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This paper is concerned with large-amplitude flows of a two-layer fluid on the B-plane. The Rossby number 
E is small, while the displacement of the interface and the depth of the upper layer are both of the order 
of the total depth of the fluid. Two systems of equations are derived, corresponding to two asymptotic 
ranges of the parameter / ? / E  (where /? is the ratio of the deformation radius to the earth’s radius). With 
the help of the equations derived, the stabifty of parallel density-driven flows is examined. It is shown 
that all flows are unstable with respect to the perturbations with wave length being of the order of the 
deformation radius. 
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1. INTRODUCTION 

Shallow-water equations, governing motion of a two-layer fluid on the P-plane, are 

( 1 4  

(1b) 
a 

ah d a 
- + -(huu,) + - ( h v , )  = 0. 
at ax aY 

(1c) 

+PY)U~, (2a) 

- (1 + P Y ) U ~ ,  (2b) 

ah a a 
at ax aY 

(2c) -- + - [( 1 - h ) ~ 2 ]  + - [( 1 - h)v2]  = 0. 
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68 EUGENE BENILOV 

Here we have introduced the dimensionless variables 

where the dimensional variables are marked with tilds: f, 2, j j  are the time and the 
horizontal spatial variables; h is the depth of the interface; 6 is the elevation of the 
free surface'; P,,,, o"1,2 are the horizontal components of fluid velocity in the layers 
(1 indicates the upper layer); H is the total depth of the ocean; f = 2R sin 4 is the 
local Coriolis parameter (fz is the frequency of the earth rotation, is the latitude), 
Ld = (pgH)' '2  f is the internal deformation radius (g is the acceleration due to 
gravity, p = ( p 2  - p 1 ) / p 2  is the relative difference in densities) and /J = (&/R)cot 4 
is the non-dimensional gradient of the Coriolis parameter ( R  is the earth's radius). 

System ( l ) ,  (2) consists of six nonlinear equations, and its analysis is a rather 
complicated problem. It can be simplified, however, if we 

(1) take into account that most of real oceanic currents (except, maybe, Gulf Stream) 

(2) assume that the displacement of the interface is much smaller than the depths 

The implication of both assumptions results in the well-known Rossby-wave 
equations. Unfortunately, these relatively simple equations are not applicable to the 
important case of large-amplitude density-driven flows where the variations of the 
depth of the upper layer are comparable with its mean value. Traditionally, such 
flows were examined within the framework of one-layer reduced-gravity model, based 
on the equality 

are geostrophic and/or 

of the layers. 

which closes the "upper-layer'' Equations (1) and allows them to be solved apart 
from (2). System ( l ) ,  (4) describes the evolution of the upper layer as if it is influenced 
by reduced gravity g' = pg with no bottom layer at all. Assumption (4) is supposed 
to be valid when the upper layer is much thinner than the bottom layer and the fluid 
velocity in the latter is negligible (e.g. Killworth et al., 1984; Cushman-Roisin, 1986; 
Paldor and Ghil, 1990; Chassignet and Cushman-Roisin, 1991 ; Cushman-Roisin et 
al., 1992). 

Note, however, that all major currents in the real ocean can hardly be approximated 
by a two-layer system with thin upper layer, and the one-layer reduced-gravity model 
( l ) ,  (4) cannot be applied to them. Moreover, even when the upper layer is thin, the 
direct comparison of one-layer and two-layer results (Killworth, 1983; Killworth et 
al., 1984) demonstrates that system ( l ) ,  (4) is adequate only when the ratio of the 
depth of the upper layer to the total depth of the fluid is less than 0.01. 

' If there was a real lid on the surface of the ocean, ii would be proportional to the pressure offluid on the lid. 
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LARGE-AMPLITUDE GEOSTROPHIC DYNAMICS 69 

The present paper is devoted to the investigation of dynamics of geostrophic 
density-driven flows. Two asymptotic systems of equations are derived, describing a 
“thick”-upper-layer flow under the influence of “strong” or “weak” 8-effect (Section 
3 ) .  Physical aspects of these systems are discussed in Secton 4, the stability of their 
zonal-flow solutions is studied and discussed in Sections 5 and 6. 

2. BASIC EQUATIONS AND FORMULATIONS OF THE PROBLEM 

We shall need the vorticity equation, which can be derived according to the following 
recipe: 

-( l b )  - -(la) h + -(2b) - (1 - h )  - (1  + By)[( lc)  + ( 2 c ) ] ,  [fX ay a ] [:x 

yielding 

+ ( 1 - h )  - + u 2 - + v 2 - + - + 2  a au2 a v  )(;; 31 
[it(:: ti) ( :x ay ax ay 

= (1 + 8y)[(u1” ax + v ,$)h  ay + (u2z ax + v2”)(1 ay - h ) ]  - P [ h o ,  + (1 - h ) v J .  

Equation (5) will be used in the original system instead of (2c). 

dimensional parameters: 
Large-amplitude density-driven oceanic motion is governed by three non- 

non-dimensional depth of the upper layer h0, 

the 8-effect number 81 
the Rossby number & = B/(Lf); 

where 0 is the characteristic value of fluid velocity and z is the spatial scale of the 
motion. Since the internal deformation radius is always much smaller than the earth’s 
radius, the parameter 8 - L,/R is small. Then ho, in its turn, is usually of the order 
of unity ( - 1/3 - 1/5 for major oceanic currents), while the Rossby number varies 
within the limits (0.01 - 0.3) and for most of large-scale oceanic flows can be assumed 
small. 
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70 EUGENE BENILOV 

3. ASYMPTOTIC EQUATIONS 

Since we are interested in flows where the displacement of interface and the depth of 
the upper layer are of the order of the total depth of the fluid, h and y should be 
scaled by unity: 

h = h ,  y = y’. (6a) 

At the same time, the Rossby number is small, thus we have to assume that the 
horizontal scale of motion is much bigger than the deformation radius: 

9 (6b) = & - l i z x ’  y = & - l / Z y ’ ;  

where the powers of E correspond to its physical meaning of the Rossby number. 
The fluid velocity is supposed to be geostrophic and should be scaled as follows: 

u1,2 = &%42, u1,2 = E ’ / 2 v ; , 2 .  (6c) 

As will be seen later, the time scale of motion is very sensitive to  the ratio PIE: in 
particular, there is a significant difference between the cases of “weak” and “strong” 
p-effect, i.e. - E~~~ and p - E ,  respectively (in the former case the p-effect is of the 
order of the first ageostrophic corrections, while in the latter case it is of the order 
of the main term of geostrophic dynamics). Accordingly, the time t should be scaled 
separately for different specific cases of the p-effect. 

The case of weak B-effect will be considered first. 

3.1) We set 

As will be justified by the result obtained, t should be scaled as follows: 

t = E -  t’. (7b) 

In terms of the new variables (with primes omitted), Equations (1),( 2a,b) and ( 5 )  are 
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LARGE-AMPLITUDE GEOSTROPHIC DYNAMICS 71 

ah a a 
- + -(hu,) + -(hu,) = 0, 
at ax dY 

&h - + u,-+$-v,-+-++’ a 8% d o ) ( :  31 
[:t(: 2) ( lx  ay  ax ay 

With the help of (8a), ul,z and u , , ~  can be expressed in the form of a “quasigeostrophic” 
series. Taking into account terms O( 1 )  and O(E) ,  we have: 

where the subscripts x, y and t denote derivatives and J ( v ] , ~ )  = qxhY - vyhx is the 
Jacobian operator. Substitution of (9) into (8b,c) yields two equations governing the 
evolution of V ]  and h (small terms W E  dropped): 

h, + J(V],h) = 0, 

hCAV], + J(V]>AV]) + ~ V x l  + ( 1  - h){A(V] - h),  + J“? - h),A(V] - h ) l  + 4V] - h),) 

+ Vh.{Vh, + J(V],VV]) - J [ ( q  - h),V(V] - h ) ] )  = 0. 

In terms of a new variable 

v]+Y = V ]  - h + $h2, 

this system can be written as 
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12 EUGENE BENILOV 

A Y ,  + a"', - ( A h ) h ,  - V h - V h ,  

After straightforward, but rather cumbersome calculations [including the use of (1  l a )  
to substitute for h,] ,  most of the nonlinear terms cancel out, and system ( 11) turns into 

A Y t  + J ( Y , A Y )  + uY', + V - [ h ( l  - h ) J ( h , V h ) ]  = 0. (12b) 

Equation ( 12b) indicates that Y is the amplitude of barotropic component of motion, 
while Equation (12a) shows that the baroclinic mode does not contribute to the 
motion of the interface. 

3.2) In the case of strong 8-effect 

p = &a, 

the motion is much slower: 

t = & - 312 t'. 

Formula (10) should be scaled as follows: 

[( 13c) inter alia shows that, in the zeroth order, motions in the layers are related 
algebraically: q x h - )h2 .  From a physical viewpoint, this should be interpreted as 
a vertical nonlinear mode.] 

Substitution of ( 6 )  and (13) into ( l ) ,  (2a,b) and ( 5 ) ,  after some straightforward 
calculations, yields (primes omitted): 

h, + J(Y,  h )  = ah( 1 - h)h,, (14a) 

aYx + v * [ h (  1 - h ) J ( h , V h ) ]  = 0. (14b) 

Note that terms, describing p-effect and the geostrophic motion of the interface in 
(14a), are of the same order. 

4. DISCUSSION 

In this section, physical aspects of (12) and ( 14) are briefly discussed. 
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LARGE-AMPLITUDE GEOSTROPHIC DYNAMICS 73 

4.1) Dimensional parameters of flows, described by the equations derived, are 
represented in the following table [cf. ( 6 )  and (7), ( 6 )  and (13), and (3)]: 

(12) (14) 
horizontal spatial scale/L, 3 E - 1 1 2  3 &-  112 

time scale . f  a&- 3 E - 3 1 2  

depth of the upper layer/H -1 -1 
velocity in the 1st layer/(fL,) <&I12 < 
velocity in the 2nd layer/(fL,) <&1/2  < &I12 
B << & >>&312 

Note that both systems (12) and (14) are valid at E~~~ << B << E.  Accordingly, the 
following “transitional” system of equation 

h, + J ( Y , h )  = 0, 

aYx + v * [ h (  1 - h ) J ( h , V h ) ]  = 0; 

can be obtained as ( a  + a)-limit of (12) or ( a  -, 0)-limit of (14). 

4.2) As well as the original two-layer equations, both systems ( 12) and (14) have a 
solution describing parallel zonal flows: 

h = h(Y), = W Y ) ,  (16) 

where h ( y )  and Y ( y )  are arbitrary functions. 
In addition to solution (16), system (12) has 

a )  a solution describing steady non-zonal flows 

h = h ( x  siny + ycosy),  Y E 0, 

(y  is the angle between the flow and the eastward direction) and 

b) a radially-symmetric steady solution 

Both these solutions are rather unusual for a system, taking into account B-effect. In 
what follows, we discuss their physical meaning. 

Solutions (17) describe a current in the upper layer and a counter-current in the 
bottom layer, the mass f lux I = hu, + (1  - h)u2 being equal to zero. Indeed, with the 
help of (9) and (lo), one can obtain the following expressions for the velocities: 

u1 z - (Y + h - ihZ),, u1 z (Y + h - p),; 
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14 EUGENE BENILOV 

and then verify the equality 

I = ( -Yy,Yx). 

Accordingly, the solutions with Y = 0 do not transfer mass across the fi-plane. Of 
course, solutions (17) are not steady within the framework of the original Equations 
( l ) ,  (2); but the time of their relaxation is abnormally long ( >>&-I). 

4.3) System (12) conserves the following invariant: 

which is sign-indefinite and indicates the etliptical type of system (12). The type of 
a system, in its turn, is closely connected with the stability properties of its steady 
solutions-as it will be seen in the next section, all steady solutions of system (12) 
are unstable. 

System ( 14) also conserves an invariant analogous to (18): 

which is, however, strictly positive; indicating the existence of stable steady solutions. 

4.4) It should also be emphasized that, although system (12) looks very 
“quasigeostrophic”, it can be used as a model of cross-frontal mixing. Indeed, 
coefficients of equations (12) [as well as those of (14) J are regular and finite at the 
point h = 0, and the corresponding validity criteria are not exceeded. From a physical 
viewpoint this means that systems (12) and (14) do describe eddies which detach 
from their parent water mass and cross over to the other side of the front-this can 
be seen from the fact that the “h”-equations in (12) and (14) are of the first order. 

5. STABILITY OF ZONAL FLOWS 

In this section, the stability of zonal-flow solution (16) will be investigated within 
the framework of systems (12) and (14). 

5.1 ) The case of weak 8-eflect. 

In terms of a new variable 

Jo  
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LARGE-AMPLITUDE GEOSTROPHIC DYNAMICS 15 

Equations (12) are 

@$ + J(Y,@) = 0, 

A Y t  + J(Y,AY) + @Yx + J(@,A@) = 0. 

Linearizing (20) against the background of the zonal-flow solution 

Y ( x , y , t )  = Y(y) + $(y)exp(iot - ikx), 

@ ( x , y , t )  = @ ( y )  + 4(y)exp(iot - ikx);  

we obtain 

As will be seen later, the most unstable are short perturbations: 

Omitting, correspondingly, the term I ak$ I << I k Y ,  I I kz$ I and introducing a new 
variable x according to the formulae: 

we can reduce (22) to 

where 

Equation (25) and the boundary condition: 

constitute a boundary-value problem, determining the eigenfunction x and the 
eigenvalue o. If we multiply (25) by x* (the asterisk denotes complex conjugate) and 
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76 EUGENE BENILOV 

then integrate it with respect to y, we obtain the equality 

which clearly demonstrates that w is complex. Both ReY(y)  and ImY(y)  must 
change their signs (say, at y = yr,yi): 

Thus, all zonal geostrophic flows are unstable regardless of their projles. 

spectral interval: 
It should be emphasized, however, that formula (26) is valid in a rather narrow 

where Ubt = max{Yy}. The first part of condition (27) arises because the 
(dimensional) spatial scale of the motion within the framework of system (12) should 
be much greater than the internal deformation radius L, (cf. the table in Section 4), 
while the second part just follows from (23). 

It is worth noting that if 

where L is the (non-dimensional) width of the flow, the above analysis is valid for 
long-wave perturbations as well. Indeed, in this case 

and (22) can be reduced to clearly unstable (25) without short-wave assumption (23). 

5.2) The case of strong b-efSect. 

Exactly the same procedure 

yields 

where f = h(@)[1 - h(@)] and h is related to @ by (19). Multiplying (28) by X* 
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LARGE-AMPLITUDE GEOSTROPHIC DYNAMICS 77 

and integrating over ( - co < y < co), we obtain 

Since this equality is linear with respect to o and does not contain any complex 
quantities, o is real; which corresponds to the stability of all geostrophic flows 
regardless of their projiles. 

6. DISCUSSION 

Thus, we have obtained a very robust criterion: if P-effect is strong, all flows are 
stable; if /?-effect is weak, all flows are unstable. In order to understand its significance 
and physical meaning, we should place it in the broader context of results obtained 
earlier. 

6.1) The existence of a strong universal instability of zonal flows is confirmed by 
analytic results obtained by Kiltworth et al. (1984) (hereinafter referred to as KPS). 
In spite of a number of differences in formulation of the problem: 

KPS present paper 

width of the flow - L d  >> Ld 
velocity in the bottom layer = O  # O  
wavelength of perturbations >> L d  >> L, 

to the bottom layer’s depth << 1 -1 
P = O  #O 

ratio of the upper layer’s depth 

both KPS and the present paper arrive to the same conclusion: all zonal flows are 
unstable with respect to long perturbations (where “long” means “long compared to 
the deformation radius”). At the same time, experimental data (Griffiths et al., 1982), 
as well as numerical results (KPS, Paldor and Killworth, 1987; Paldor and Ghil, 
1990), point out that much of the growth takes place at wavelengths comparable to Ld. 

In order to clarify this contradiction, we note that short disturbances with wave 
numbers k >> 1 / L d  have an internal-wave, rather than planetary-wave, nature and 
therefore are stable (internal waves propagating in a large-scale flow have been 
examined by many authors, e.g. Voronovich, 1976). Thus, 

growth rate of perturbations with k >> l / L d  is equal to zero. 

On the other hand, results obtained in KPS and the present paper (formula (26)) 
show that 

growth rate of perturbations with k << 1 / L ,  grows with k. 
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78 EUGENE BENILOV 

Summing up both statements, we can conclude that the growth rate has its maximum 
at k - 1 /L,-as it should do in accordance with numerical and experimental evidence. 

6.2) Another contradiction is associated with flows in the transitional domain 
E~~~ << /? << E :  those can be described by either system (12) or (14) and, accordingly, 
seem to be stable and unstable at the same time. In order to clarify this question, 
one should consider the transitional system (15) as the ( a  + co)-limit of (12). As the 
p-effect grows stronger, the marginal wave number of the unstable perturbations 

k ,  = ( c ( /U) ’ /~  

(cf. (27)) tends to injinity. Accordingly, if we expand an arbitrary initial condition in 
terms of the eigenfunctions of boundary-value problem (22), the Fourier amplitudes 
of the unstable short-wave harmonics, will be exponentially small2. As a result, the 
instability disappears from the transitional system (15), as well as from the strong 
p-effect system (14). 

Thus, as B + co 

growth rate of the instability -+ const, 

marginal wave number ---t co. 

6.3) Finally, setting E = 1, we can construct a “mixed” system 

h, + J ( Y , h )  = ph( 1 - h)h,, } (29) 
AYt + J(Y,AY) + BY, + div[h(l - h ) J ( h , V h ) ]  = 0;  

which apparently describes the evolution of geostrophic flows for all values of B. 
System (29) conserves sign-indefinite invariant ( 18) indicating the short-wave 
instability which can also be confirmed by direct asymptotic analysis of the 
corresponding boundary-value problem. 
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