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The two-layer model of baroclinic instability is modified to include small continuous variations of the 
velocity/density profile in the upper layer. It is demonstrated that, if the difference between the average 
upper-layer velocity and the velocity in the lower layer is negative (westward), the flow is unstable. The 
instability takes place in the spectral region of waves with critical levels, but the unstable disturbances d o  not 
have the logarithmic singularity, which is commonly believed to destabilize the flow through rapid variation 
of heat flux. The instability is interpreted as a resonance between Rossby waves and a certain “shear mode” 
supported by the vertical shear of the mean flow. 

KEY WORDS: Baroclinic instability, two-layers model, critical levels. 

1. INTRODUCTION 

The two-layer model of stratification is useful only if it provides a reasonable 
approximation of continuously stratified flows; but, unfortunately, the complexity of 
the continuous model makes the comparison difficult, ifnot impossible. Furthermore, 
rare tractable particular cases of continuously stratified flows usually assume the 
stratification profile to be linear, which is very far from the two-layer model (and the 
real-life currents, for that matter). As a result, it is often impossible to distinguish 
a qualitative (fundamental) discrepancy of the two models (if any) from an inconsist- 
ency of parameters. 

In the baroclinic-instability context, the only tractable continuous models (Charney, 
1947; Eady, 1949; Green, 1960) are based on linear profiles of both velocity and density. 
It was demonstrated (Burger, 1962; Green, 1960) that all linearly-stratified flows with 
non-zero shear are unstable, which strongly disagrees with the two-layer results 
(Phillips, 1954): the two-layer model is stable for a sufficiently weak shear. This and 
other’ discrepancies are usually attributed to the so-called critical levels, where the real 
part of the phase speed of a disturbance matches the velocity of the flow. Critical levels 
are believed to destabilize the disturbance and, since a continuously stratified flow 
admits a wide spectral region of disturbances with critical levels, it is unstable even for 
a weak shear. 

For example, Phillip’s model predicts a short-wave cutoff of the instability, while Charney’s model does 
not (Burger, 1962). 
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96 E. S .  BENILOV 

This explanation, however, is hardly satisfactory: for example, critical levels do not 
destabilize the plane inviscid Couette flow (e.g. Dikey, 1976): as it turns out, the 
boundary-value problem for normal modes, in this case, has neither stable nor unstable 
solutions. Another, even more relevant, counter-example can be seen in a two-layer 
flow with a westward shear, which can be readily shown to support two waves with 
critical levels (whose phase speeds match the velocities in the layers). The solution exists 
for both of them, but, if the shear is sufficiently weak, they are stable! 

In this paper, the two-layer model is modified to include small continuous variations 
of the density/velocity profile in the upper layer. The main question to be asked in this 
paper is: 

Does continuous shear always make the flow unstable? 

Surprisingly, any continuous variation of the two-layer model is found to destabilize all 
flows with westward shear, no matter how small this perturbation is. 

Another unusual characteristic feature of the instability is that the unstable disturb- 
ances do not have the logarithmic singularity at the critical level. Such singularities are 
believed to arise for all disturbances, whose imaginary part of the phase speed is much 
smaller than the real part, and play an important role in physical interpretation of 
baroclinic instability (e.g. Pedlosky, 1987, p. 536). 

In order to understand the mechanism of the instability discovered, we note that the 
unperturbed two-layer model supports three modes of harmonic disturbances: two 
Rossby-wave modes and a certain mode, which exists owing to the vertical shear of the 
mean flow. It can be readily demonstrated that the dispersion curve of one of the 
Rossby-wave modes intersects that of the shear mode, and the point of intersection 
corresponds to an inter-mode resonance. Within the framework of the unperturbed 
(two-layer) system the resonant waves do not interact with each other, but in the 
presence of a perturbation the resonance causes an instability. 

In order to calculate the characteristics of this instability, we derive (Section 2) and 
asymptotically solve (Sections 3 and 4) the boundary-value problem which describes 
the two-layer model with small continuous perturbations. 

2. FORMULATION OF THE PROBLEM 

Let p ( Z )  describe the density stratification of a fluid layer bounded by two rigid planes 
at 

z"=O and z " = - H ,  

where 2 is the vertical spatial variable and H is the depth of the layer. Assuming that 
P(Z) is a monotonic function, we have 

min [ p ( z ) ]  = p(0) = po. 

We also assume that p(z") has a discontinuity at  z" = - h": 
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BAROCLINIC INSTABILlTY WITH SHEAR 91 

Now we can define the deformation radius: 

where g is the acceleration due to gravity and f is the Coriolis parameter. Using R,, 
H and f, we introduce the non-dimensional variables 

Y = %/(fRif,  

where q, (.%,j) and t” are the dimensional stream function, spatial horizontal variables 
and time, respectively. 

The non-dimensional streamfunction of a quasi-geostrophic motion on the P-plane 
is governed by the following equation: 

Here A 3 (d’lax’) + (d’/iiy’), J is the Jacobian operator: J (Y, @) = YXQy - Y, Ox, and 

where Re is the earth’s radius and A is the latitude. Equation (1) should be supplemented 
by the no-flow conditions at the rigid boundaries of the layer: 

I 
- [YZt+J(Y,Yz)]  =0, at Z=O,  
P z  

1 
-CY,,+J(Y,Y~)]=O, at z =  -1. 
P Z  

As p(z) has a discontinuity at z = - h:  

p ( - h + O ) - p ( - h - O ) =  -1, 

(3) 

(4) 

Y must satisfy the following matching conditions (derived in Appendix A): 
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98 E. S. BENILOV 

We assume that the lower layer is homogeneous: 

p(z) = const, for z < - h 

(stratification model (4), (6) is shown in Figure 1) and introduce Y 

Yl, for z > - h ,  
YJ = L2, for z < - h. 

In order to regularize the singularity in Equation (1) ( p J 1  = co for z < - h), one 
should consider “almost” constant density: lp,l<< 1, and seek a solution in the form of 
a series in powers of p,: 

(7) 

z 

-h 

-1 

J - 1  

sp + 1 P 

(a) 
Figure 1 Non-dimensional model of stratification 
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BAROCLINIC INSTABILITY WITH SHEAR 99 

Z 

U 

(b) 

Figure 1 (Continued) 

U - 

-h 

-1 

[this expansion automatically satisfies the bottom boundary condition (3)]. Substitu- 
ting (7) into (l), (5) and taking the limit p, +O, we obtain 

(8) 
a ay* 
at ax 
-(AY2 - a2) + J (Y2, AY2 - 02) + fi- = 0; 

I = (1 - h ) 0 2 ,  
(9) 

Boundary conditions (2) and (8)-(9) supplement (l), which is now to be solved in the 
interval ZG( - h, 0). 

In principle, (8) and (9) could have been derived from the primitive equations using 
stratification model (6) and the quasi-geostrophic approximation, which is how the 
layer models are usually derived (e.g. Pedlosky, 1987). This procedure would be much 
longer than our approach; on the other hand, it would clarify the physical meaning of 
a2 (this quantity is proportional to the displacement of the interface). 

Assuming (without loss of generality) that the lower layer is at rest, we describe zonal 
flow by 

Y1 = - Y U l ( Z ) ,  Y 2  =o, m2 = - y s ;  (104 
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100 E. S .  BENILOV 

where ul(z) is the velocity profile in the upper layer and S is the slope of the interface. 
Substitution of (loa) into (9) yields the following constraints: 

(lob) 

Now we linearize the governing equations against the background of the steady 
solution (lo), i.e. substitute 

into (1-2), (8-9) and omit the nonlinear terms. Then we substitute the harmonic-wave 
solution: 

CYl, y2 ,  m21 = [Y, (4, Y,, Q 2 ]  exp[il(ct - x) - imy]; 

where c and (1, m) are the phase speed and the wavevector of the disturbance. Now $ 2  

and a), can be eliminated from the resulting equations, and we obtain 

at z =  - h ;  1 d*1- (1 - h)(ck2 + B + S) 
-- - - 
p, dz c + (1 - h)(ck2 + p + S)*" 

where k2 = l 2  + m2. Finally we replace t+h1 by $ such that 

Substituting (12) into (11) and making use of (lob), we obtain (primes and indices 
omitted): 

- c - u)2*, + [k2(C - u)2 + p(c - u)]* = 0, [d: I. 
1 

-(c - u)~$= = 0, at z = 0, 
PZ 

C(c-u)(l - h) (ck2  + p )  
$, at z =  -h.  (13c) 

1 
PZ 
-(c - u)2$, = - 

c - u + (1 - h)(ck2 + 8) 

Equations (13) form an eigenvalue problem. If the eigenvalue c is complex, the current 
with parameters [p(z), u(z), h] is unstable. 
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BAROCLINIC INSTABILITY WITH SHEAR 101 

3. ASYMPTOTIC SOLUTION TO THE EIGENVALUE PROBLEM (13) 

Generally speaking, eigenvalue problem (13) cannot be solved analytically. If, however, 

(where 6 p  = p( - h) is the relative density variation across the upper layer- see Figure I), 
the last two terms in (13a) can be treated as a perturbation and the solution can be 
found asymptotically. Indeed, in this case $(z)  can be, to the leading order, approxi- 
mated by 

$(o) z const, + const, (c  - ~ ) - ~ d z .  (15) S 
Boundary condition (13b) “kills” the second term in (15), after which const, can be 
equated to 1: 

$(O) = 1. (1 6) 

Next we observe that (16) satisfies the lower boundary condition (13c) only if we can 
omit the right-hand side of (13c), i.e. when 

( 6 p ) - ’ I c - u l > > u  (17) 
(ithas been takenintoaccount that c - u). Conditions(l4)and(l7)stipulate thevalidity 
of the zeroth-order solution (16). 

The next term $(1) can be found using the straightforward perturbation technique, 
which would also yield the leading-order term for the dispersion relation c(k) .  
However, this procedure is associated with cumbersome calculations and will be 
bypLssed. In order to derive the dispersion relation c(k)  without calculating we 
integrate (13a) with respect to z over (-h,O) and take into account (13b,c): 

$( - h) + so [ k 2 ( c  - u)’ + B(c - u ) ] $ d z  = 0, (18) 
c ( c -  U)(1 -h)(ck’  +p)  
c - U + ( 1 - h ) ( c k 2 + p )  - h  

where 
u = u( - h). 

Since all terms in this equation are of the same order (the big term 2- (pJ1 has been 
eliminated), we can substitute the zeroth-order solution ( 16)2: 

(19) 
c(c - U)(1- h)(ck2 + p) 
c - u + ( 1 - h) (Ck2 + p) + lo [ k 2 ( c  - u)’ + p ( c  - u ) ] ~ z  = 0. 

- h  

It should be emphasized that, in the vicinity of a critical level (if any), the solution, of course, cannot be 
approximated by (17). However, this region is narrow and its contribution to the integral term in (18) is small. 
Moreover, the integrand in this term vanishes at u(z) = c, which further downgrades the contribution of the 
critical level. Finally. we are interested in unstable perturbations, for which Im c # 0 and c - u # 0. 
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102 E. S. BENILOV 

This equation can be reduced to a cubic equation with respect to c and then solved 
analytically. However, due to the large number of parameters involved, the exact 
solution is very bulky and meaningless from a physical viewpoint. We shall analyse (18) 
using the assumption that the velocity variations in the upper layer are small: 

Substituting this into (19) and neglecting terms O(v2), we obtain 

(C - U)(h[k2(c - U )  +PI  [C - U + (1 - h)(ck2 + p) ]  + ~ ( 1 -  h)(ck2 + b ) }  

where 

0 0 

v = h - I j- 2) ( z )  dz = h - 1- [I u ( z )  - U ] d z  

characterizes the mean variance of the velocity in the upper layer. First we consider (20) 
with 

V-0. (21) 

It should be emphasized that (21) is consistent with assumption (14b) only if 6p also 
tends to zero. In other words, we consider the following double limit 

I v I + 0, 6p -+ 0 such that (6p)/v -+ 0. 

Substitution (21) breaks the cubic equation (20) into 

h[k2(c-U)+fl][c-U+(1 -h)(ck2 +p)]+c(l-h)(ck’+p)=O, (22a) 

These equations can be easily solved: 

c = - i ( B  - f i ) / A ,  c2 = - i ( B  + > ) / A ,  c3 = U ;  (23a, b, c) 

where 

A = h(1- h) k4 + k2, B = - h(1 - h)U k4 - 2h [U - (1 - h ) j ] k 2  + f l , 
D=U2h2(1  - h 2 ) k 8  +2h(l  -h)U[(1-2h)P-2U]k4+P2. 

Here c1 ,2  are the two Rossby-wave modes; correspondingly, (22a) yields the standard 
dispersion relation of Phillips’ instability (e.g. Pedlosky, 1987). c3, in turn, describes the 
mode supported by the vertical shear of the flow. 
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BAROCLINIC INSTABILITY WITH SHEAR 103 

Next we consider a perturbed (V# 0) flow. From a physical viewpoint, the instability 
is likely to occur when two (or more) modes have a resonance: 

cl(h) = c,(k) ,  or c 2 ( k )  = cj(k), or c , ( k )  = c3(k) .  (24a, b, c) 

Resonance (24a) corresponds to Phillips’ instability and is of no interest for us. The 
physical meaning of the other two resonances follows from the fact that the phase 
speeds of the resonant waves match the velocity in the upper layer [see (22b)l. In other 
words, these waves have critical levels. The mathematical meaning of the intermode 
resonance is discussed in Appendix B. 

In order to find the values of parameters, for which resonances (24b, c) occur, (22b) 
should be substituted into (22a). We obtain 

k2 is arbitrary, U =  -Ph ,  c =  u; (25% b, c) 

k2 = - p / U ,  u<o, c = u. (26a, b, c) 

or 

In case (25), the resonance between the shear mode and one of the Rossby-wave modes 
occurs for all wavenumbers [substitute (25b) into (23b) and compare the latter to (23c)l. 
This case will be considered in Section 4.2. First we shall consider case (26), which 
makes sense only for flows with U < 0 (westward shear). 

Now we return to the dispersion Equation (20) and formally expand it in the vicinity 
of the wave that satisfies conditions (26): 

c = U + C ,  k 2  = - ( p / U )  + K ;  (27a, b) 
where 

ICJ<< - u, pi<< -p/u. (28a, b) 

After substitution of (27) into (20), all linear in C , K  or U terms cancel out, while the 
quadraiic terms yield 

[ 1 - 2h + h( l  - h)(B/U)] cz 
- { [h  + (~ /p ) ]  (1 - h) U K - h [ 1 - ( 1 - h)(p/U)] U } C + h (1 - h) U K V = 0. (29) 

It can be readily demonstrated that C is real for all K (which means stability) if and 
only if 

(30) 
-u>ph( l -h ) / ( l -2h ) ,  if h < $ ,  
-u>o, if h 2 i. 

It should be emphasized that criterion (30) is applicable only to the critical-level 
instability, apart from which the modified model also describes the “classical” two- 
layer instability. In the case of westward flows, the latter does not take place if 
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104 E. S. BENILOV 

(Pedlosky, 1987). Evidently, conditions (30) and (31) are inconsistent, which means that 
all flows with westward shear are unstable. 

The critical-level instability does not affect flows with eastward shear, and the 
corresponding stability criterion of the modified model coincides with that of the 
unperturbed two-layer model: 0 < U d P (1 - h). 

3.1 Discussion 

It is worth noting that mere existence of the continuous component in the velocity 
profile does not guarantee the instability: if the average velocity in the upper layer is 
equal to the velocity at the interface, V vanishes and the instability disappears. Indeed, 
using (29), we can find the maximum growth rate: 

and the corresponding wavenumber: 

(it should be understood that the absolute value of the wave number is given by 
kma,= J - (P/U)  + ISmax). Then, introducing the spectral boundaries of the instability: 

we can find its spectral width: 

Equalities (32) clearly demonstrate that, if V = 0, both R and A vanish. The condition 
U # 0, however, is not very restrictive, as velocity profiles of real oceanic currents are, in 
most cases, monotonic (see Figure lb), which entails 6 # 0. In the remainder of this 
paper we assume that V has the same sign as U ,  i.e. V < 0. 

A more severe constraint on Vcomes from conditions (14b) and (16) of applicability of 
our asymptotic solution: 

As it turns out, condition (14a) does not impose any additional restriction. Indeed, the 
critical level instability takes place in the vicinity of the wavenumber given by (26); 
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BAROCLINIC INSTABILITY WITH SHEAR 105 

substituting (26) into (14a), we obtain 

IUI >> P h 6P, 

which is obviously a weaker constraint than (UI >> 161. 

( k 2 ,  U/P)-plane in Figure 2. 
The curve of marginal stability, corresponding to (29), is plotted on the 

4. SINGULAR POINTS OF THE INSTABILITY 

It is worth noting that the critical-level instability and Phillips’ instability coexist in the 
region 

(33) 
B h < - U < B h ( l - k ) / ( l - 2 h ) ,  if h<+,  
P k <  - U ,  if k > + ;  

0 

-0.1 

-0.2 

-0.3 

-0.4 

Figure 2 The curve ofmarginal stability on the ( k z ,  U/P)-plane. h = 0.2, U= 0.001 U. (1) Phillips’instability; 
(2) the critical-level instability. 
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106 E. S. BENILOV 

however, the spectral regions of the two instabilities do not overlap (see Figure 2). 
Formulae (32) also demonstrate that the marginal stability curve is singular at the 
boundaries of the “coexistence interval”. Assuming for simplicity that k < 4, we get 

R-rco, A-rm as - U - P k ;  

R+m, A + O  as - U + P k ( l - h ) / ( 1 - 2 k ) .  

Since conditions (28) in these cases are violated, our expansion of (20) is not applicable 
and has to  be modified. 

In the above derivation of (29) from general dispersion equation (20), it was implicitly 
assumed that 

C - K - i i ,  

which is obviously incorrect in the vicinity of the singular points, where C grows. 
However, the new order of C‘s magnitude can be easily “guessed” for both of the points. 

In what follows we shall use the following notation: 

U’ = - j k ( 1  - k ) / ( l  - 2k), U” = - pk .  

We shall demonstrate that, regardless of the singularities at U = U‘, U“, the qualitative 
side of the instability has been described correctly: the growth rate of the critical-level 
instability has maxima at U = U’, U”.  

4.1 U -r U’ 

From a physical viewpoint, this singularity corresponds to a triple resonance of the 
shear mode and both two-layer Rossby waves [(20) with ii= 0 has a triple root]. 
Accordingly, the coefficient of Cz in (29) vanishes, and we should take into account 
terms O(C3). It can also be derived from (29) that the spectral boundaries of instability 
converge to 

In order to describe the most general regime, we should keep in the dispersion equation 
as many terms as possible, which yields the following orders of the variables: 

c N 6213, (344 

IK-KoI-ii413, l U + j k ( l  - k ) / ( l  - 2 i ~ ) 1 5 6 ~ ’ ~ .  (34b) 

Expanding (20) in accordance with (34), we obtain 

- 2 k - ’ ( 1 - 2 k ) C 3 +  [l - 2 h + k ( l  -h)(P/U)]C’ 
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BAROCLINIC INSTABILITY WITH SHEAR 107 

If h # + 3 ,  the coefficient of the highest-order term in this equation does not vanish, and 
Cis finite for all K .  At the same time, equality (34a) demonstrates that in the vicinity of 
the singular point the instability is stronger than it is at regular points. 

In order to understand why the maximum growth rate is unbounded in this case, we 
note that the margins of the instability region go to infinity: 

Kma,+ - co, as U +  U” 

[see (32b) and Figure 23. Accordingly, condition (28b) is violated, and the dispersion 
Equation (29) fails (for one thing, it ignores the fact that the smallest allowable value of 
Kinaxis 

K,,,= - h  

- see (27b) with U = - Ph). The correct dispersion equation can be derived using the 
assumption that 

C - V”’, k2  N 1, 1 U + Phl N Vl”. (35) 

Substituting (35) into (20), we get 

[I - h 2 ( 1 - h ) k 4 ] C 2 + ( 1 - h ) ( l  - h k 2 ) ( U + P h ) C - p h ( l  - h ) ( l - h k 2 ) V = 0 .  (36) 

The region of instability, corresponding to (36), is a little wider than that described by 
(less accurate) equation (29) (see Figure 3), but the modified maximum growth rate is 
finite. Equation (36) also describes another region of instability (see region (3)  in Figure 
3) which has no analogue for (29) (see Figure 2), as region (3) is located far away from the 
curve k2  = - P/U. This new region of critical-level instability overlaps with the region 
of Phillips’ instability, and the two instabilities are, in this case, undistinguishable. 

It is also worth noting, that the second region of the critical-level instability has 
a singular point at 

k 2 = h - l ( 1  -h)-1/2,  

where the coefficient of C2 in (36) vanishes. We shall not discuss this singularity in 
detail, but note only that it corresponds to the triple resonance (similar to the case 
considered in Section 4.1) and can be regularized by the term O(C3). 

5. CONCLUSIONS 

Thus, the answer to the question formulated in the Introduction has been obtained: the 
continuous component of the velocity profile does destabilize all flows with westward 
shear. The instability occurs in the spectral region of disturbances with critical levels, 
but the unstable disturbances [given by (16)] do not have the logarithmic instability, 

For h = the singular point U = U’ does not exist a t  all 
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108 E. S. BENILOV 

k2 

0 

-0.1 

g -0.2 

-0.3 

-0.4 

1 2 3 4 5 6 I 
I I I I I I 

Figure 3 The curve of marginal stability on the (k2, U/p)-pIane corrected for U % - p h by equation (36)  
(dashed line). h = 0.2, 6 = 0.001 U .  (1) Phillip’s instability; (2,3) the critical-level instability. 

which is commonly believed to destabilize the flow through rapid variation of heat flux 
(e.g. Pedlosky, 1987, p. 536). Instead of the interpretation based on the singularity, we 
interpret the instability discovered as a result of a resonance of Rossby waves and the 
“shear mode” supported by the vertical shear of the mean flow. 

The critical-level instability can “coexist” with the standard Phillips’ instability [the 
coexistence interval given by (33)], and at the endpoints of this interval has peaks. It is 
also worth noting that the instability of weak ( U - 0 )  flows takes place at short 
wavelengths (see formulae (32b) and Figure 2). 

The fact that the instability occurs even for infinitesimal perturbation of the 
two-layer velocity profile, indicates that the two-layer model is structurally unstable 
and casts certain doubts on its suitability for description of realistic (continuously- 
stratified) flows. The results obtained suggest that those are more unstable than how 
they must be according to the two-layer. It should be emphasized, however, that this 
conclusion is not applicable to the two-layer model for Rossby waves in still water, as 
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BAROCLINIC INSTABILITY WITH SHEAR 109 

we have no evidence that it is structurally unstable or underrates any physically 
important quantity. 

We note that continuous variations of the velocity and density in the lower layer 
should be expected to destabilize flows with positive U (eastward shear). This follows 
from the invariance of the unperturbed two-layer model with respect to simultaneous 
replacement of 

h by (1 - h ) ,  (1 - h )  by h, U by - U ;  

and can be verified by straightforward calculations similar to those in this paper. 
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APPENDIX A DERIVATION OF MATCHING CONDITIONS (5 )  

Introducing the following variables: 

(A.la) 

(A.lb) 

(A.lc) 

we can rewrite system (1)-(3) in the form 

(A” - + J(Y, AY - @) + BY, = 0, (A.2a) 

A , + J ( Y , A ) = O ,  at z =  -1, (A.2b) 

B, + J(Y, B) = 0, at z = 0. (A.2c) 

Integrating (A.lc) and taking into account (A.lb), we get 

-Y&, x , y , z )  = - 
P S Z )  

@(t,  x, y,z’)dz’  + B(t,x, y ) .  (A.3) sp 1 

Multiplying (A.3) by p,(z)  and integrating again, we obtain 

CP(z‘)-P(Z)l@‘(t,x,Y,z’)dz’+ B ( t , x , y ) p ( z ) +  4@,X,Y),  (A.4) 
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110 E. S .  BENILOV 

where g ( t ,  x, y )  is an undetermined “constant” of integration, which should be treated as 
a new unknown function. Finally, putting in (A.3) z = - 1 and taking into account 
(A.la), we get 

Equations (A.2), (A.4) and (A.5) form a closed system, which is in some cases more 
convenient than the original Equations (1)-(3). In particular, if p(z) has a discontinuity: 

condition (A.3) clearly demonstrates that [l/pz(z)]Yz(t, x, y, z) is a continuous function, 
i.e. 

(4 
Figure 4 Graph of the left-hand side of equation ( B . l )  for C = 0 (a) distinct roots; (b) one distinct and one 
double roots. 
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(b) 
Figure 4 (Continued.) 

which is equivalent to (5a). In order to derive (5b), we rewrite (A.4) as follows: 

The first and the third terms on the right-hand side of(A.8) are continuous. Evaluating 
the discontinuity of the second term vi2 (A.6) and taking into account (A.7), we obtain 

which coincides with (5b): 
It should be noted that this simple derivation implies that CD is finite and 

CD( t, x, y, z) dz = 0. 
]:hyoo 

This can be justified physically: CD is the z-derivative of the vertical (Lagrangian) 
displacement of fluid particles and therefore can be assumed finite. 
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112 E. S .  BENILOV 

APPENDIX B: MATHEMATICAL INTERPRETATION 
O F  THE INTER-MODE RESONANCE 

We shall write Equation (20) in the general form: 

If U= 0, all three roots of Equation (B.l) are real: 

If c ~ , , , ~  are distinct roots (the non-resonant case), the graph of the left-hand side of(B.l) 
is shown in Figure 4a. The (resonant) case, where two modes have equal speeds (double 
root), is shown in Figure 4b. 

If we now perturb Equation (B.l) by V P.0 (V<< l), distinct roots remain real (they can 
only slightly change their values). As for a double root (if any), it has a 50% chance of 
becoming complex: 

a) If the local minimum of the right-hand side of (B. 1) moves downwards, the double 
root splits into two distinct real roots (see Figure 5a); 

(4 
Figure5 Graphoftheleft-handsideofequation(B.l)forv#O(thecase,where(B.l) withfi=O hasadouble 
root): (a) the double root splits into two distinct real roots; (b) the double root splits into two complex roots. 
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(b) 
Figure 5 (Continued.) 

b) if the local minimum of the right-hand side of (B.l)  moves upwards, the double 

This indicates that an instability can occur only if the unperturbed (V= 0) equation 

root splits into two complex roots (see Figure 5b). 

(B.l)  has two equal roots (resonance). 
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