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It is shown that all one-layer geostrophic isolated fronts are stable regardless of their profiles. 
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1 .  FORMULATION OF THE PROBLEM 

Equations, describing barotropic motion in a layer of an ideal fluid on the fl-plane, are 

h, + (uh) ,  + (vh), = 0: 

where ( x , y )  are the eastward and northward Cartesian coordinates, t is the time, 
(u ,  u )  are the depth-averaged horizontal velocity components, h is the thickness of 
the layer, (Q + f l y )  is the (variable) Coriolis parameter and g is the acceleration due 
to gravity. System (1) with the boundary conditions 

can be used as the simplest model of atmospheric fronts. If h is a monotonic function 
of y, the corresponding front is said to be isolated (or single). 

Equations (1) have also been used for the description of two-layer fronts in the 
ocean ( e g  Griffiths et al., 1982; Paldor, 1983a,b; Williams and Yamagata, 1984; 
Cushman-Roisin, 1986; Paldor and Ghil, 1990; etc.). In this case u, u and h describe 
the velocity and depth variations of the upper layer and g should be substituted for 
g’ = gE, where E = ( p 2  - p l ) / p 2  is the relative difference in the layers’ densities. 
Physical relevance of system (1) will not be discussed here in detail, we only remark 
that ( 1 )  is believed to adequately describe two-layer fluids if the depth of the bottom 
layer is much greater than the depth of the upper layer and the velocity in the former 
is negligible. In the oceanographic context ( 1 )  can be supplemented with either 
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82 EUGENE BENILOV 

boundary conditions (2) (including the cases h ,  = 0 and h+ - = 0) ,  or 

h + h+,  u, u --t 0, as y-+oo,  

v = o  at y = 0; 

which corresponds to a coastal front. 
Equations (1) have an exact solution describing a steady zonal front: 

(3) 

(4) 1 v = 0, 

where h ( y )  is an arbitrary function describing profile of the front. The stability of 
solution (4) was investigated mostly for the case of constant Coriolis parameter 

and for fronts of constant potential vorticity: 

( S Z  - uy + v,)/h = const. (5b) 

It was shown (Paldor, 1983a) that the following isolated front with constant potential 
vorticity 

if y > 0, 
if y < O  

(where h ,  and 1 are constants) is stable. 

Specifically, the front of zero potential vorticity 
Coastal fronts were analyzed within the framework of assumptions (5) also. 

R2/2g ( y2  - 1 2 )  
h ( Y )  = {o if y < 1, 

if y 3 1, 

was shown (Paldor, 1983b) to be stable provided the mean velocity of the flow exceeds 
Ql.  

It should be emphasized, however, that most of the major fronts in the ocean 
(except maybe Gulf Stream) are all characterized by low values of the Rossby number 

RO = U/sZL, 

where U and L are the characteristics scales of u and y ,  and therefore cannot be 
described by solution (6b). Indeed, for the zero-potential-vorticity fronts (6b) U N Szl, 
L N I and Ro - 1. 
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STABILITY OF GEOSTROPHIC FRONTS 83 

The present paper is devoted to the investigation of stability of geostrophic fronts 
(i.e. fronts with Ro << 1). Within the framework of geostrophic approximation the 
original equations (1) can be considerably simplified, which enables us to give up 
constraints ( 5 ) .  This approach has been used earlier by Cushman-Roisin ( 1986) to 
prove the stability of wedge shaped front 

if y 2 0, 
if y Q 0. 

In this paper, we consider geostrophic isolated fronts with arbitrary profiles. 

2. BASIC EQUATIONS 

Non-dimensional variables and parameters can be introduced as follows: 

u’ = ( g H ) -  ‘12 u, u‘ = (gH)- 1/2 u, h’ = H-’ h, 

s’ = Q 2 ( g H ) ” 2 8 ;  

where H is the characteristic scale of h. The equation, governing geostrophic motion, 
can be easily derived from system ( 1 )  (cf. Williams and Yamagata, 1984; Cushman- 
Roisin, 1986). In terms of the new variables (with primes omitted), this equation is 

ht - V * [ h J ( h , V h ) ]  - Bhh, = 0 (7) 

where J ( h , p )  = h,p, - h,px is the Jacobian operator. Boundary conditions (2) are 

The non-dimensional velocity components are determined by standard geostrophic 
formulae: 

u w - h,, v w h,; 

and the “coastal-front’’ boundary conditions can be rewritten as 

h + h +  as y - + ~ o ,  
h = h, at y = 0; 

where h, is a constant. The solution, describing small perturbations superimposed 
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on a steady front, is 

Substituting (9) into (7) and linearizing the latter, we obtain 

We consider harmonic perturbations 

where k and c are the wave number and phase velocity of the perturbations. 
Substitution of (1 1) into (10) yields 

In terms of 4, boundary conditions (8a,b) can be written in the form of a single 
equation : 

where (y- = - co, y, = 00) or (y- = 0, y +  = co). Boundary-value problem (12), 
(13) determines the eigenfunction 4 and the eigenvalue c. 

3. STABILITY OF FRONTS 

In order to prove that fronts are stable, it is necessary to show that all eigenvalues 
of boundary-value problem (12), (13) are real. 

In terms of a new variable $ = 4 /h , , ,  equations (12), (13) become 

Then, multiplying (14a) by $* (where the asterisk denotes complex conjugate), we 
integrate it by parts with respect to y over the interval (y-,y+).  Taking into account 
boundary conditions (14b), we obtain 

J Y -  J Y . .  
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STABILITY O F  GEOSTROPHIC FRONTS 85 

which clearly demonstrates that, if 

J Y -  

c may not be complex. The stability of an isolated (with a monotonic profile) 
geostrophic front is proven. 

Equation (15) shows that for westward flows ( k ,  2 0), c is negative and the 
perturbations go downstream. For the case of eastward flows the sign of c is unclear: 
it depends on balance of the inertial force and p-effect. Equation (15) also gives an 
approximate estimate of the magnitude of c: 

c - k 2  j Y +  k(kY) ’dy /  1:; k,dy, 
Y -  

where the integrals in the numerator and denominator are the momentum and kinetic 
energy of the front, respectively. Formula ( 16) corresponds to the expression for the 
meander propagation speed established by Cushman-Roisin et al. ( 1992). 

4. CONCLUSIONS 

Thus, it has been proven that all isolated one-layer geostrophic fronts are stable with 
respect to small harmonic perturbations. It should be emphasized that fronts with 
non-monotonic profile (e.g. coupled fronts) are not included in the proven theorem 
and therefore may be unstable (Pavia 1992). 

It should be emphasized that the result obtained in the present paper does not 
prove that real atmospheric or oceanic fronts are stable (we know that this is not 
so-e.g. Killworth et al., 1984); it rather indicates that the instability occurs due to 
stratiJcation of the atmosphere and ocean. It should be emphasized that the fronts 
considered would not be found stable just because of the geostrophic approximation: 
for example, two-layer geostrophic fronts are unstable (cf. Benilov, 1992). One can 
conclude that one-layer models have serious shortcomings and should not be used 
for description of unstable flows. 

The author is grateful to Prof. Gordon Swaters who found an error in the original 
version of this paper. 
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