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We examine two-layer geostrophic flows over a flat bottom on the 8-plane. If the displacement of the 
interface is of the order of the depth of the upper layer, the dynamics of the flow depends on the following 
non-dimensional parameters: (i) the Rossby number E,  (ii) the ratio 6 of the depth of the upper layer to 
the total depth of the fluid, (iii) the “/I-effect number” a = R,/R,  cot 8, where R, is the deformation 
radius, Re is the earth’s radius and 8 is the latitude. In this paper, 

1) we derive four sets of asymptotic equations which cover the parameter space (E << 1,a,6). 
2) In order to find out, which asymptotic regimes are relevant to the real ocean, we estimate ~ , 6  and a for 

3) We also discuss the stability properties of large-amplitude geostrophic flows and classify them in the 
a number of frontal flows in the Northern Pacific and Southern oceans. 

(E, a, 6)-space. 

KEY WORDS: 8-plane, frontal flows, two-layer fluid. 

1. INTRODUCTION 

Consider a two-layer fluid bounded by two rigid horizontal planes. Introducing the 
densities pi ,2  of the layers (the subscript corresponds to the upper layer) and the 
total depth H o  of the fluid, we define the deformation radius: 

Ro = Jg-OIL  (1,la) 

where g’ = g ( p z  - p l ) / p 2  is the reduced acceleration due to gravity and f is the 
Coriolis parameter. We shall also use the deformation radius R ,  based on the 
characteristic depth H ,  of the upper (active) layer: 

R, = m1.f (l . lb) 

The dynamics of stratified fluid on the P-plane are determined by the following 
non-dimensional parameters: 
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2 E. S. BENILOV AND G. M. REZNIK 

1) the Rossby number 

E = U,/f L,, (1.2) 
where U ,  is the velocity scale and L ,  is the horizontal spatial scale. 

trophic, i.e. correspond to E << 1. 
Most of the major ocean currents (except, possibly, the Gulf Stream) are geos- 

2) the p-effect number 

a = (R,/R,) cot e, (1.3) 
where 0 is the latitude and Re is the earth’s radius [LY is the ratio of the p-parameter 
to ( f /Ro)] .  As R, <<Re, a is always small. 

3) the ratio 6 of the characteristic depth of the upper layer to the total depth of 
the fluid 

6 = H,/Ho. (1.4) 
In the real ocean, 1/2 2 6 2 1/15. 

upper layer: 
4) the ratio A of the displacement of the interface to the average depth of the 

A = 6 H, /H, .  

In some cases this parameter is small (e.g. for Rossby waves); but all oceanic frontal 
currents, as well as a number of other phenomena (e.g. lenses) correspond to A - 1. 

Following the pioneering work of C.G. Rossby (1937), most attention in the litera- 
ture focused on small-amplitude geostrophic flows, where both E and 6 are small (a 
review of these results can be found in any GFD monograph, e.g. Pedlosky 1987). 
Large-amplitude ( A  - 1) flows began to receive attention only in the early eighties. 

Our paper is devoted to the large-amplitude geostrophic flows, i.e. flows with 

E<< 1, A -  1. 

The examples of such are numerous in the ocean, which alone makes them worth 
studying. At the same time, the importance of these phenomena has been recognized 
a relatively short time ago and, by comparison with other areas of geophysical fluid 
dynamics, they attract very few investigators. 

Section2 of this paper gives a review of previous results on dynamics of large- 
amplitude geostrophic flows (LAGF). Section 3 presents the complete classification 
of LAGF in the space of parameters ( E ,  a, 6). In Section 4 we estimate the parameters 
of some real-life oceanic flows and provide examples for the above classification. In 
Section 5 we discuss the stability properties of LAGF. 

2. REVIEW O F  PREVIOUS RESULTS 

In this section, we shall review some of the previous work on large-amplitude (not 
necessarily geostrophic) flows. There have been developed three approaches to the 
dynamics of those. 
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3 LARGE-AMPLITUDE GEOSTROPHIC FLOWS 

1) The first approach is based on the direct analysis of the primitive equations of 
two-layer fluid dynamics. For the first time it was implemented by Orlansky (1968), 
who demonstrated numerically that a front of constant slope, separating two uni- 
form layers of different densities and velocities on the f-plane (a = 0), is unstable. 
Two modes of unstable perturbations were found: one, corresponding to baroclinic 
instability; the other, describing unstable gravity waves. 

Orlansky’s work was generalized for fronts of arbitrary shape (the velocity in the 
lower layer was still assumed uniform) by Killworth et al. (1984), who calculated the 
parameters of instability using the expansion in both small k and 6 ( k  is the 
wavenumber of the perturbation and 6 is the relative depth of the upper layer). They 
extended their analytical results numerically, for one specific front shape, to the case 
where the upper layer was thick (6 - 1). Later Paldor and Killworth (1987) general- 
ized the results of Killworth, et al. (1984) for double fronts (i.e. fronts for which the 
depth of the upper layer vanishes on both sides of the flow). Sakai (1989) and Paldor 
and Ghil (1990) found that an additional instability can occur for both single and 
double fronts in a narrow spectral interval, where the phase speeds of the baroclinic 
and gravity modes coalesce. Finally, Dewar and Killworth (1994) studied the stabil- 
ity of large-amplitude circular vortices on the f-plane. 

All in all, the approach based on primitive equations proved to be very effective in 
stability problems for currents and vortices. However, the analytical part of the 
results obtained was not generalized for thick upper layer, or for the b-plane, as the 
zeroth-order eigenfunction used by Killworth, et al. (1984) is not valid for 6 - 1 or 
a # 0). In addition, both analytical and numerical results are very difficult to gener- 
alize for continuously stratified flows, the stability equations for which are two- 
dimensional and elliptic. 

2) The second approach to dynamics of large-amplitude flows is based on the 
one-layer reduced-gravity model, where the bottom layer is assumed infinitely deep. 
Using this model, Griffiths, e ta l .  (1982) calculated the growth rate of the gravity 
mode for a double front, and Killworth (1983) found the necessary condition of 
instability for a single front (both results were obtained analytically using the long- 
wave expansion and then extended numerically to finite k for some specific front 
shapes). By comparison with the first approach, the equations of the reduced-gravity 
model are much simpler and allow, sometimes, to extend the analytical results to 
finite wavenumbers (Paldor, 1983), or consider weakly nonlinear perturbations 
(Paldor, 1986). 

It should be noted, however, that the direct comparison of the two-layer and 
one-layer results (Killworth, 1983) demonstrated that the one-layer reduced gravity 
model requires an unrealistic restriction of the depth of the upper layer: 6 5 0.01. In 
other words, it is not applicable to the real ocean, where 1/2 2 6 2 1/15. 

3) The third approach to the dynamics of large-amplitude flows is based on the 
smallness of the Rossby number 

E<< 1. 

This condition is not very restrictive, as all of the large-scale oceanic currents 
(except, possibly, the Gulf Stream) are geostrophic (this question will be discussed in 
more detail in Section 4). In the context of large-amplitude flows this approach was 
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4 E. S. BENILOV AND G. M. REZNIK 

suggested by Williams and Yamagata (1984), who derived an asymptotic geostrophic 
equation from the one-layer reduced-gravity model. Using this equation, Cushman- 
Roisin (1986) constructed a solution which describes a rotating elliptical vortex and 
proved the stability of a wedge-like front. The latter result was generalized by Benilov 
(1992b), who proved the stability of all fronts with monotonic interface profiles, as well 
as instability of all non-monotonic fronts (Benilov, 1995a; see also Pavia, 1992). 

Asymptotic equations governing two-layer LAGF were derived by Cushman-Roisin 
et a!. (1992) and Benilov (1992a), and used by Benilov (1992a, 1995a) Swaters (1993) 
and Benilov and Cushman-Roisin (1994) in their studies of the stability of zonal flows. 

By comparison with the exact two-layer equations, the geostrophic model is much 
simpler and therefore yields stronger results: in particular, many geostrophic results 
can be readily generalized for continuous stratification (Tai and Niiler, 1985; Benilov 
1993,1994,1995b). At the same time (and in contrast to the one-layer reduced-grav- 
ity model), geostrophic approximation describes real-life oceanic currents. The only 
obvious shortcoming of the geostrophic approach is the impossibility of derivation 
of a single asymptotic system for flows with arbitrary values of the non-dimensional 
parameters a and 6. As a result, one has to consider several geostrophic regimes and 
the corresponding number of asymptotic sets of equations. 

The main goal of this paper is the classification of these regimes. 

3. CLASSIFICATION O F  LARGE-AMPLITUDE GEOSTROPHIC FLOWS 

3.1. Asymptotic analysis of the governing equations 

Consider a light fluid layer on top of a heavier fluid layer. The depths hl,2 of the 
layers satisfy 

h2 = H, - h1, (3.la) 

where H ,  is the total depth of the ocean (as we use the rigid-lid approximation, H ,  
is assumed constant). The pressure p 1  in the upper layer can be expressed through h,  
and the pressure in the lower layer p 2 :  

Pz = P 1  - g’h,. (3.lb) 

Then, introducing the velocities u1,2 = ( u ~ , ~ ,  v ~ , ~ ) ,  the horizontal spatial variables 
(x, y )  and time t ,  we can write the governing equations as follows: 

(3.2a) 

(3.2b) 

(3 .2~)  au2 - + u2*Vu2  + V p 2  = ( f  + f i y ) ~ ,  x k, at 

a h2 
- a t  + V.(h2u2) = 0, (3.2d) 

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
8:

47
 2

2 
D

ec
em

be
r 

20
13

 



LARGE-AMPLITUDE GEOSTROPHIC FLOWS 5 

where u x k = (u, - u),f = 2R sin 8 is the Coriolis parameter; R the angular 
frequency of the earth's rotation; 8 the latitude; fi = (2R/R,)cos 8; and Re the earth's 
radius. 

by the barotropic and baroclinic components of 
the flow: 

It is convenient to replace 

UbC = u1 - u2. 

In terms of the new variables, equations (3.1,3.2) become 

Equation (3.4b) allows one to introduce a barotropic streamfunction: 

a* a* 
Ubt = - - ay' bt a x '  =- 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.5) 

Taking curl of equation (3.4a), substituting (3.5) and omitting the subscripts and bc, 

we rewrite (3.4) as follows: 

a v 2 *  
~ + J(*> v2 44 

a t  

1 +%[ H i  "]-p[ Hi uu]-m[ H i  (u2 - u2) 
a 2  h ( ~ ,  - h)  d 2  h ( H ,  - h) a 2  h ( ~ ,  - h) 

a* +p-=0,  (3.6a) ax  

at  

+ - ( u z  H,-2h  d u  + u$) -$u(u;  + u $ )  + g ' z  ah = (f+ py)u,  (3.6b) 
HO 
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6 E. S. BENILOV AND G. M. REZNIK 

H 0 - 2 h  a u  a h  + ~ ( uax + $) - &u ( u g  + u $ )  + g'5 = - ( f  + p y ) ~ ,  (3.6~) 
HO 

a t  
a h  a h ( H ,  - h) 

(3.6d) 

where J ( $ ,  h) = $xh,, - t,bYhx is the Jacobian operator. 
Next we shall scale equations (3.6): 

x = L,%, y = L*., t = T* f, 

u = u,;, u = u*c, 

$ = Y,$, h = H*Z, 

(3.7a) 

where the tildas and asterisks mark the non-dimensional variables and the corre- 
sponding characteristic scales, respectively. We shall assume that the velocity scale 
satisfies the geostrophic relation: 

u = g ' h H , / f L , ,  (3.7b) 

where 6 H ,  is the characteristic displacement of the interface. As we are concerned 
with large-amplitude flows, we assume 

6 H ,  = H,.  

Substitution of (3.7) into (3.6) yields (tildas omitted) 

(3.7c) 

+zbc  ( 1 - 2 6 h )  u - + u -  6~ u - + u -  + - = - ( 1 + ~ ~ ~ ) ~ , ( 3 . 9 b )  [ ( ,"t: ;;)- ( :: 31 :; 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 7 

(3.10) 1 a [fX aY 
ah 

ET at + EJ ($, h) + &bc - h( 1 - 6 h) u + - h( 1 - 6 h) u = 0, 

where 

E = U,/f L,, (3.1 1) 

E* = y,/f Li9 6 = H,/H,, ET = l/f T,, ~p = BL,/J: 

Observe that smallness of E implies that the spatial scale of the flow is much larger 
than the deformation radius based on the depth of the upper layer: 

R,/L, = &‘ I2  << 1. (3.12) 

This equality has been obtained through substitution of (3.7b),(3.7c) and (l.lb) into 
(3.1 1). 

Next, assuming that E , E ~ , E * ,  and E are small, we expand equations (3.9) as fol- 
lows: 

a2h ( a;) ( a:) a t a y  
ah ah 
ax p ~ z - ~ ( l - 2 6 h ) J  h,- -ET--E,,,J $,- V = - - &  

ah ah 
g=--+ F ~ J ’ ~ - E ( I  -26h)J 

aY 

+ O(&;, &’, &+7 &;’ &BE, &PET, &BE+, &&T,  &TE+). (3.13b) 

Substituting (3.13) into (3.8) and (3.10), we rearrange the last terms in the resulting 
equations and obtain 

av2$ a* 
W,, * a x  + &iJ($ ,V2$)  + E  E -+ 6E2V.[h(l - Gh)J(h,Vh)] 

= 6 & 2 E T ) ,  (3.14a) 

ah ah 
E~ - + E@J($, h) - E E p h ( 1 -  6 h)- - E2V.[h( 1 - 6 h)( 1 - 26h)J(h, V h)] 

at  ax  

= O(&&g&&T,&&BZ, E 3 ,  &’&p). (3.14b) 

[Observe that, in contrast to the quasigeostrophic approximation, we have omitted 
the O ( E ~ , E * )  terms in (3.14).] As always, eT can be determined by balancing evol- 
utionary (time-derivative) terms in the governing equations with the biggest non- 
evolutionary terms. It can be readily verified that no combination of the remaining 
independent parameters (E ,  E*, 6, E ~ )  can equalize all terms in system (3.14), which 
means that some of the terms can be omitted. One cannot, however, derive a single 
“basic” set of equations (with all terms being of the same order) for all values of the 
small parameters: different regions of the parameters space (E, E+, 6, E ~ )  correspond to 
different regimes (basic sets of equations). 

Generally speaking, in order to classify the regimes in a system with more than 
one small parameter, the parameter space should be subdivided into regions, each of 
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8 E. S. BENILOV AND G. M. REZNIK 

which corresponds to a single parameter. Inside these regions, terms proportional to the 
other parameters can be omitted, and one obtains a set of equations for each region. 
Next, one considers the boundaries of the above regions (where two parameters are of 
equal “strength), then the curves of intersection of these boundaries (where three 
parameters are of equal strength), etc. In the case of equations (3.14), however, the 
number of basic regimes is very large, making the analysis extremely tedious. Accord- 
ingly, we shall discuss only the highest-level regimes, i.e. those that include as many 
small parameters as possible and correspond to points in the parameter space. These 
regimes include all low-level regimes as limiting cases; at the same time, the correspond- 
ing sets of equations are still simpler than the original system (3.14) (recall that the latter 
is not a basic set and therefore contains terms of different orders). 

Omitting (straightforward) calculations, we obtain four basic sets of equations: 

6 = 1, ED = &* = & ( E T  = &): (3.15) 

a* - + V . [ h ( l -  h)J(h,  V h ) ]  = O ( E ” ~ ) ,  
a x  

- + J ( $ ,  h) - h(1 - h)-  = O(&”’); 
at  ax 
a h  a h  (3.16b) 

a* - + V * [ h J ( h , V h ) ]  =O(E), ax  
a h  a h  
- + J ( $ ,  h) - h - - V . [ h  J (h, V h)] = 0 ( E ) ;  
a t  a x  

(3.17b) 

6 = &’, &fi = &’, &$ = E2 (&T = E2) :  (3.18a) 

P * [ h J ( h , V h ) ] =  O(E’),) 

Systems (3.15b)-(3.18b) cover all of the parameter space of the original equations 
(3.14). No combination of &,&+,a and cD gives a system that is not included in 
(3.15b)-(3.18b) as a limiting case. 

3.2. Discussion 

(i) It is convenient to rewrite the equations derived in non-scaled non-dimensional 
variables determined by measurable parameters. Substituting 

L,=Ro, T,=f-’, H,=Ho,  Y , = R i f  
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 9 

into (3.7): 

(3.19) 

we rewrite (3.15b)-(3.18b) as follows (tildas and small terms omitted): 

(3.20) 
v”, +J(*,V”)+a*,+V.[h(l -h)J(h,Vh)] =o, 
h, + J(*, h) = 0; 

1 a*, + V-[h(l - h)J(h ,  Vh)] = 0, 
h, + J(*,h) - ah(1 - h)h, = 0; (3.21) 

(3.22) 

(3.23) 

where the subscripts denote differentiation and a is defined by equality (1.3). In what 
follows, Systems (3.20) and (3.23) will be referred to as the “regimes with weak 
0-effect” (observe that, in these cases, the p-effect influences only the barotropic 
mode). The remaining systems, (3.21) and (3.22), will be referred to as the “regimes 
with strong p-effect”. 

(ii) Note that, for all regimes (3.15a)-(3.18a), the amplitude of the barotropic mode 
does not exceed that of the baroclinic mode: 

a*, + V.[hJ(h,Vh)] = 0, 
h, + J(*, h) - ah  h, - V.[hJ(h, Vh)] = 0; 

v2~lt+J(1C/,V2*)+alC/,+V.[h~(h,Vh)] = O ,  
h, + J(*, h) - V * [ h J ( h ,  Vh)] = 0, 

&* 5&. 
Thus, the global Rossby number max ( E + ,  8 )  can be assumed to coincide with E. This, 
of course, does not mean that the barotropic mode never dominates the baroclinic 
mode, but indicates that the barotropic regime is not a higher-order basic set and 
can be included in a more general set of equations [specifically, in (3.20) or (3.23)]. 

(iii) It is convenient to express E~ through a. Rewriting (1.3) as follows: 

and using formulae (3.12) and (l.la,b), we obtain 
a = & p E ’ / z p z  

Now, regimes (3.20)-(3.23) can be classified on the (a/&, &/&)-plane (see Table 1 j. 
Systems (3.20) and (3.21) were derived by Benilov (1992a) whereas (3.22) and (3.23) 
were derived (as a single system for all four bottom cells in Table 1) by Cushman 
Roisin et al. (1992). Later (3.22) and (3.23) were derived exactly in their present form 
by Benilov and Cushman-Roisin (1994), and Swaters (1993), respectively. Swaters’ 
paper also contained a generalization of (3.23) for a sloped bottom. 

(iv) The scaling of equations (3.20)-(3.23) is illustrated by Table 2. 
This table is particularly helpful for generalization of the results for the case of 

continuous stratification (which has the same scaling). 
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10 E. S .  BENILOV AND G. M. REZNIK 

Table 1 Classification of the asymptotic regimes on the 
(a/&, a/&)-plane. c, CL and 6 are defined by (1.2)-(1.4), respectively. 

Weak /?-effect Strong B-effect 
a - ~ 3 1 2  a-& 

~ 

6-  1 Regime 1, (3.20) Regime 2, (3.21) 
6 - E  Regime 3, (3.22) 
6 - &Z Regime 4, (3.23) 

Table 2 Scaling of equations (3.20)-(3.23). 
&,a and 6 are defined by (1.2)-(1.4), respectively. 
L ,  is the horizontal spatial scale, 

and U,* are the effective velocity scales, 

(v) In order to clarify the correspondence between large- and small-amplitude 
geostrophic flows, we shall calculate the dispersion relations of harmonic oscillations 
described by (3.20)-(3.23). Substituting the harmonic-wave solution 

- 
h = ho + h'exp (iwt -imx - iny), $ = $'exp ( io t  - imx - b y )  

(where h, is the average depth of the upper layer) and neglecting nonlinear terms, we 
obtain 

(3.2 1): 

(3.22): 

If we compare (3.24) with the standard (non-dimensional) dispersion relations of the 
two-layer Rossby waves: 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 11 

we observe that (3.20) and (3.23) describe the barotropic mode: 

(3.2 1)  describes the long-wave limit of the baroclinic mode: 

and (3.22) describes the (long-wave + thin-upper-layer) limit of the baroclinic mode: 

Observe that none of the systems describes both modes, the reason of which is 
separation of the modes’ time scales. Indeed, if we substitute 

RO m,n - - L. 
(with L, given by Table 2) into the dispersion relations (3.25), we get 

Regime 2: wbt - E ~ / ~  wbc N 

Regime 1: wbt - E, obc - 8’; 

Regime 3: wbr N E, wbc - E ~ ;  

Regime 4: wbt N e2, wbc N .e3. 

(3.26) 

These estimates show that a single-scale asymptotic expansion cannot take into 
account both Rossby-wave modes. 

(vi) Estimates (3.26) also demonstrate that the barotropic effects in large-ampli- 
tude geostrophic dynamics are always stronger (faster) than the baroclinic effects. 
Generally speaking, this means that the latter should be omitted from a leading- 
order asymptotic equation. However, (3.21) and (3.22) do describe the baroclinic 
mode. This occurs because the barotropic component of the flow in these regimes is 
weak. In Regime 3, this is a result of the smallness of the depth the active layer; in 
Regime 2, it is the result of the constraint of the allowed initial conditions imposed by 

*=o. (3.27) 

Indeed, substituting (3.27) into (3.3a) and (3.5), we get 

h,ul + h,u2 = 0. 

which indicates that we consider almost compensated flows. However, the barot- 
ropic mode cannot be filtered out completely, as it is generated nonlinearly by the 
baroclinic mode (see the first equations in Systems (3.21) and (3.22), which can be 
interpreted as a sort of Sverdrup’s relation). 

It should also be mentioned that the weak-P-effect equations (3.21) and (3.22) 
restrict the initial condition for the barotropic component of the flow. This can be 
accounted for by the above-mentioned difference in the barotropic/baroclinic time- 
scales, suggesting that barotropic waves rapidly disperse, after which the barotropic 
mode becomes enslaved by the baroclinic mode. It may occur, however, that barot- 
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12 E. S. BENILOV AND G. M. REZNIK 

ropic mode takes on a coherent stationary structure-a zonal flow or a stationary 
modon. The former case is clearly included in (3.21) and (3.22) [which are invariant 
with respect to adding an arbitrary zonal flow: $(z,y,t) -+ij(z,y,t) + tj0(y)]. In the 
latter case, strong barotropic mode takes over the evolution of the interface from the, 
baroclinic mode-such motion can be described by 

(see Dewar and Gailliard 1993). Observe that this system does not make a new 
regime as it is included, as a limiting case, in (3.20) and (3.23). 

4. APPLICABILITY OF EQUATIONS (3.20-3.23) TO THE REAL OCEAN 

In order to clarify which of the equations derived are relevant to the real ocean, we 
shall estimate E,  6 and M for a number of real-life frontal flows. Specifically, we shall 
use 

-Roden's (1975) observations of the Kuroshio, Oyashio, subtropical and subarctic 
fronts in the Northern Pacific; 

-Nowlin and Klinck's (1986) observations of the Antarctic Circumpolar Current. 
At the location where Roden's measurements were made, the subtropical front 

could be subdivided into three separate jets (their axes located at 27"30N, 28"45' 
and 31"30'). Nowlin and Klinck's data indicate that the ACC in Drake's Passage can 
also be subdivided into three jets (their axes located at 57"00S, 59'00s and 51"30S). 
The parameters of all these jets will be estimated separately. In what follows, we 
shall use the following notation: 

K = Kuroshio; 
0 = Oyashio 

SA = subarctic front; 
ST, = subtropical front, northern jet; 
ST, = subtropical front, middle jet; 
ST, = subtropical front, southern jet; 

ACC, = ACC, northern jet; 
ACC, = ACC, middle jet; 
ACC, = ACC, southern jet. 

In order to make sure that we deal with large-amplitude geostrophic flows, we 
shall estimate maximum velocity and the effective displacement of isopycnal surfaces 
(see Table 3a). 

This table shows that all of the above frontal flows are geostrophic (E,,, << 1) and 
most of them (except, possibly, ST, and ACC,) are of large amplitude (A - 1). 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 13 

Table 3a Parameters of frontal flows in the Northern Pacific and Southern 
oceans. 
u,,, is the maximum velocity, 
2L is the width of the flow, 
em,, is the Rossby number based on U,,,, 
H, is.the effective depth of the upper layer, 
6 H, is the effective displacement of isopycnal surfaces, 
A =  6H,/H,, 

K 0 S A  ST, ST, 

u,,,(m/s) 0.55 0.25 0.40 0.20 0.15 
2L(km) 145 100 200 210 120 
Ern,, 0.085 0.054 0.042 0.026 0.035 
H,(m) 600 400 500 350 350 
6H,(m) 200 160 300 140 60 
A 0.33 0.40 0.60 0.40 0.17 

ST, ACC,  ACC,  ACC,  

0.45 0.20 0.30 0.20 
150 190 130 80 
0.089 0.017 0.037 0.039 
500 1,600 2,000 1,800 
140 500 500 300 
0.28 0.31 0.25 0.17 

Table 3b Parameters of frontal flows in the Northern Pacific and Southern 
oceans. 
U , ,  is the effective velocity scale in the upper layer, 

9 is the relative density variation, 
Po 
c is the Rossby number based on U,,, 
6 = H,/Ho, 
CI is given by formula (1.3). 

K 0 SA ST, ST, ST, ACC,  ACC, ACC,  

U,,(m/s) 0.26 0.12 0.20 0.12 0.09 0.25 0.13 0.18 0.12 

2, lo4 17 7 13 13 13 18 6 5 4 
Po 
H0(m) 5,500 5,500 5,500 5,500 5,500 5,500 4,000 4,000 3,500 
E 0.040 0.026 0.021 0.016 0.021 0.050 0.011 0.022 0.023 
6 0.109 0.073 0.091 0.064 0.064 0.091 0.400 0.500 0.514 
CI 0.021 0.012 0.015 0.031 0.034 0.044 0.004 0.004 0.002 

Next we calculate E,  6 and a (see Table 3b) and then classify the above frontal 
flows on the (618, a/&)-plane. 

Table 4 shows that Regime 4 is not relevant to any real-life fronts. Indeed, given 
that E < 0.1, the condition 6 - E~ entails the unrealistic estimate 6 < O.Ol(while in the 
ocean 1/2 2 6 2 1/15). The only possible application of the regimes with 6 - E~ seems 
to be the oceanic mixed layer, whose depth varies between 50 and 150 metres. The 
situation with the other gap in Table 4 (thin upper layer, weak 8-effect) is unclear: 
none of the examples fell into that cell, but this regime does not seem to be imposs- 
ible in principle. 
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14 E. S. BENILOV AND G. M. REZNlK 

Table 4 Classification of frontal flows in the Northern Pacific 
and Southern Oceans. 

6 -  1 Regime 1: ACC,-, Regime 2 ACC, 
6 - &  
6 - E Z  Regime 4 none 

Regime 3: K, 0, SA, ST, - 

5. STABILITY OF ZONAL FLOWS 

In terms of the two-layer model, an isolated zonal flow with both horizontal and 
vertical shear is described by 

P 

(5.la) 

h,( f co) = 0, ii( k 00) = 0. (5.lb) 

In this section, we shall discuss the stability properties of solution (5.1) and their 
impact on the applicability of the equations derived. We shall distinguish two types 
of instability: 

instability with respect to disturbances, whose length is comparable to, or longer 
than the width of the flow (long-wave instability), 

instability with respect to disturbances, whose length is much shorter than the 
width of the flow (short-wave instability). 

5.1. Long-wave instability 

Long-wave stability of solution (5.1) can be studied within the framework of equa- 
tions (3.20 j(3.23). The results obtained so far are summarized in Table 5. 

These stability theorems were proven by Benilov (1992a) (Regimes 1, 2), Benilov 
and Cushman-Roisin (1994) (Regime 3) and Swaters (1993) (Regime 4). Finally, 
Benilov (1995a) argued that those Regime-3 flows, that do not satisfy the above 
conditions of stability, are unstable. 

It should be emphasized, however, that equations (3.20)-(3.23) describe short- 
wave disturbances incorrectly [see restriction (3.12)]. As a result, 

i) the growth rate of unstable perturbations described by (3.20) blows up in the 
short-wave region (Tai and Niiler, 1985; Benilov, 1992a; Young and Chen, 1994): 

Imo(k)+ 03 as k +  00, 

where u and k are frequency and wavenumber of disturbances, respectively. The 
short-wave blow-up of the instability makes numerical simulation of equation (3.20) 
impossible; however, (3.20) can still be used in a theoretical study, provided the 
physical meaning of this property is clarified. 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 15 

Table 5 
flows. 

Long-wave stability of large-amplitude geostrophic 

Weak j-effect Strong j-effect 
&312 a - &  

b - 1 Regime 1: instability Regime 2: stability 
8 - E  

6 

Regime 3: stability if A, 2 0 
orO>E,> -a 

E’ Regime 4 stability if 
Ti, 
or 0 3 6, 2 iyy - u 

max (0, iyy - u) 

ii) On the other hand, short disturbances may destabilize some of the flows, 
which are stable within the framework of (3.20)-(3.23). 

5.2. Short-wave instability 

First, we observe that, if the wavelength of a disturbance is much smaller than the 
effective spatial scale of the mean flow the stability analysis can be carried out 
locally in the approximation of small-amplitude geostrophic flows. Indeed, vari- 
ations of the mean flow’s parameters over the wavelength of a short perturbation are 
much smaller than their average (local) values. Accordingly, we can make use of 
Phillips’ (1954) model, whose non-dimensional dispersion relation (e.g. Pedlosky, 
19871 is: 

h,(l - h,)Uk4 + 2h,[U - (1 - &,)a] k2 - a  
2[h0( 1 - h,) k4 + k2] 

c = U , +  

{U2hi(l  -ho)2k8-2h0(1-h,)U[2U-(1 - 2h,)a]k4+a2}’/2 
9 (5.2) 

where Ul,2 are the velocities in the layers, U = U ,  - U ,  and c = o / k .  Assuming for 
simplicity that 

2[h,(l - ho)k4 + k 2 ]  
k 

h, < ;, 

-aho < u < a(1 -ho). 
one can obtain the following criterion of stability: 

(5.3) 
If this condition does not hold, the spectral range of unstable disturbances is 

bounded by 

where 

K- < k < K + ,  

- - (5.4) 
2u - a( 1 - 2h0) * 2J( u + aho) [ u - a( 1 - h,)] 

K * = [  hO(1 - h o w  
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16 E. S. BENILOV AND G. M. REZNIK 

Now, scaling (5.3) in accordance with Table 2: 

Regime 1: U+e1IZU, Eo+ko, a-+e3I2a; 
Regime 2: U+E’/’U, ho+ho0, a-+~t l ;  
Regime 3: U + e U ,  50-+~ho, U - + E M ;  

Regime 4: U + e312 U ,  Lo 4 e2&, c1-+ e3%; 

and then taking the limit 6 - 0 ,  we obtain 

Regime 1: instability; (5.5a) 
Regime 2: instability; (5.5b) 
Regime 3: stability if 0 5 U 5 c1, instability otherwise; 
Regime 4: (5.5d) 

(552) 
stability if 0 5 U 5 a, instability otherwise; 

Scaling of (5.4), in turn, yields 

Regime 1: K _  -el/’, K ,  - 1; 
Regime 2: K - - ell4, K+-1 ;  
Regime 3: K -  -&-‘I4, K +   WE-''^; 
Regime 4: K-  - & - ‘ I z ,  K ,  - E - ’ / ~ .  

Comparing these estimates with the spatial scale of equations (3.20)-(3.23) (see 
Table 2, K - L; I): 

(3.20): K - E ” ~ ,  

(3.21): K - E”’, 

(3.22): K - 1, 

(3.23): K - E -  ‘Iz; 

we can draw the following conclusions: 
i) Equation (3.20) does not describe the short-wave cutoff K ,  because the latter is 

inconsistent with its scaling. 
The long-wave cutoff K -  is consistent with the scaling of (3.20), hence the 

wavelength of unstable disturbances can be comparable to the width of the mean 
flow. Generally speaking, this means that the local approximation used in deriving 
(5.3)-(5.4) does not hold and the results obtained should be verified using (3.20). 

ii) For Regime 2, both cutoffs are inconsistent with the scaling of system (3.21). 
All unstable disturbances are much shorter than the width of the mean flow, which 
is why (3.21) does not describe instability at all (it has been scaled out). It may be 
conjectured, however, that the short-wave instability is unlikely to destroy the flow, 
but leads to randomization of unstable disturbances, and the resulting turbulent 
friction may stabilize the flow. This conclusion applies only to the short-wave insta- 
bility, while a long-wave instability usually results in meandering of the mean Row, 
which can break it up completely. 

iii) For Regime 3, both cutoffs are inconsistent with the scaling of the correspond- 
ing asymptotic system, but, in contrast to Regime 2, the short-wave instability does 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 17 

not take place in all cases. In order to compare the short-wave results (5.5) with the 
long-wave results in Table 5 and determine a region of overall stability (if any), we 
should relate U to K 

U = - K  Y’ 

after which the criterion of short-wave stability (5.5~) becomes 

Regime 3: stability, if 0 d -5 d tl, otherwise instability. (5.6) 

Thus, short-wave instability eliminates one of the two cases of (otherwise stable) 
Regime-3 flows (Benilov and Cushman-Roisin, 1994). 

iv) For Regime 4, K ,  are both consistent with the scaling of system (3.23),  which 
means that an instability (if any) occurs in the long-wave region and is described by 
(3.23).  Result (5.5d) obtained via (invalid) local approximation is apparently incor- 
rect. Thus we conclude that, in this regime, zonal flows are stable with respect to 
short perturbations. 

The above results on short-wave instability of large-amplitude geostrophic flows 
are summarized in Table 6: 

Using data in Table 3a, one can estimate the slope of the interface gy for the 
North Pacific frontal system and ACC, and hence calculate the parameters of their 
instability (see Table 7). 

The Oyashio frontal flow is not zonal, hence criterion (5.6) is inapplicable. 
Table 7 demonstrates that wavelengths of unstable perturbations are comparable 

to the width of the mean flow (compare A,,, and L l , 2  with 2 L  from Table 3a). This 
means that the local approximation is only of limited relevance to the real ocean, 
and that results in Table 7 should be treated as rough estimates. However, a certain 
tendency can be observed: instability of flows with thick upper layer takes place in a 
wider spectral range than that of flows with thin upper layer. 

5.3. Discussion 

i) It is worth noting that both weak-p-effect systems admit the following steady 
solution 

h = h [ ( c o s ~ )  x + (sin$) y], IC/ = 0; 

Table 6 
flows. 

Short-wave stability of large-amplitude geostrophic 

Weak b-effect Strong /j’-effect 
o! - u--e 

6 - 1 Regime 1: instability Regime 2: instability 
6 - e  Regime 3: stability if 

instability otherwise 
o<ii,< -o ! ,  

6 - Regime 4 stability 
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18 E. S. BENILOV AND G. M. REZNIK 

Table 7 
ern oceans. 

Short-wave instability of frontal flows in the Northern Pacific and South- 

6H,lHo. 

L I R d  
hy=- IS the slope of the interface: 

a is the &effect number (if 5, + a > 0, the flow is stable); 
,ll,z = half-lengths of the marginally stable disturbances; 
A,,, = half-length of the fastest growing disturbance; 
z =time of the fastest growth. 

K 
SA 
ST, 
STZ 
ST, 
ACC, 
ACC, 
ACC, 

- 0.027 
- 0.024 
- 0.014 

0.01 1 
- 0.025 
- 0.026 
- 0.037 
- 0.03 1 

0.021 18 
0.015 16 
0.03 1 
0.034 22 
0.044 
0.004 9 
0.004 6 
0.002 7 

190 160 265 
150 120 235 

130 110 185 

95 60 315 
95 60 370 
70 45 360 

stable 

stable 

which describes a non-zonal flow (4  is the angle between the direction of the flow 
and the x-axes). This flow does not transfer mass across the j-plane ($ = 0), i.e. the 
current in the upper layer is compensated by the counter-current in the lower layer 
(see Benilov, 1992a). The stability properties of this solution have not yet been 
examined. 

ii) It has been demonstrated that system (3.20) does not describe the shortwave 
cutoff of baroclinic instability. In order to demonstrate that it describes at least the 
long-wave cutoff (which is consistent with its scaling), we applied (3.20) to a small- 
amplitude flow and compared the results with the traditional quasigeostrophic ap- 
proximation. We considered the simplest particular case of (5.1): 

h(y)  = ho + yy,  ii(y) = iio (5.7a) 

in a zonal channel: 

(5.7b) 

and assumed that the displacement of the interface is small: 

yd << 1. 

Straightforward calculation demonstrated that the dispersion relation of disturban- 
ces governed by (3.20) coincide with the quasigeostrophic relation (5.2) if 

(see Figure 1). these conditions confirm that system (3.20) describes long waves with 
an additional assumption of weakness of the p-effect. 

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
8:

47
 2

2 
D

ec
em

be
r 

20
13

 



0.m 

0 

4.00s 

U 
4.01 4 

.0.015 

-0.02 

4.02.3 

V.UI5 

0.w 

E 

0.M 

0 

LARGE-AMPLITUDE GEOSTROPHIC FLOWS 

k 

n 1 2 

19 

Figure l a  

k 

Figure 1 
the Antarctic Circumpolar Current (ACC,): h, = 0.514,~ = U = 0.031,a = O.OOZ,G= 0. 
(a) Recvsk, (b)Imcvs.k. 
c and k are the phase speed and wavenumber of disturbances, respectively. Solid line represents the 
dispersion relation calculated using system (3.20), Dashed line represents quasigeostrophic approximation 
(5.2). 

The dispersion relation of baroclinic instability. Parameters correspond to the southern jet of 
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20 E. S. BENILOV AND G. M. REZNIK 

iii) It should be noted that, as a result of the short-wave blow-up, system (3.20) 
describes only the initial stage of baroclinic instability. Indeed, even if the initial 
condition consists of only long disturbances, nonlinear interaction generates short 
waves and (3.20) fails! 

However, if we are prepared to sacrifice simplicity, it is possible to derive a 
system, which describes both short and long disturbances. To do so, we should take 
into account the (higher-order) O(cT, EJ terms in equations (3.14). Omitting calcula- 
tions and writing the resulting equations in the non-scaled non-dimensional vari- 
ables (3.19), we have 

V2$* + J($,V211/) + V.[h(l - h)J(h,Vh)] + cqhx = 0; (5.8a) 

h, + J($ ,h)  - LYh(1- h)h, 

-V.{h[(l -h)( l  - 2 h ) J ( h , V h ) + V h , + J ( $ , V h ) ] }  =o. (5.8b) 

For long disturbances, the new terms do not contribute to the accuracy of system 
(5.8). For short disturbances, however, the new terms are of the same order as the 
main terms in equation (5.8b). One can readily derive from (5.8) the standard two- 
layer quasigeostrophic equations. 

Finally, we note that (5.8) includes all four large-amplitude regimes as limiting 
cases and describes small-amplitude (quasigeostropliic) motion as well. Systems 
similar to (5.8) were derived by Benilov (1992a) and Young (1994), but, although 
their equations do have short-wave cutoffs of baroclinic instability (which is quali- 
tatively correct), they do not provide quantitative description of short disturbances. 
A quantitatively correct system for flows with thin upper layer was derived by 
Cushman-Roisin et al. (1992). 

6. CONCLUSIONS 

In this section, we shall summarize the main results of this paper. 
Firstly, we have presented the complete classification of large-amplitude geos- 

trophic regimes in the space of parameters E << 1, LY and 6 [defined by (1.2)-(1.4), 
respectively]; and derived four systems of equations that correspond to the basic 
regimes [see Table 1 and equations (3.20)-(3.23)]. The equations governing these 
regimes 
-include as many terms as possible provided these terms are of the same order 
-and include all other regimes as limiting cases (i.e. cover all of the parameter 

space). 
The criterion of applicability of the equations derived is 

(R,/L,I2 << 1, (6.1) 

Where L ,  is the horizontal scale of the motion and R ,  is given by (1.lb). 
It turned out, however, that some of sets (3.20-3.23) are not self-contained, i.e. 

drive the solution outside of their applicability regions [see Section 5.3 (iii)]. Hoping 
that the solution remains, at least, geostrophic, we constructed a more complicated 
set of equations, which describe all possible regimes of large-amplitude geostrophic 
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LARGE-AMPLITUDE GEOSTROPHIC FLOWS 21 

flows and small-amplitude (quasigeostrophic) motion as well [equations ( 5 . 8 ) ] .  This 
system can be used in numerical modeling of oceanic frontal currents: with (fast) 
gravity waves scaled out, it must have less numerical instabilities than the primitive 
equations. The criterion of its applicability is 

&<< 1, (6.2) 

where E is the Rossby number. If the initial condition includes small-amplitude short 
disturbances, restriction (6.2) is weaker than (6.1) (small-amplitude disturbances do 
not have to be long to be geostrophic). 

Secondly, we have classified previous results on the stability of large-amplitude 
geostrophic zonal flows and filled out the gaps in this classification (Tables 5-6). 

Thirdly, we have estimated the parameters of real-life oceanic frontal flows 
(Table 3) and supplied examples for the above regime classification and the stability 
analysis (Tables 4 and 7, respectively). 

Finally, we note that results on continuously stratified geostrophic fronts (Tai and 
Niiler, 1985; Benilov l993,1994,1995b,c) demonstra’te that the two-layer model 
bears all main features of geostrophic dynamics and provides a good qualitative 
description of oceanic frontal flows. 
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