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On resonant over-reflection of waves by jets
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It is well known that internal or Rossby waves propagating across a jet can be amplified,
a phenomenon usually referred to as over-reflection. In some cases, over-reflection can be
infinitely strong – physically, this means that the reflected and transmitted waves can exist
without an incident one, i.e. they are spontaneously emitted by the mean flow. In this article, it
is shown that infinitely strong over-reflection (resonant over-reflection) occurs for gravity-wave
scattering by ageostrophic jets in a rotating barotropic ocean and Rossby-wave scattering by a
two-jet configuration on the quasigeostrophic beta-plane. It is further demonstrated that,
generally, a resonantly over-reflected wave is always marginal to instability, i.e. either an
increase or a decrease of its wavenumber transforms it into an unstable eigenmode localised
near the jet.
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1. Introduction

It has been known for more than 30 years that, if an internal or Rossby wave

propagates across a jet, the joint energy flux of the reflected and transmitted waves may

exceed that of the incident one (Jones 1968, Dickinson 1970, McKenzie 1972, Lindzen

1974, Eltayeb and McKenzie 1975, Acheson 1976, Van Duin and Kelder 1982, Basovich

and Tsimring 1984, Take-hiro and Hayashi 1992, Ollers et al. 2003). This effect, usually

referred to as over-reflection, is caused by the interaction of the wave with the jet’s

critical levels, i.e. the lines where the velocity of the mean flow matches the

corresponding component of the wave’s phase speed.
It is intuitively clear that, since over-reflection transfers energy from jets to waves, it

is conducive to the jet’s instability (Lalas and Einaudi 1976, Acheson 1976, Lindzen and

Tung 1974, Rosenthal and Lindzen 1983, Lindzen 1988). In particular, over-reflection

indeed causes instability if the wave is reflected back towards the critical level by a rigid

wall or a turning point beyond which the medium is not transparent (Lindzen and

Rosenthal 1976, Davis and Peltier 1979, Balmforth 1999). A similar effect has been

examined for acoustic waves in compressible fluids by Gill (1965), Blumen et al. (1975)

and Broadbent and Moore (1979). Furthermore, radiational instability of vortices can
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also be interpreted in terms of over-reflection (Ford 1994, Ford et al. 2000, LeDizés and

Billant 2009).
This article is concerned with the limiting case of over-reflection where the reflected

and transmitted waves are infinitely strong – which can be interpreted as spontaneous

radiation of waves by the flow. This effect is traditionally referred to as ‘‘resonant over-

reflection’’. We shall, however, use a more succinct term, ‘‘hyper-reflection’’, which also

emphasises that this effect is stronger than over-reflection – which is, in turn, stronger

than the usual reflection.
Two reasons make hyper-reflection worth studying. First, a situation where a jet

responds to a small-amplitude incident wave by an infinitely strong reflected one is

fascinating for a theoretician. Second, hyper-reflection may be responsible, at least

partially, for oceanic/atmospheric wave generation, as ‘‘bursts’’ of internal gravity

waves were observed in numerical simulations of Viúdez and Dritschel (2006) at large

distances from the jet. Such burst cannot be caused by either over-reflection (which is an

effect of a ‘‘moderate’’ nature) or the usual unstable modes (localized near the jet).
Three cases of hyper-reflection have been reported in the literature:

(1) Lindzen (1974) observed hyper-reflection of internal waves propagating
vertically in a stratified flow with a piece-wise constant velocity and a constant
Väsälä frequency. McIntyre and Weissman (1978) clarified the energy budget
of wave-flow interaction in this problem, and its weakly nonlinear extension
was examined by Grimshaw (1976, 1979).

(2) Maslowe (1991) showed that a similar effect occurs for a Rossby wave and a
jet on the �-plane, provided the critical level is located at the jet’s maximum.

(3) Lott et al. (1992) demonstrated the existence of hyper-reflection for internal
waves propagating vertically in a flow with a smooth ‘‘step-like’’ velocity
profile and a variable Väsälä frequency (both determined by hyperbolic
functions).

Note that settings 2 and 3 are described by Sturm–Liouville-kind problems, with

coefficients involving second-order poles located at the critical level. Setting 1, in turn, is

a limiting case of setting 3 (with the width of the velocity ‘‘step’’ and the variation of the

Väsälä frequency both tending to zero) – thus, it effectively involves a second-order pole

multiplied by a discontinuous coefficient.
In this article, we shall demonstrate that hyper-reflection can also occur for gravity

waves on the f-plane (section 2) and Rossby waves on the �-plane (section 3), of which

both involve first-order poles. We shall also examine hyper-reflection in a general

formulation, concentrating on its connections with instability (section 4).

2. Gravity waves and ageostrophic jets on the f-plane

2.1. The governing equations

Consider a thin layer of an ideal fluid with a free upper boundary, on a sphere rotating

with an angular velocity �. If the spatial scale of the flow is much smaller than the

sphere’s radius and we are interested in motions near a certain reference point located at

a latitude �, we can take advantage of the so-called f-plane approximation, replacing the
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sphere with a tangent plane. Since the layer is thin, we shall also use the shallow-water
approximation.

Then the motion of the fluid can be characterized by the horizontal velocity (u�, v�)
and depth h�, which depend on the horizontal Cartesian coordinates (x�, y�) and time t�

(the asterisks indicate that the corresponding variables are dimensional). We shall also
introduce the Coriolis parameter f¼ 2� sin �, the mean depth of the layer H0 and the
deformation radius

Rd ¼
ffiffiffiffiffiffiffiffiffi
gH0

p �
f, ð1Þ

where g is the acceleration due to gravity.
We shall use the following dimensionless variables:

x ¼
x�
Rd

, y ¼
y�
Rd

, t ¼ ft�, ð2a�cÞ

u ¼
u�
fLd

, v ¼
v�
fLd

, h ¼
h�
H

, ð2d�fÞ

in terms of which the shallow-water equations governing the fluid are

@u

@t
þ u

@u

@x
þ v

@u

@y
þ
@h

@x
¼ v, ð3aÞ

@v

@t
þ u

@v

@x
þ v

@v

@y
þ
@h

@y
¼ �u, ð3bÞ

@h

@t
þ
@ uhð Þ

@x
þ
@ vhð Þ

@y
¼ 0: ð3cÞ

Note that, in addition to homogeneous fluids, these equations can also describe a two-
layer density-straified fluid under additional assumptions that the upper (lighter) layer
is much thinner than the lower (heavier) one, and that the density difference �� is much
smaller than the mean density �0. In this case, g in (1) should be replaced with the
reduced gravity g0 ¼ g��/�0.

Equations (3a–c) admit a steady solution describing a parallel flow along the x-axis
(a zonal flow),

u ¼ Uð yÞ, v ¼ 0, h ¼ Hð yÞ,

where the depth and velocity are related by the geostrophy condition,

dH

dy
¼ �U:

We shall assume that

H! H�, U! 0 as y!�1,

i.e. the depth H(y) is a ‘‘step-like’’ function, whereas the flow U(y) is a meridionally
localized jet.

Consider a small-amplitude wave superposed on the jet (figure 1),

u ¼ Uð yÞ þeu, v ¼ev, h ¼ Hð yÞ þ eh,
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where the tilded variables describe the wave. Linearizing (3a–c), we obtain

@eu
@t
þU

@eu
@x
þev dU

dy
þ
@eh
@x
¼ev, ð4aÞ

@ev
@t
þU

@ev
@x
þ
@eh
@y
¼ �eu, ð4bÞ

@eh
@t
þ
@ ðUehþeuH�

@x
þ
@ evHð Þ
@y
¼ 0: ð4cÞ

We shall consider solutions with harmonic dependence on the zonal coordinate
and time,

eu ¼ Re
�
ûð yÞ eikx�i!t

�
, ev ¼ Re

�
v̂ð yÞ eikx�i!t

�
, eh ¼ Re

�
ĥð yÞ eikx�i!t

�
, ð5a�cÞ

where ! and k are the frequency and zonal wavenumber. Substitution of (5a–c) into
(4a–c) yields (hats omitted)

i kU� !ð Þuþ U0 � 1ð Þvþ ikh ¼ 0, ð6aÞ

i kU� !ð Þvþ uþ h0 ¼ 0, ð6bÞ

i kU� !ð Þhþ ikHuþ Hvð Þ0¼ 0, ð6cÞ

U(y)
Incident w

ave, (k, l- )

Transm
itted w

ave, (k, l+)

R
ef

le
ct
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av
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 (k
, -
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x

Figure 1. The setting: scattering of waves by a jet.
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where the primes denote differentiation with respect to y. Equations (6a–c) can be
reduced to a single equation for h,

Fh0ð Þ
0
þ

kF 0

!� kU
� k2Fþ 1

� �
h ¼ 0, ð7aÞ

where

F ¼
H

!� kUð Þ
2
�1þU0

: ð7bÞ

Observe that, generally, (7a,b) may involve singular points of two different types,
which will be denoted by yc and ya (in both cases, the subscript represents the

point’s number, i.e. c, a¼ 1, 2, . . .). yc are the points where the denominator in (7a)

vanishes,

!� kUð ycÞ ¼ 0, ð8aÞ

whereas, at y¼ ya, the denominator of (7b) vanishes,

!� kUð yaÞ½ �
2
�1þU0ð yaÞ ¼ 0: ð8bÞ

We assume that singular points of different types do not coincide,

yc 6¼ ya,

and that the singularities are simple poles, i.e.

U0ð ycÞ 6¼ 0, 2 !� kUð yaÞ½ � �kU0ð yaÞ½ � þU00ð yaÞ 6¼ 0:

Note that, even though the coefficients of equation (7a,b) are singular at y¼ ya, its
general solution is, surprisingly, regular (Boyd 1976). Indeed, it can be readily deduced

using the Frobenius method that

h ¼ Aa 1�
k�

!� kUð yaÞ
þO �2

	 �
 �
þ Ba �

2 þO �3
	 �� 


as y! ya, ð9Þ

where �¼ y� ya and Aa and Ba are constants of integration. Accordingly, the points ya
will be referred to as ‘‘apparent singularities’’.

The points yc, in turn, are the critical levels, and the solution of (7a,b) near y¼ yc is

h ¼ Ac 1�
F 0ð ycÞ

Fð ycÞU0ð ycÞ
� ln �þ 1

2�U0ð ycÞ �
� 


þO �2 ln �
	 �� �

þ Bc �þO �2
	 �� 


as y! yc, ð10Þ

where �¼ y� yc and Ac and Bc are constants of integration. Since it is a priori unclear
which branch of the logarithm in (10) should be chosen for �5 0, this singularity needs

to be regularized.
Since Rayleigh (1883), equations describing disturbances in a mean flow are

regularized by introducing infinitesimal friction. As the results of regularization do not

depend on which model of friction is used (e.g. Case 1960, Dikey 1960, Maslowe 1986),

we shall use the simplest one, assuming that the frequency ! has an infinitesimal
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positive imaginary part (which is sometimes referred to as the ‘‘Rayleigh viscosity’’).
Accordingly, (7a,b) will be replaced with

Fh0ð Þ
0
þ

kF 0

!þ i0� kU
� k2Fþ 1

� �
h ¼ 0, ð11aÞ

F ¼
H

!þ i0� kUð Þ
2
�1þU0

: ð11bÞ

In the next subsection, we shall introduce the boundary conditions describing wave
scattering by a jet.

2.2. The boundary conditions and scattering coefficients

Assume that the incident wave has a unit amplitude and is coming from y!�1 –
accordingly, the reflected and transmitted waves propagate towards y!�1 and
y!þ1, respectively (see figure 1). The corresponding boundary conditions are

h!
eil�y þ Re�il�y as y!�1,

Teilþy as y!þ1,

(
ð12Þ

where R and T are the reflection and transmission coefficients, l� and �l� are the
meridional wavenumbers of the incident and reflected waves, and lþ is the wavenumber
of the transmitted wave. Substitution of (12) into (11a) yields

l� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 1

H�
� k2

s
:

This formula implies that the incident wave is characterised by ! and k, with l� being
‘‘secondary’’ parameters. It is more convenient, however, to characterise the incident
wave by its wavevector (k, l�), in which case,

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH� k2 þ l 2�

	 �q
, lþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�l 2� � Hþ �H�ð Þk2

Hþ

s
: ð13a;bÞ

Note that, if l� is sufficiently small, expression (13b) yields imaginary lþ. Then, subject
to a proper choice of the sign of Im{lþ}, expression (12) shows that the wave field
decays towards y!þ1. In this case the transmission coefficient T can be assumed to
be zero.

The scattering coefficients R(k, l�) and T(k, l�) are a priori unknown and, thus, to
be determined together with the solution h from the boundary-value problem
(11)–(13). Note, however, that R and T satisfy a unitarity condition (derived in
appendix A),

lþHþ Tj j2þ l�H� ð Rj j
2� 1

�
¼ �k !2 � 1

	 �X
c



Q0 hj j2

Q2 kU0j j

�
y¼yc

, ð14aÞ

where

Qð yÞ ¼ ð1�U0
��

H ð14bÞ
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is the jet’s potential vorticity (PV). Observe that, in the absence of critical levels, the
right-hand side of (14a) vanishes, and the unitarity condition reduces to a requirement
that the energy fluxes of the reflected and transmitted waves add up to that of the
incident wave. Equation (14a) can also be interpreted in terms of pseudo-energy, i.e. the
difference between the energy of the mean flow and that perturbed by the wave (e.g.
Hayashi and Young 1987). Note, however, that the scattering coefficients are defined
for the wave field infinitely far from the jet, where the densities of energy and pseudo-
energy coincide – so the two interpretations are equivalent.

If, however, critical levels are present, the wave energy (pseudo-energy) is not
conserved. To understand whether it is generated or dissipated, observe that (13a)
implies !2

� 14 0. Then, the contributions of critical levels to the energy balance – as
described by (14a) – depend only on the PV gradient at y¼ yc:

. if kQ0(yc)4 0, the corresponding critical level amplifies the wave (over-
reflection),

. if kQ0(yc)5 0, the critical level absorbs the wave (under-reflection).

Note that apparent singularities do not contribute to the unitarity condition (14a) –
hence, wave energy is neither generated nor absorbed there.

The single most convenient characteristic of scattering in the problem at hand is the
non-unitarity coefficient given by

Sðk, l�Þ ¼
lþHþ
l�H�

Tj j2þ Rj j2: ð15Þ

As follows from (14a), S4 1 corresponds to over-reflection, S5 1 corresponds to
under-reflection and S¼ 1 implies that the wave energy (pseudo-energy) is conserved.

2.3. Numerical results

The boundary-value problem (11)–(13) was solved numerically using an algorithm
described in appendix B. We shall present the results for the so-called Bickley jet,

H ¼ 1þ 1
2 �H tanhðy=WÞ, ð16Þ

where �H is the depth change across the jet and W is the jet’s width. Note that, for
positive �H and W, the jet flows westwards (U5 0).

When computing the non-unitarity coefficient S as a function of, say, l�, it is
convenient to keep the zonal phase speed !/k constant (in which case the critical level
does not move when l� is changed).

The graphs of S versus l� for various values of !/k are shown in figure 2 for the jet
(16) with

�H ¼ 1, W ¼ 0:25: ð17Þ

The following conclusions can been drawn:

. For sufficiently small values of the incident wavenumber l�, the transmitted
wave does not exist (becomes ‘‘non-propagating’’). Indeed, as follows from
(13b), if l�! 0, then lþ becomes imaginary. The reflected wave still exists,
however, and R can still be computed in such cases – but they are not
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particularly interesting and we just let the curves in figure 2 terminate in the
small-l� region.

. Figure 2 shows that, for !/k��1.34 and l�� 11, over-reflection is anomalously
high. The corresponding value of the zonal wavenumber [which can be
determined using (13a)] is k��6.9.

. Further computations specifically targeting the region of anomalously large S
suggest that, for certain values k¼ k0 and l�¼ l0, the non-unitarity coefficient S
is truly infinite – i.e. over-reflection turns into hyper-reflection.

So far, this conclusion is based on numerical evidence only – but later it will
be supported by analytical and qualitative arguments. We also emphasize that,
even though figure 2 illustrates the results with moderate S, the full range of our
computations reached S� 1000 (as our numerical method is fully reliable for up
to S� 700, after which its accuracy slowly deteriorates).

We have also computed the wavevector for which hyper-reflection occurs for
the Bickley jet (16), (17),

k0 � �6:8665, l0 � 11:0693:

. The asymptotics of S as (k, l�)! (k0, l0) turned out to be difficult to compute.
We can only state that the integral of S in the (k, l�) plane over a region
including the hyper-reflection point (k0, l0) diverges, i.e. the singularity of S is
stronger than, or equivalent to, a second-order pole.

We have also computed the dependence of the hyper-reflection wavevector (k0, l0) on

the jet’s width W. The results are shown in figure 3: one can see that, as the jet becomes

narrower, the hyper-reflected wave becomes shorter.
The dependence of (k0, l0) on the depth change across the jet, �H, is shown in

figure 4. Observe that, as �H! 2, the meridional wavenumber l0 of the incident wave

tends to infinity. This is probably caused by the fact that, in this limit, the ocean’s depth

H(y) vanishes as y!�1.

0 5 10 15

l-

0

1

2

3

4

5

S

N
o 

 tr
an

sm
is

si
on ω/k = - 1.366ω/k = - 1.335

ω/k = - 1.34929ω/k = - 1.34929

Figure 2. The dependence of the non-unitarity coefficient S [defined by (15)] on the meridional wavenumber
l� of the incident wave, for the Bickley jet (16), (17). Each curve is computed for a fixed value of the phase
velocity !/k (indicated on the graph). Waves for which S4 1 correspond to over-reflection.
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For �H9 0.906, the meridional wavenumber lþ becomes imaginary, i.e. no
transmitted wave exists – in which case, as before, the graph is terminated. Note,
however, that hyper-reflection can still occur for this range of �H (as the reflection
coefficient can still be infinite), and our computations show that l0! 0 as �H! 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ΔH

−20

0

20

40

60

80

100

k 0
, l

0

    k0

   l0

N
o 

 tr
an

sm
is

si
on

Figure 4. The wavevector (k0, l0) of the hyper-reflected wave versus the depth change �H of the Bickley jet
(16) withW¼ 0.25. The curves terminate at �H� 0.906 when lþ becomes imaginary (i.e. the medium becomes
non-transparent for waves as y!þ1).

0 0.1 0.2 0.3 0.4

W

−20

0

20

40

60

80

100

 k
0,

 l 0

     k0

   l0

Figure 3. The wavevector (k0, l0) of the hyper-reflected wave versus the width W of the Bickley jet (16) with
�H¼ 1.
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Finally, observe that the zonal wavenumber k0 does not change much through the
whole range of �H.

2.4. Physical interpretation of hyper-reflection

An important insight into the mechanism of hyper-reflection can be obtained by
introducing

� ¼ F1=2h,

in which case (11a) becomes

��00 þ P� ¼ l 2��, ð18aÞ

where

Pð yÞ ¼
2FF 00 � F 0ð Þ2

4F2
�

1

F
�

kF 0

F !þ i0� kUð Þ
þ k2 þ l 2�: ð18bÞ

The boundary conditions (12), in turn, become

h!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l 2�

p
eil�y þ Re�il�y
	 �

as y!�1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l 2þ

p
Teilþy as y!þ1:

(
ð19Þ

Equation (18a) can be interpreted as the Schrödinger equation for a ‘‘quantum particle’’
with momentum l� scattered by a ‘‘potential’’ P(y) (e.g. Landau and Lifshitz 1981).
Also note that the analogy between quantum particles and oceanic waves has been
previously employed by LeDizés and Billant (2009).

A typical graph of P(y) is shown in figure 5. Observe that it involves four singular
points: two critical levels and two apparent singularities. Most importantly, the critical
level located between the apparent singularities is an amplifying one (Q04 0).

This circumstance suggests the following interpretation of hyper-reflection: imagine a
wave ‘‘oscillating’’ to and fro between two apparent singularities acting as barriers.
Then, each time the wave passes through the critical level, its amplitude grows.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
y

−400

−200

0

200

400

600

800

1000

P
(y

)

Amplifying CL

Absorbing CL

Figure 5. The potential P(y), as determined by (18b) for the Bickley jet (16), (17) and the wave with
k¼� 6.8665, l�¼ 11.069. The radiating and absorbing critical levels are labelled and marked with dotted
lines, the apparent singularities are marked with dashed-dotted lines.

10 E.S. Benilov and V.N. Lapin

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

im
er

ic
k]

 a
t 0

6:
19

 1
0 

A
ug

us
t 2

01
2 



Within the framework of this model, hyper-reflection occurs if the amplification of the
wave by the critical level exceeds the loss of wave energy through the barriers.

Note, however, that a doubly-reflected wave strengthens the ‘‘original’’ one only if
their phases coincide – i.e. the above interpretation neglects the wave interference. This
aspect of the problem will be explored in the next section using a mathematically
simpler example.

Also observe that, as y!�1, P(y) should tend to a constant sufficiently fast.
To understand why, consider, for example,

P! Pþ þ
P1

y
as y!þ1,

then (18a) yields

�! const� y�iP1=2lþeilþy as y!þ1,

which is inconsistent with the boundary conditions (19). To avoid this problem,
we assume

P ¼ P� þOð y�1�	Þ as y!�1, ð20Þ

where 	4 0 is a constant. In terms of the ‘‘physical’’ variables, this restriction amounts to

H ¼ H� þOð y�1�	Þ as y!�1,

which is implied everywhere in this article.

3. Rossby waves and jets on the quasigeostrophic b-plane

3.1. Formulation

Consider again a thin layer of ideal fluid on a rotating sphere, but this time assume the
elevation of the free surface to be small (which amounts to the quasigeostrophic
approximation). In this case, the motion of the layer can be characterised by the non-
dimensional streamfunction  , related to its dimensional counterpart by

 ¼
 �
fR2

d

,

where Rd is the deformation radius [given by (1)] and f is the Coriolis parameter.
Assuming also the �-plane approximation, we shall write the governing equation in
the form

@ r2 �  
	 �

@t
þ
@ 

@x

@r2 

@y
�
@ 

@y

@r2 

@x
þ �

@ 

@x
¼ 0,

where (x, y) and t are the ‘‘old’’ dimensionless coordinates and time (given by (2)), and

� ¼
Rd

RE
tan �,

RE is the Earth’s radius and � is the latitude.
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We shall seek a solution in the form

 ¼ �

Z
Uð yÞdyþ e ,

where U(y) and e describe a zonal flow and a small-amplitude wave, respectively.
Following the same routine as in the previous section, one can obtain the following
equation equivalent of (11a):

� 00 þ k2 þ 1�
k U00 �U� �ð Þ

!þ i0� kU


 �
 ¼ 0: ð21Þ

Recall, however, that the coefficients of (11a) involve a ‘‘step-like’’ function, H(y),
whereas the coefficients of (21) have equal limits as y!�1. As a result, the meridional
wavenumber of the transmitted wave equals that of the incident wave in the present
case. Thus omitting the subscripts �, we have

 !
eily þ Re�ily as y!�1,

 ! Teily as y!þ1,

(
ð22Þ

! ¼ �
�k

k2 þ l2 þ 1
: ð23Þ

Equation (21) can be re-written in the ‘‘general’’ form (18a) with �¼ , l�¼ l and

Pð yÞ ¼ k2 þ l2 þ 1�
k U00 �U� �ð Þ

!þ i0� kU
: ð24Þ

Also note that the solution of the boundary-value problem (21)–(23) satisfies a unitarity
condition

Tj j2þ Rj j2� 1 ¼
�

lj j

X
c

U00 �U� �

U0j j
 
�� ��2
 �

y¼yc

,

which is similar to the one derived by Benilov et al. (1992) for non-divergent Rossby
waves.

3.2. A two-jet configuration

Observe that, unlike its counterpart (18b), potential (24) does not involve apparent
singularities – thus, it is unclear what can act as barriers trapping the wave and, thus,
give rise to hyper-reflection (as suggested by our interpretation in section 2.4).

As an alternative to apparent singularities, we shall consider a two-jet configuration,
so the wave can be trapped between the jets. Such a setting is also motivated physically,
as two distinct well-defined jets have been observed in the Antarctic Circumpolar
Current by Gille (1994), multiple jets also exist in the tropical part of the Earth’s ocean,
as well as on Jupiter and Saturn.

To simplify the problem, we assume that the jets’ velocities U1,2(y) are functions with
compact non-overlapping supports. In terms of the general equation (18a), this implies
that the potential is given by

Pð yÞ ¼ P1ð yÞ þ P2ð yÞ,

12 E.S. Benilov and V.N. Lapin
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where

P1 ¼ 0 for y =2 y1a, y1bð Þ,

P2 ¼ 0 for y =2 y2a, y2bð Þ,

and y1a5 y1b5 y2a5 y2b (see figure 6(a)).
For the first jet, we shall introduce ‘‘from-right-to-left’’ scattering coefficients R1, T1

(see figure 6(b)),

� 001 þ P1 1 ¼ l2 1,

 1 !
T1e

ily for y5 y1a,

eily þ R1e
�ily for y4 y1b:

(
ð25Þ

For the second jet, we introduce ‘‘from-left-to-right’’ coefficients R2, T2 (figure 6(c)),

� 002 þ P2 2 ¼ l2 2,

 2 !
eily þ R2e

�ily for y5 y2a,

T2e
ily for y4 y2b:

(
ð26Þ

We shall treat R1, T1, R2 and T2 as known characteristics of the individual jets and use
them to express the global scattering coefficients R and T defined by (21)–(23).

The calculations involved are given in appendix C, whereas here we shall only present

yy2a y2b

P2 (y)

y1a y1b

P1(y)

ψ = eily + R e-ily ψ = T eilyψ = A eily + B e-ily

(a)

y yy2a y2by1a y1b

ψ = T1 e-ily ψ = T2 eilyψ = eily + R2 e-ilyψ = e-ily + R1 eily

(b) (c)

Figure 6. A schematic illustrating the scattering of waves by two potentials with compact, non-overlapping
supports. Panels (b) and (c) illustrate wave scattering by the ‘‘individual’’ potentials P1 and P2, panel (a)
corresponds to the ‘‘global’’ scattering problem.
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the final result

T ¼
T2 ð1� R1j j

2
�

T�1 1� R1R2ð Þ
, R ¼

T1 R2 � R�1
	 �

T�1 1� R1R2ð Þ
: ð27a;bÞ

Evidently, if

R1R2 ¼ 1, ð28Þ

the global scattering coefficients are both infinite, i.e. hyper-reflection occurs.

3.3. Discussion

Physically, condition (28) means that, after two successive reflections from P1 and P2, a

wave trapped between the jets regains its original amplitude and phase. Given that the

incident wave keep ‘‘pumping’’ energy into the space between the jets, it is clear that

(28) should cause hyper-reflection.
It is less clear, however, why hyper-reflection does not occur when

R1R2 ¼ real number greater than 1: ð29Þ

This condition guarantees that, after two successive reflections, a wave trapped between
the jets regains its original phase and a larger amplitude. Yet, formulae (27a,b) yield

finite values of the scattering coefficients in this case!
One can only assume that, if (29) holds, the (steady) solution with finite R and T is

physically meaningless, as it co-exists with exponentially growing solutions (see the next

section). Thus, in a general solution, the steady component is, essentially, invisible

against the background of rapidly growing unstable field.
We shall also point out that:

. Hyper-reflection by a two-jet configuration never occurs if the jets are mirror
images of one another. In this case R1¼R2 – hence, condition (28) holds only if
R1¼R2¼�1. As a result, the zero denominators in expressions (27a,b) are
cancelled out by zero numerators, and R and T remain finite.

. If the jets have identical shapes (i.e. can be obtained from one another by
translation along the y axis), the transmission coefficient T remains finite even if
condition (28) does hold. In this case, it can be shown that

R2 ¼ �
R�1T1

T�1
eilD,

where D is the distance between the jets. Then, (28) implies that

R1j j
2¼ 1,

and formulae (27a,b) show that T remains finite (but R can still be infinite).
. Mathematically, singularities associated with critical levels are not essential for

hyper-reflection. Indeed, the two-jet example – or rather its ‘‘general’’
formulation through (18a) – shows that hyper-reflection can also occur if the
potentials P1,2 are analytical but complex functions. The latter property

14 E.S. Benilov and V.N. Lapin
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guarantees that over-reflection by a single jet may still occur – hence, so can
hyper-reflection by a two-jet configuration.

. In addition to hyper-reflection caused by trapping of waves between the jets,
there can be instances of hyper-reflection of waves with their critical levels
located at the jets’ maxima (Maslowe 1991).

. There seems to be no specific reason why hyper-reflection cannot occur for a
single jet and a wave with a critical level not located at the jet’s maximum (which
would be neither our setting, nor the one described by Maslowe (1991)). Still, we
have been unable to find any examples of such.

. We have examined numerically the non-unitarity coefficient S(l) for several
examples of double jets. A typical example computed for

U ¼ �0:7sech2½0:7ð yþ 20Þ� � 2sech2½2ð y� 20Þ�, � ¼ 2, ð30a;bÞ

is shown in figure 7. Out of the three peaks of S(l) shown in the figure, the first
and third correspond to over-reflection by the individual jets, with the middle

one corresponding to hyper-reflection by the two jets as a system. Comparing

figure 7 with figure 2, one can also deduce that, generally, over-reflection for

quasigeostrophic jets on the �-plane (figure 7) is much stronger than that for

ageostrophic ones (figure 2).

4. Hyper-reflected waves as marginally stable disturbances

In this section, we shall examine what happens with a hyper-reflected wave if its

wavevector or the parameters of the jet are perturbed. In section 4.1, we shall keep our

approach as general as possible, so it would be applicable to any hyper-reflecting

potential. Then, in section 4.2, general results will be illustrated by the example of waves

and jets on the �-plane.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

l

0

500

1000

1500

2000
S

Figure 7. The dependence of the non-unitarity coefficient S (defined by (15)) on the meridional wavenumber
l of the incident wave, for the double jet configuration (30a,b). The curve shown is computed for a fixed value
of the phase velocity !/k¼ 1.7713.
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4.1. General results

Assume for simplicity that

Pð yÞ ! 0 as y!�1:

This assumption holds for quasigeostrophic jets, but not for ageostrophic ones (where P
is a ‘‘step-like’’ function, with different limits as y!�1). Note, however, that all
results obtained for the decaying potentials can be readily extended to step-like ones
(but with more algebra required).

To describe a hyper-reflected wave, we shall use the general equation (18a) with l�¼ l
and the following boundary conditions:

�!
�Re�ily as y!�1,

�! �Teily as y!þ1:

(
ð31Þ

Comparing (31) with the standard boundary conditions (22), one can observe that (31)
describes reflected/transmitted waves without an incident one – which is what hyper-
reflection essentially is. However, (31) can also describe waves coming from infinity and
absorbed by the jet. To eliminate the latter possibility, we shall introduce the meridional
component of the waves’ group velocity,

Cl ¼
@!ðk, l Þ

@l
, ð32Þ

and require that, for a hyper-reflecting wave,

Cðk0, �l0Þ5 0, Cðk0, l0Þ4 0: ð33Þ

These conditions guarantee that the energy flux (which is proportional to the group
velocity) is directed towards �1, i.e. away from the jet.

Note also that the coefficients �R and �T in conditions (31) are related to the original
scattering coefficients R and T by

�R ¼ lim
k,lð Þ! k0, l0ð Þ

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rj j2þ Tj j2

p , �T ¼ lim
k,lð Þ! k0, l0ð Þ

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rj j2þ Tj j2

p ,

where (k0, l0) is the wavevector of the hyper-reflected wave.
Equation (18a) and the boundary conditions (31) form and eigenvalue problem,

where � is the eigenfunction and l is the eigenvalue. We shall distinguish two types of
solutions: hyper-reflected waves (Im{l}¼ 0) and captured waves (Im{l}4 0). Solutions
with Im{l}5 0, in turn, grow as y!�1 (see (31)) and, thus, will not be considered.

Now, let

P ¼ P0 þ "P1 þ "
2P2 þ 	 	 	 ,

where P0 is the potential for which hyper-reflection occurs for the wavevector (k0, l0)
and " is a small parameter. A perturbation of P results in a perturbation of the
solution, i.e.

� ¼ �0 þ "�1 þ "
2�2 þ 	 	 	 , l ¼ l0 þ "l1 þ "

2l2 þ 	 	 	 , ð34a;bÞ

�R ¼ �R0 þ " �R1 þ "
2 �R2 þ 	 	 	 , �T ¼ �T0 þ " �T1 þ "

2 �T2 þ 	 	 	 : ð34c;dÞ

16 E.S. Benilov and V.N. Lapin
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In the next-to-leading order, (18a) yields

��001 þ P1�0 þ P0�1 ¼ l20�1 þ 2l0l1�0: ð35Þ

Recalling that

�0!
�R0e
�il0y as y!�1,

�T0e
il0y as y!þ1,

(
one can readily show that the term involving �0 on the right-hand side of (35) causes �1
to grow linearly as y!�1. As a result, expansion (34a–d) is valid only for j yj
 "�1

and should be treated as the inner solution of the problem.
The outer solution, in turn, is given by the boundary condition (31), which represents

the asymptotics of � in the region where jPj
 1, i.e. for jyj� 1. The outer and
inner solutions ‘‘overlap’’ for 1
jyj
 "�1 – thus, for matching, the outer limit of �1
should be equated to the inner limit of (31). This amounts to expanding (31) in ",
which yields

�1!
�R0e
�il0y �il1yð Þ þ �R1e

�il0y as y!�1,

�T0e
il0y il1yð Þ þ �T1e

il0y as y!þ1:

(
ð36Þ

The boundary-value problem (35), (36) determines both �1 and l1. The latter,
however, is the more important characteristic, and it can be found without the
former.

To find l1, multiply (35) by �0 and integrate with respect to y over (�Y,Y ), where Y is
an undetermined large number. Integrating the term involving �001 by parts twice and
taking into account that �0 satisfies

��000 þ P0�0 ¼ l20�0,

we obtain

�00�1 � �0�
0
1

	 �
y¼Y
� �00�1 � �0�

0
1

	 �
y¼�Y
þ

Z Y

�Y

P1�
2
0 dy ¼ 2l0l1

Z Y

�Y

�20 dy: ð37Þ

Observe that, as Y!1, the integral on the right-hand side of (37) diverges. Thus, at
this stage, we let Y be large but not infinitely so, and re-arranging the first two terms in
(37) using (36) yields

�il1 �T2
0 þ

�R2
0

	 �
e2il0Y þ

Z Y

�Y

P1�
2
0 dy! 2l0l1

Z Y

�Y

�20 dy as Y!1: ð38Þ

Next, introduce an auxiliary function

�̂2 ¼
�R2
0e
�2il0y if y � 0,

�T2
0e

2il0y if y4 0,

(
ð39Þ

in terms of which (38) can be re-written in the form

2l0l1

Z Y

�Y

�̂2 dy� il1 �R2
0 þ

�T2
0

	 �
þ

Z Y

�Y

P1�
2
0 dy! 2l0l1

Z Y

�Y

�20 dy as Y!1:

On resonant over-reflection of waves by jets 17
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Rearranging the integrals of �̂2 and �20 as a single integral and taking the limit Y!1,
we obtain Z 1

�1

P1�
2
0 dy ¼ l1 2l0

Z 1
�1

�20 � �̂
2

� �
dyþ i �R2

0 þ
�T2
0

	 �
 �
: ð40Þ

This equation is the final product of our derivation. It relates the perturbation l1 of the
eigenvalue to the perturbation P1 of the potential. Observe that, if

P1! 0 as y!�1,

the integral on the left-hand side of (40) converges, and so does the integral on its right-
hand side (subject to the general restriction (20) for P0).

Most importantly, equation (40) is complex (as �0 is complex, and so are, generally,
�R0 and �T0). Thus, for an arbitrary perturbation P1, (40) yields either Im{l1}4 0
(captured wave), or Im{l1}¼ 0 (hyper-reflected wave), or Im{l1}5 0 (meaningless
solution growing as y!�1). We conclude that hyper-reflected waves are marginal to
the captured ones.

Most importantly, these captured modes are unstable.
Indeed, since the wave’s frequency ! is related to the wavenumber l by the dispersion

relation, it follows that that the first-order correction to ! is

!1 ¼ Clðk0, l0Þ l1 þ 
!, ð41Þ

where Cl is given by (32) and 
! is the correction due to the perturbation of other
parameters, such as the ocean’s depth and the zonal wavenumber (see an example in the
next subsection).

Note also that, since we deal with a conservative medium (a dissipative one would not
support wave propagation without decay), ! and Cl are both real. 
! is real too (as it
results from perturbations of real parameters), hence, (41) implies

Imf!1g ¼ Clðk0, l0Þ Imfl1g:

This equation shows that, since all captured modes correspond to Im{l1}4 0 and since
Cl(k0, l0) is positive (see (33)) – then Im{!1}4 0, i.e. the captured modes are indeed
unstable.

It is worth mentioning that captured modes are unstable due to wave generation at
the critical levels (see LeDiées and Billant 2009, and references therein) and
exponentially decreasing as y!�1 ‘‘tails’’ of these modes can be interpreted as
waves emitted at an earlier time, when the wave field near the critical levels was
exponentially weaker.

4.2. An example: waves and jets on the b-plane

To prove that a hyper-reflected wave is marginally unstable, it is sufficient to perturb
the zonal wavenumber,

k ¼ k0 þ "k1

and then verify that one of the two possible signs of k1 gives rise to an unstable captured
wave, whereas the other does not. The jet’s shape U(y) does not need to be perturbed.

18 E.S. Benilov and V.N. Lapin
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Note also that, in this section, we do not necessarily imply that U(y) represents a two-

jet configuration. All we assume is that a hyper-reflected wave exists, and its wavevector

is (k0, l0).
Perturbing the expressions for the frequency and potential, (23), (24), we obtain

!1 ¼ �
�k1

k20 þ l20 þ 1
þ
2�k0 l0l1 þ k0k1ð Þ

k20 þ l20 þ 1
	 �2 , ð42aÞ

P1 ¼ 2 l0l1 þ k0k1ð Þ 1þ
�k20 U00 �U� �ð Þ

�k0 � i0þ k0U k20 þ l20 þ 1
	 �� 
2

( )
: ð42bÞ

Substitution of (42a,b) into the general formula (40) (where � should be replaced
with  ) yields

l1 ¼
I k0

J� Ið Þl0
k1, ð43Þ

where

I ¼

Z 1
�1

1þ
�k0 U00 �U� �ð Þ

�k0 � i0þ k0U k20 þ l20 þ 1
	 �� 
2

( )
 2
0 dy,

J ¼

Z 1
�1

 2
0 �  ̂

2
� �

dyþ �R2
0 �

�T2
0:

It follows from (43) that a solution with Im{l1}4 0 exists for either k14 0 or k15 0 –
one way or another, captured waves do exist. Then from (42a), if Im{l1}4 0, then

Im{!1}4 0 (instability).
Finally, observe that expression (42a) can be re-written in the form

!1 ¼ Clðk0, l0Þ l1 þ Ckðk0, l0Þ k1, ð44Þ

where the meridional component of the group velocity of Rossby waves, Cl(k, l), is
given by (32) and the zonal one is, similarly,

Ckðk, l Þ ¼
@!ðk, l Þ

@k
:

Comparing (44) with the general expression (41), one can see that 
! in the latter
corresponds to the second term of the former.

5. Summary and concluding remarks

We considered two examples of hyper-reflection of waves by jets. In both cases, the

problem was reduced to a Schrödinger-type equation (18a) with potentials (18b)

and (24).

(1) For a shallow-water jet on the f-plane, we argued that hyper-reflection occurs
because the amplifying critical level is located between two apparent
singularities (acting as barriers and reflecting waves back to the critical level).
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(2) For the case of a two-jet configuration on the quasigeostrophic �-plane,
the roles of barriers are played by the individual jets. It has been shown
that, in this case, hyper-reflection occurs if a wave is trapped between the
jets, after two successive reflections it regains its initial amplitude and
phase.

In both cases hyper-reflection co-exists with instability due to disturbances localised

near the jet(s), with the hyper-reflected wave playing the role of the marginally stable

disturbance – i.e. it separates the spectral region where unstable eigenmodes exist from

the region where no meaningful solution exists.
Furthermore, since the above conclusion was obtained through the general approach

based on the Schrödinger equation (18a), it applies to all media with hyper-reflection.

In particular, it agrees with the examples examined by Lindzen (1974), Maslowe (1991),

Lott et al. (1992) – in all of which instability exists in a spectral region adjacent to a

hyper-reflected wave.
Note, however, that the opposite to the above conclusion does not hold: if a steady

state in a conservative medium is unstable and the spectral range of unstable

disturbances is bounded by a certain wavenumber, the wave with this wavenumber is

not necessarily a hyper-reflected one. This can be illustrated by any case where solutions

exist on either side of the marginally stable wavenumber (unstable on one side and

stable on the other) – whereas hyper-reflection implies unstable solutions on one side

and non-existence of solutions on the other.
Finally, the connection between hyper-reflection and modal instability tells one about

the latter just as much as it does about the former. Most importantly, it implies that the

unstable modes that are spectrally close to the hyper-reflected wave have their

eigenfunctions spread over large distances. This circumstance makes them capable of

generating disturbances far from the unstable flow, and we believe that they are

responsible for the ‘‘bursts’’ observed in numerical simulations of Viúdez and

Dritschel (2006) at large distances from the jet – simply because the usual, localized

modes cannot be.
The same should occur near all major oceanic currents, as all of them are, to some

extent, unstable.
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Appendix A: The unitarity condition (14a)

To derive (14a), multiply (11a) by h� (where the asterisk denotes complex conjugate),

take the imaginary part, and integrate over the interval �15 y51, which yieldsZ 1
�1

Im Fh0ð Þ
0
h�

� �
dyþ

Z 1
�1

Im
kF 0

!þ i0� kU
� k2F

� �
hj j2dy ¼ 0:

Integrating the first term by parts and taking into account the boundary conditions
(12), we obtain

lþHþ Tj j2þ l�H� ð Rj j
2�1

�
!2 � 1

�

Z 1
�1

Im Ff g h0
�� ��2 dy

þ

Z 1
�1

Im
kF 0

!þ i0� kU
� k2F

� �
hj j2 dy ¼ 0: ðA:1Þ

In what follows, we shall use the formulae

Im
1

f ð yÞ � i0

� �
¼ 
�
½f ð yÞ� ¼ 
�

X
n


ð y� ynÞ

f 0ð ynÞ
�� �� ,Z 1

�1


0½ f ð yÞ�Gð yÞ dy ¼ �
X
n

G0ð ynÞ

f 0ð ynÞ
�� �� ,

where 
 is the Dirac delta-function and yn are the roots of the equation f(y)¼ 0.
Applying the above formulae to (A.1), we obtain

lþHþ Tj j2þ l�H�
	
Rj j2�1

�
!2� 1

¼ �k
X
c

�
F 0 hj j2

kU0j j

�
y¼yc

��
X
a

Hsgn !�kUð Þ
h0j j2þ

�
k hj j2

!�kU

�0
þk2 hj j2

2 !�kUð Þ �kU0ð ÞþU00
�� ��

264
375

y¼ya

: ðA:2Þ

Finally, using the asymptotics (9) of the solution as y! ya, one can show that

h0
�� ��2þ k hj j2

!� kU

� �0
þ k2 hj j2

" #
y¼ya

¼ 0:

As a result, the second term on the right-hand side of (A.2) vanishes, and (A.2) reduces
to (14a) as required.
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Appendix B: The numerical method for problem (11)–(13)

If the coefficients of (11a) were regular, one could simply ‘‘shoot’’ the solution from

y¼þ1 towards y¼�1 using the following boundary condition:

h! eilþy as y!þ1, ðB:1aÞ

instead of the ‘‘correct’’ boundary conditions (12). For sufficiently large negative y, the
coefficients of (11a) become close to constant – hence, the solution becomes

h! b1e
il�y þ b2e

�il�y as y!�1: ðB:1bÞ

Comparing (B.1a,b) to the ‘‘correct’’ boundary conditions (12), one can use the linearity
of the problem to show that

T ¼ 1=b1, R ¼ b2=b1:

For the problem at hand, however, this simple approach needs to be modified, as the
coefficients of (11a) can be singular. Typically, four singular points arise: two critical

levels (determined by (8a)) and two apparent singularities (determined by (8b)).
To bypass this difficulty, one can extend (11a) and its solution into the plane of

complex y and modify the path of integration in such a way that it ‘‘misses’’ the singular

points. This approach was initially used by Boyd (1985) for a Chebyshev collocation

method and by Benilov and Sakov (1999) for the Runge–Kutta method (as in this

article). One would still have to keep the endpoints fixed, and also make sure that the

modified path can be moved back to the real axis without touching any of the critical

levels (the apparent singularities are unimportant in this case, as the solution is regular

there). This would guarantee that the solution would arrive at its final destination with

the correct value.
When implementing this plan, one should keep in mind that:

. The term i0 in the denominator in (11a) indicates that the critical-level
singularity is located just above the real axis for kU0(yc)4 0, and just below it for
kU0 (yc)5 0. Therefore, the path of integration near y¼ yc can only be moved
downwards and upwards, respectively.

. The coefficients of (11a) may have non-physical singularities at some complex
values of y. The Bickley jet (16), for example, is singular at

y ¼ 1
2 i�W, � 3

2 i�W, � 5
2 i�W . . . :

When moving the path of integration into the complex plane, one should
determine the locations of these non-physical singularities and make sure that

the modified path can be moved back to the real axis without touching them.

Note also that the coordinates of non-physical singularities always have

imaginary parts comparable to W, so one can miss them by simply keeping the

path of integration sufficiently close to the real axis.

On resonant over-reflection of waves by jets 23

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

im
er

ic
k]

 a
t 0

6:
19

 1
0 

A
ug

us
t 2

01
2 



Appendix C: The scattering coefficients for a two-jet configuration

Observe that, in between the jets, the ‘‘global’’ solution can be represented in the form

 ! Aeily þ Be�ily for y 2 y1a, y2b½ �, ðC:1Þ

where A and B are undetermined constants (figure 6). Then, comparing (C.1) with (26),
one can deduce

T=A ¼ T2, B=A ¼ R2: ðC:2Þ

Next, introduce

� ¼  �  =Rð Þ
�,

where the asterisk denotes complex conjugate. Recalling that  satisfies (22), then one
can show that

� ¼
R� ð1=R�Þ½ �e�ily if y5 y1a,

B� ðA�=R�Þ½ �e�ily þ A� ðB�=R�Þ½ �eily if y1b 4 y4 y2a:

(
Comparing this with (25), one can obtain

R� ð1=R�Þ

B� ðA�=R�Þ
¼ T1,

A� ðB�=R�Þ

B� ðA�=R�Þ
¼ R1: ðC:3Þ

Equations (C.2) and (C.3) form a set of equations for R, T, A and B. The required
formulae, (27a,b), follow from this set.
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