, the upper boundary of the non-
existence region (37) decreases, and for γ � 0.23 solutions exist for the whole allowable interval of θs, (−90◦, 0◦).
Thus, a sufficiently strong surface tension prevents all shocks from overturning.

To place this conclusion in a physical context, note that, in the experiments of Melo [13], the capillary coefficient
varied between γ ≈ 0.04 and γ ≈ 1.13—but the results were presented mostly for γ = O(1), and no shock over-
turning was reported. Thoroddsen and Mahadevan [14], in turn, presented experimental results for 0.008 � γ � 0.5
and overturning was observed in some cases (which will be discussed in more detail in the next section). Finally,
Tirumkudulu and Acrivos [6] carried out experiments with 0.3 � γ � 1, and no overturning was observed.

4 Discussion

We shall now discuss the two most surprising features of the smoothed-shock (steady) solutions: the oscillatory
structure observed for γ = 0 and the non-existence of solutions in a certain range of the parameter space.

4.1 Oscillations of smoothed-shock solutions

Some insight into the nature of the oscillations can be obtained by assuming that their amplitude is small (which it
indeed is far from the shock region). In this case, the steady solution of set (25–33) can be represented in the form

u = ū(y) + ũ(x, y), v = ṽ(x, y),

p = p̄(y) + p̃(x, y), h = h̄ + h̃(x, y),

}
(38)

where the variables with overbars/tildes describe the mean flow/small oscillations, respectively. The mean flow is
given by (34) and can be re-written in the form

ū =
(

1
2 y2 − yh̄

)
cos θs + 1, p̄ = (

y − h̄
)

sin θs, (39)

where

h̄ = h− or h̄ = h+,

depending on which limit is considered, x → −∞ or x → +∞, respectively. Substituting (38–39) into Eqs. 25–33
and linearizing them, we obtain

∂ p̃

∂x
= ∂2ũ

∂x2 + ∂2ũ

∂y2 ,
∂ p̃

∂y
= ∂2ṽ

∂x2 + ∂2ṽ

∂y2 ,
∂ ũ

∂x
+ ∂ṽ

∂y
= 0, (40)

ũ = 0, ṽ = 0 at y = 0, (41)
∂ ũ

∂y
+ h̃ cos θs + ∂ṽ

∂x
= 0, 2

∂ṽ

∂y
− p̃ − h̃ sin θs = 0 at y = h̄, (42)

(
1 − 1

2 h̄2 cos θs

) ∂ h̃

∂x
− ṽ = 0 at y = h̄. (43)

We shall seek a solution of the form

ũ = û(y) e−kx , ṽ = v̂(y) e−kx ,

p̃ = p̂(y) e−kx , h̃ = ĥ e−kx ,

}
(44)

where k may be complex, in which case Re k and Im k represent the decay rate and wavenumber of the oscillations,
respectively. Substitution of (44) into (40) yields three ordinary differential equations for û, v̂, and p̂, which can
readily be solved. Taking into account the no-slip/no-normal-velocity conditions (41), we obtain
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û = Aky cos ky + (
A + k2 By

)
sin ky

k
, (45)

v̂ = −Bky cos ky + (B + Ay) sin ky, (46)

p̂ = −2Bk cos ky + 2A sin ky, (47)

where A and B are undetermined constants. Substituting (44–47) into the free-surface boundary conditions
(42–43), we obtain a set of three linear homogeneous equations for the constants A, B, and ĥ. This set has a
non-trivial solution only if the determinant of the corresponding matrix is zero, yielding the following equation for k:
(

1 − 1
2 h̄2 cos θs

) (
k2h̄2 − cos2 kh̄

)
−

(
sin 2kh̄ − 2kh̄

)
sin θs

4k2 + h̄2 cos θs

2
= 0. (48)

Thus, to determine the behavior of the solution as x → +∞, one needs to first solve Eq. 33 and find h+. Then,
assuming h̄ = h+, one should solve Eq. 48 for k. Note that roots with Re k < 0 should be discarded, as they make
solution (44) grow as x → +∞.

It turns out that, for all θs , Eq. 48 has infinitely many roots with positive real parts. We shall denote these roots
kn (n = 1, 2, 3 . . .) and order them in such a way that

Re kn+1 ≥ Re kn . (49)

Thus, the solution of the linearized set (40–43) is

h̃ = Re
∞∑

n=1

Cn e−kn x , (50)

where Cn are arbitrary complex constants. Given (49), it follows from expression (50) that h̃ (and hence the full
solution h̄ + h̃) oscillates as x → +∞ if and only if

Im k1 �= 0.

Equation 48 was solved numerically, and the roots k1, k2, and k3 are shown in Fig. 4 as functions of θs. Observe
that, if

− 58.5◦ � θs < 0◦, (51)

k1 has a non-zero imaginary part. Interval (51) covers almost all of region (35) where smoothed-shock solutions
exist (for γ = 0)—hence, nearly all of them have oscillatory structure.

Equation 48 admits an infinite number of further roots, examples of which are shown in Fig. 5. All these roots
have non-zero imaginary parts—but, since their real parts are significantly larger than Re k1, their contributions to
solution (50) rapidly decay as x → +∞, so these roots yield negligible contributions to the sum in expression (50).

The values of k1 computed using Eq. 48 corroborate the numerical solution of the full nonlinear Eqs. 25–33. For
θs = −20◦, for example, (48) yields

π

Im k1
≈ 5.941. (52)

This value is to be compared with the distances between two successive zeros of the function h(x) − h+, where
h(x) is the steady solution of (25–33). For θs = −20◦, these distances are

5.234, 6.572, 5.667, 6.130, 5.843, 6.005, 5.908

(this sequence does not include the three zeros nearest to the right-hand boundary of the computational domain, as
these may have been affected by the fact that the boundary condition was moved from infinity to a finite position). It
appears that the above sequence converges to the predicted value (52), as quantified by the value of approximately
5.943 given by a triple Shanks transformation [15] of the above sequence data.

We also examined Eq. 48 for h̄ = h−. It turned out that, in this case, Im k1 = 0 for all θs. Thus, the smoothed-
shock solutions of set (25–33) do not oscillate as x → −∞, which is indeed confirmed by the examples shown in
Fig. 2.
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Note that oscillatory solutions in models without an obvious wave mechanism have been observed before (see
[16] and references therein). In those cases, the oscillations were caused by an interplay of dissipative and energy-
generating effects (as in the Kuramoto–Sivashinsky equation examined in [16]).

Finally, note that surface tension may also give rise to oscillations near the shock (e.g., [5]), which may interfere
with the oscillations examined above. The resulting pattern should depend on the position θs of the shock and the
capillary parameter γ .

4.2 The non-existence of steady solutions in range (37)

The most important characteristic of overturning is the threshold value of θs, such that a steady solution exists for
a larger θs but all solutions overturn for smaller values.

To approach this threshold more closely and, thus, improve the accuracy of its computation, the following method
was employed. Initially, sufficiently strong surface tension was introduced to the problem, which stopped the over-
turning and gave rise to a steady smoothed-shock solution. Then surface tension was gradually phased out and,
if overturning still occurred, we could reliably conclude that the threshold value of θs has been passed. If, on the
other hand, the solution adjusted to the vanishing surface tension without overturning, we concluded that a steady
solution still exists.

We assumed the following dependence of the capillary coefficient on time:

γ =

⎧⎪⎪⎨
⎪⎪⎩

γ0 if 0 ≤ t ≤ T1,

γ0
T2 − t

T2 − T1
if T1 ≤ t ≤ T2,

0 if T2 ≤ t ≤ ∞.

(53)

The time T1 was chosen sufficiently large that the solution would adjust to the constant capillary coefficient γ = γ0,
and an even larger T2 was chosen so the solution would change adiabatically, adjusting to the intermediate values
of γ (t).

The results obtained by simulating the initial-value problem (25–33) with γ determined by (53) confirmed that,
in the absence of surface tension, smoothed-shock solutions with θs � −60◦ do overturn. A typical steady solution
for non-zero capillary coefficient and the corresponding overturning solution are shown in Fig. 6.
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Fig. 6 Snapshots of the solution of equations (25–33) for θs = −65◦ and γ determined by (53) with γ0 = 0.5, T1 = 1000, T2 = 5000.
The curve for t = 1000 corresponds to γ = 0.5, and the curve for t = 4682.2 (the time of overturning) corresponds to γ = 0.03178

Our simulations also suggest that, for γ = 0, the theoretical threshold separating the ranges of overturning and
steady solutions is very close, if not equal, to θs = −60◦. This issue, however, cannot be fully clarified, as solutions
for θs ≈ −60◦ turned out to be sensitive to the value of the Reynolds number used (recall that, instead of the Stokes
equations, we simulated the Navier–Stokes equations with Re � 1). In general, an increase in Re brings overturning
forward, making it occur for larger values of θs. This conclusion agrees with one’s intuition, as Re characterizes the
inertia of the liquid, and inertial effects are conducive to overturning.

To understand why the case θs = −60◦ is special, note that, for this value of θs, Eq. 33 yields h+ = 2. Then,
formula (39) with h̄ = h+ yields u(h+) = 0, i.e., the liquid velocity at the free surface upstream from the shock
vanishes. In can be further shown that, if θs < −60◦, then u(h+) < 0—i.e., a near-surface layer upstream from the
shock slides down—which is, intuitively, conducive to overturning.

It still remains to clarify what happens with rimming flows with θs � −60◦, for which no steady solution exists.
One can conjecture that the shock region evolves periodically in this case: after the shock overturns, the free surface
evens out—then a new shock forms and overturns—and so on. This scenario is difficult to simulate for the want
of a numerical method capable of describing overturning beyond its initial stage, but there is some experimental
evidence suggesting that our conjecture is correct. As observed in [14], the liquid on the rising side of the cylinder
sometimes “sloshes to and fro”. Furthermore, the parameter regime where such behavior occurs borders on the
pool regime and, thus, corresponds to the shock located near the cylinder bottom—i.e., exactly where we predict
overturning to occur.

Another piece of evidence supporting and complementing our results can be extracted from the experimental
study of (non-rotating) flows down an inclined channel with a wavy bottom [17]. Even though the uneven bottom
and the absence of rotation hinder quantitative comparisons with our work, it is worth mentioning that Wierschem
and Aksel [17] observed steady shocks, as well as “periodic switching” between shocks and other flow types. Inter-
estingly though, Wierschem and Aksel [17] also observed steady three-dimensional structures (“surface rollers”),
which is an alternative scenario to the non-steady evolution reported in [14].

Full clarity in this issue, however, can only be achieved through a more detailed experiment specifically targeting
overturning shocks in a rotating cylinder.

4.3 Applicability of the results obtained

Observe that, when θs → −90◦, Eq. 33 yields

h− → Q + O(cos θs), h+ →
(

3

cos θs

)1/2

+ O(1).

Recalling how h was scaled [see (3)], we conclude that the approximation of thin film (under which both inner and
outer solutions were obtained) holds only if

cos θs  α2. (54)
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Furthermore, as θs → −90◦, it can be deduced from Eqs. 25–33 (by re-scaling them and balancing various terms to
make the resulting set consistent) that the shock width grows as O[(cos θs)

−3/2]. Thus, recalling how x was scaled
[see (24) and (2)], we conclude that the cylinder curvature can be neglected only if

cos θs  α2/3. (55)

This condition is more restrictive than (54) and, hence, should be viewed as the validity criterion of our results. It
suggests that the left boundary of the non-existence interval (37) is determined with an accuracy of O(α2/3).

Thus, in principle, solutions with a maximum near θ = −90◦ may exist. They should be viewed as marginal
between shock and pool solutions, as the main bulk of liquid in this case pools very close to the cylinder bottom.

4.4 Comparison with the results of [6,7]

In [7], shock and pool solutions were computed using Eq. 20 and compared with those obtained through a phenom-
enological “modified lubrication equation” (MLE). In an earlier paper, [6], numerical solutions of the MLE were
compared to those of the exact Navier–Stokes equations and experimental results of [13]. Eventually, Tirumkudulu
and Acrivos [6] and Acrivos and Jin [7] concluded that, despite the fact that (20) was derived under the LA (which
is, strictly speaking, inapplicable near the shocks and pools), its solution agrees well with the exact one. However,
Tirumkudulu and Acrivos [6] and Acrivos and Jin [7] reported neither oscillating nor overturning shock waves.

In order to resolve the apparent discrepancy between Tirumkudulu and Acrivos [6], Acrivos and Jin [7], and this
study, observe that the former papers illustrate their conclusions with the following examples:

I. V = 14.95, α = 0.0341,

II. V = 10.02, α = 0.0376,

III. V = 6.22, α = 0.0568,

IV. V = 5.78, α = 0.0707,

which correspond to their Figs. 3, 4, 5, and 6, respectively. One can see that, in cases I–II, V exceeds the threshold
value of V2 ≈ 6.93 and, thus, these are actually pool (not shock) solutions. The remaining two cases appear to
formally be shock solutions, with

III. θs ≈ −87.3◦,
IV. θs ≈ −82.1◦.
If, however, one estimates

III. cos θs ≈ 0.047, α2/3 ≈ 0.148,

IV. cos θs ≈ 0.137, α2/3 ≈ 0.171,

one can see that cases III–IV do not satisfy condition (55) and, thus, should be viewed as marginal between pool
and shock solutions. We conclude that the numerical evidence supplied in [6,7] is not relevant to this article (which
deals with shocks).

To test our results, we computed the solution of the Stokes equations for the cylindrical geometry and for several
small values of α (again, using the COMSOL Multiphysics). As expected, if the liquid net mass was such that
−90◦ � θs < −60◦, the corresponding shock wave overturned and no steady solution was found.

If, however, θs was sufficiently small, the flow would evolve toward a steady shock wave with oscillations—as
illustrated in the upper panel of Fig. 7. This numerical solution was compared to the composite asymptotic one
derived from the outer solution (23) and the inner solution computed using Eqs. 25–33. One can see that the latter
provides a good approximation of the former near the shock, but the two solution do not agree well in a transitional
region between the inner and outer zones.

For larger θs, as expected, oscillations of the solution are less visible—as illustrated in the lower panel of Fig. 7.
Figure 7 also suggests that non-oscillating solutions are better approximated by the composite asymptotic solutions
than the oscillating ones.
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Fig. 7 Steady flows in a
cylinder, for γ = 0 (no
surface tension), α = 0.01,
and θs = −30◦,−50◦. The
solution of the Stokes
equations and the composite
asymptotic solution are
shown by the solid and
dotted lines, respectively
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5 Summary and concluding remarks

In this study, we have examined rimming flows for which the leading-order LA predicts a discontinuity (shock)
forming on the rising side of the cylinder. We have demonstrated that the shock region should be modeled by the
full Stokes equations, resulting in a smooth solution.

Several features of the smoothed-shock solutions have been observed:

– In the absence of surface tension, a steady solution exists only if the shock is located in the two upper thirds of
the fourth quadrant (i.e., for −60◦ � θs < 0◦).

– For most of this range (i.e., for −58.5◦ � θs < 0◦), the free surface upstream from the shock oscillates in space.
– For shocks located in the range −90◦ � θs < −60◦, no solution exists as all initial conditions overturn (unless

surface tension is taken into account).
– If surface tension is taken into account, the region where solutions overturn contracts. If γ � 0.23 [where γ is

determined by (1)], solutions exist for all θs ∈ (−90◦, 0◦).

Note that all of the above features can be observed in smoothed-shock solutions describing liquid films flowing
down an inclined plate. These are described by almost the same set of equations as those for the shock region of a
rimming flow. There is one difference, however: to model the former problem, one should replace Eq. 33 for h±
with

h± − 1
3 h3± cos θs = Q, h+ > h−,

where the dimensionless flux Q is a constant such that 0 < Q ≤ 2
3 .

Thus, mathematically, the inner (smoothed-shock) solution examined in this article is a particular case (for
Q = 2

3 ) of the more general problem of films on an inclined plate examined in [18].2 Physically, however, this
particular case is important (as it describes rimming flows) and, thus, deserves to be explored in detail.
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2 Note that, the non-dimensional flux q of [18] is related to our Q by q = Q (cos θs)
1/2. Thus, this result is a particular case of [18] for

q = 2 (cos θs)
1/2 /3.
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