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Abstract

This paper attempts to resolve the long-standing contradiction between the observed longevity
of oceanic vortices and their theoretical instability. Using the model of quasigeostrophic, two-layer
ocean, we show that a vortex in the upper layer can be stabilised by a circulation in the lower layer,
such that the potential vorticity (PV) there is uniform. It is also argued that the assumption of uniform
PV in the ‘passive’ layer corresponds to the fact that most oceanic vortices are shed by frontal currents
and are alien to the well-mixed water masses around them.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Previous work

The contradiction between experimental and theoretical estimates of the lifespan of
mesoscale oceanic vortices (rings) has been identified more than 20 years ago. Observa-
tions (e.g.Lai and Richardson, 1977) suggest that rings exist for years, whereas almost all
theoretical works indicate that they are unstable. The first theoretical paper on the subject
(Ikeda, 1981) examined quasigeostrophic vortices in a two-layer ocean and demonstrated
that, for realistic oceanic parameters, rings with Gaussian deviation of the interface are un-
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stable (see also,Carton and McWilliams, 1989, 1996). Several papers (Sokolovskiy, 1988,
1997; Helfrich and Send, 1988; Flierl, 1988) examined quasigeostrophic vortices in a two-
/three-layer ocean – with potential vorticity of the vortex vanishing outside a circle – and
arrived at similar conclusions. A more general conclusion has been obtained byKillworth
et al. (1997)andBenilov et al. (1998)for two-layer and continuously stratified ocean, re-
spectively: they showed that all vortices, the radii of which are much larger than the Rossby
radius, are unstable regardless of their profiles.

Only two theoretical papers have found examples of stable rings.
The first such finding has been made byPaldor and Nof (1990). They considered

ageostrophic, solid-body rotating vortex surrounded by a heavier fluid, and demonstrated
that it is stable if sufficiently thin (thinner than, approximately, a one-quarter of the total
depth of the ocean). This result would resolve the paradox, as most oceanic rings are in-
deed thin. However,Benilov (2003)showed that instability of thin vortices is generally
caused by critical layers. Unfortunately, this devalued the result ofPaldor and Nof (1990),
as solid-body rotating vortex does not have critical layers and, as such, is not a good model
for (differentially rotating) oceanic rings.

Another mechanism of ring stabilization has been suggested byDewar and Killworth
(1995), who considered a Gaussian vortex in the upper layer of a two-layer ageostrophic
ocean and a relatively weak co-rotating circulation in the lower layer (‘deep flow’). It turned
out that the latter can stabilize the ring, or at least considerably reduce the growth rate of
instability. This result has been later extended to other vortex shapes byKatsman et al.
(2003)and, in all examples considered, a co-rotating deep flow reduced the growth rate;
however, no profile other than the Gaussian one would become completely stable.

1.2. A new approach

Before we describe the results of the present work, note thatDewar and Killworth (1995)
andKatsman et al. (2003)assumed that the deep circulation has the same profile as the upper-
layer vortex. A different approach has been used byBenilov (2004): the profile of the deep
flow will be derived from the assumption that potential vorticity (PV) in the lower layer
is constant. Such model is suggested by the fact that most oceanic vortices are shed by
unstable frontal currents: when a vortex moves away from the current and arrives to a new
location, the PV field below it cannot change and must remain equal to its initial, background
value. Observe also that the interface displacement, caused by the vortex, contributes to the
lower-layer PV; hence, to maintain its initial value, the lower-layer spins up. Remarkably,
the resulting circulation is always co-rotating, and never counter-rotating!

In order to understand how the deep circulation with uniform PV affects the vortex,
observe that normally vortices are unstable due to the interaction of two phase-locked dis-
turbances propagating ‘around’ the vortex in the upper and lower layers. These disturbances
are, essentially, Rossby waves, as they are supported by the gradient of the vortex’s PV field.
Accordingly, the uniform PV-field in the lower layer eliminates one of the disturbances and
makes the vortex baroclinically stable. As for the barotropic instability, it was shown to
require strong horizontal shear (Benilov, 2003), such that never occurs in mesoscale rings.
Thus, mesoscale vortices with uniform PV in the lower layer appear to be both baroclinically
and barotropically stable.
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The present contribution presents a brief summary of the paper byBenilov (2004),
adapting it for physics-minded readers. We shall demonstrate the stability of vortices with
uniform PV in the lower layer, in a two-layer ocean with thin upper layer, using the (sim-
plest) quasigeostrophic model. In Section2, we shall formulate the linearized equations
for harmonic disturbances (normal modes) superposed on the vortex. In Section3, through
numerical solution of the eigenvalue problem, we shall present several examples of stable
vortices with different profiles in the upper layer and uniform PV in the lower layer. In
Section4, we shall derive an asymptotic stability criterion for thin vortices with a weak
deep flow and show that it is satisfied for vortices with uniform lower-layer PV.

2. Governing equations

Consider a two-layer ocean with rigid lid and flat bottom, and let the densities and
depths of the layers beρ1,2 andH1,2 (where subscript 1 marks the upper layer). We shall
also introduce the upper-layer Rossby (deformation) radius:

Ld =
√
g′H1

f0
,

whereg′ =g(ρ2 − ρ1)/ρ2 is the reduced gravity andf0 is the Coriolis parameter. UsingLd
and the characteristic velocityV*1 of the flow in the upper layer, we shall introduce the
following non-dimensional variables:

t = V∗1t∗
Ld

, r = r∗
Ld
, θ = θ∗, ψ1,2 = ψ∗1,2

LdV∗1
,

wheret is the time, (r, θ) the polar coordinates,ψ1,2 the streamfunctions, and asterisks mark
the dimensional variables.

We are concerned with linear stability of radially symmetric vortices, and assume:

ψ1,2 = Ψ1,2(r) + ψ′
1,2(r, θ, t),

whereΨ1,2 describes the vortex, andψ1,2, the disturbance. We shall seek normal modes,
i.e. solutions of the form:

ψ′
1,2(r, θ, t) = Re[φ1,2(r) eik(θ−ct)],

wherek andc are the azimuthal wavenumber and angular phase speed, respectively.
For description of vortices, we shall employ the linearized quasigeostrophic equations

on thef-plane (for more details, seeBenilov, 2003),

(cr − V1)

[
1

r

d

dr

(
r
dφ1
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)
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1φ1 = 0, (1)
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where

ε = H1

H2

is the depth ratio,

V1,2 = dΨ1,2

dr

are the swirl velocities in the layers, and

Q′
1 = d

dr

[
1

r

d

dr
(rV1)

]
− V1 + V2, Q′

2 = d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + εV1

are the corresponding PV gradients.
Equations(1) and(2) should be supplemented by the usual boundary conditions,

φ1,2(0) = φ1,2(∞) = 0. (3)

(1)–(3)form a boundary-value problem, wherec is the eigenvalue. If Imc> 0, the vortex is
unstable.

In what follows, we shall assume thatV1(r) andV2(r) are smooth functions, decaying as
r→ ∞ and vanishing atr = 0 (the latter condition guarantees that the vortex is smooth at
its centre). We shall also assume that

0<
∫ ∞

0
r2V1 dr < ∞, (4)

i.e. the upper-layer net angular momentum of the vortex is finite and non-zero.

3. Numerical results

In this section, problems(1)–(3) will be solved numerically. Firstly, we shall briefly
discuss compensated vortices, i.e. those that have no flow in the lower layer. Secondly, we
shall examine several examples of vortices with uniform PV in the lower layer.

3.1. Compensated vortices

In this case, the lower layer is at rest,

V2 = 0, (5)

and we consider the following three examples of vortices in the upper layer:

V1G = r

r0
exp

(
− r2

2r20

)
, (6)
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Fig. 1. Profiles of angular velocity for vortices considered in the paper. In the upper layer, the vortex is determined
by (6), or (7), or (8) (the Gaussian, or Algebraic, or Sech profiles, marked by G, A, and S, respectively)—see panel
(a). In the lower layer, the profile of the vortex is eitherV2 = 0 (compensated vortices), or defined by equations
(11)and(12) (vortices with uniform PV in the lower layer). The latter type is shown on panel (b).

V1A = r

r0

(
1 + r2

5r20

)−3

, (7)

V1S = r

r0
sech

(
1.186r

r0

)
, (8)

wherer0 is the non-dimensional radius of the vortex (i.e. the ratio of its dimensional radius to
the deformation radius based on the upper-layer depth). The coefficients in these expressions
have been chosen to ensure that the maximum ofV1(r) is located atr = r0 (for (8), this equality
is approximate,r≈ r0). Profiles(6)–(8)will be referred to as the Gaussian, Algebraic, and
Sech vortices, respectively. The corresponding profiles of the upper-layer angular velocity,
V1/r, are shown inFig. 1a—to a naked eye, the three profiles are not all that different.

The stability of the Gaussian, Algebraic, and Sech vortices was explored byBenilov
(2003) in a wide range of parameters, both asymptotically and numerically (hereinafter,
this work will be referred to as B03). It was demonstrated that the most unstable azimuthal
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wavenumber is eitherk= 1 or 2. It was also shown that, for a givenk, the Gaussian vortex
admits a finite number of eigenvalues. The first eigenvalue1 always has the highest growth
rate. Moreover, when parameters of a stable Gaussian vortex change, the first eigenvalue
becomes unstable before the others, which makes it a ‘stability indicator’. The Sech vortex,
in turn, may have either finite or infinite number of eigenvalues (depending on whether
r0 < 1.186 or 1.186), but the first mode is, again, the stability indicator. Finally, the Algebraic
vortex admits infinitely many eigenvalues for eachk, and the first eigenvalue loses stability
after all the others—although, in many cases, it is still the most unstable one (when, of
course, itis unstable).

The most important characteristic of a vortex profile is the corresponding marginal stabil-
ity curve on the (ε, r0)-plane. It was computed for the three types of compensated vortices,
for the first eigenvalue of the second azimuthal wavenumber,k= 2. Asε→ 0 (the limit of
infinitely thin upper layer), the solution of the eigenvalue problems(1)–(3)is increasingly
difficult to compute, and we complemented the numerical solution by an asymptotic one,
obtained via a method developed in B03.

The results are shown inFig. 2.
Observe that the Gaussian profile has two regions of instability (seeFig. 2a). The narrow

strip with smallr0 corresponds tobarotropicinstability, caused by stronghorizontalshear,
whereas vortices with larger0 are unstablebaroclinically due tovertical shear. Note also
that, if the two types of shear are comparable, they, in a sense, cancel each other, which
explains the region of stability in the middle area ofFig. 2a [this effect has been previously
noted byDewar and Killworth (1995)]. Observe also that the Algebraic and Sech profiles
are barotropically stable.

To place the above results in oceanographic context,Fig. 2shows the parameters of the
35 rings catalogued byOlson (1991)(this paper will be referred to as O91). Unfortunately,
O91 provides no data on the depth ratioε, and we have to assume, on a more or less ad hoc
basis, that

0.05 ≤ ε ≤ 0.1.

Thus, each ring inFig. 2 is represented by an interval with a fixedr0, but uncertainε.
One can see that the Algebraic model (Fig. 2b) predicts that all rings are unstable for all
possibleε, and the predictions of the Sech model are similar. The Gaussian model is the
only one producing rings which are stable for the wholeε range (these are the six rings with
the smallest values ofr0). Overall, the proportion of stable vortices is far too low to account
for oceanic observations.

Still, one might argue that the instability is so weak that unstable rings survive for a
long time before breaking up, which would explain the lifespans observed. To eliminate
this possibility, we have computed the growth rate for the Gaussian vortex of radius 65 km
(which is the average over the rings listed in O91), in the ocean with deformation radius
of 27 km (which is, again, an average derived from O91). Non-dimensionally, these values
correspond to:

1 Here, the eigenvalues are enumerated according to the number of nodes of the lower-layer eigenfunction: the
first eigenfunction has no nodes, the second one has one node, etc.
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Fig. 2. Stability of compensated vortices with respect to the first mode ofk= 2, on the (ε, r0)-plane (ε is the depth
ratio of the ocean,r0 is the non-dimensional radius of the vortex). Solid line shows the numerical results, dotted
line shows the asymptotic results (based onε
 1); horizontal segments show the parameters of rings catalogued
by Olson (1991). (a) Gaussian vortex(6), (b) Algebraic vortex(7), (c) Sech vortex(8). The circle in the centre of
(a) shows the ‘mean’ vortex(9) and(10).

r0 = 2.47. (9)

With regard toε, we shall assume the mid point of this parameter’s range:

ε = 0.075 (10)

(Values(9) and (10) are shown inFig. 2a by a circle.) In this case, the first eigenvalue
with k= 2 is the most unstable one, with a growth rate ofk Imω≈ 0.01711. To put this into
dimensional terms, we need to fix the ring’s maximum swirl velocity. Unfortunately, O91
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provides only the ‘absolute’ maximum of the swirl velocity, whereas we need the maximum
of the swirl velocity averaged over the upper layer’s depth,V*1 max (which is a restriction
imposed by the two-layer model). EstimatingV*1 max to be within the range of 0.1–0.25 m/s,
we obtain the e-folding time of 111–44 days, respectively. Clearly, this is much shorter than
the lifespans of most oceanic rings.

Thus, the model of compensated vortices cannot explain the observed longevity of rings.

3.2. Vortices with uniform PV in the lower layer

For the upper-layer velocity, we considered the same three examples as before,(6)–(8).
The lower-layer velocity, in turn, was assumed to satisfy the condition that the PV gradient
is zero,

d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + εV1 = 0, (11)

and the usual boundary conditions:

V2(0) = V2(∞) = 0. (12)

As an illustration,Fig. 1b shows the solution of the boundary-value problems(11) and
(12) for the Gaussian, Algebraic, and Sech vortices, with the ‘mean’ parameters(9) and
(10).

It turned out that vortices with an Algebraic or Sech profile in the upper layer, and uniform
PV in the lower layer, are stable for all values ofε andr0—a thorough search failed to find a
single unstable vortex. For the Gaussian profile in the upper layer (and, again, uniform PV
in the lower one), the region of barotropically unstable vortices looks almost the same as
that for compensated vortices, but the region of baroclinically unstable vortices disappears
completely. Thus, the model of uniform PV in the lower layer predicts that all rings listed
in O91 are stable.

To illustrate the transition from compensated vortices to those with uniform PV in the
lower layer, consider:

V2 = α(V2)uPV, (13)

where (V2)uPV is the solution of the uniform-PV problems(11)and(12), andα is a number
between 0 (compensated vortex) and 1 (uniform PV in the lower layer). A large number of
vortices, with various parameters, were tested for stability, and in all cases the growth rate
vanished for someα< 1. A typical behavior of the non-dimensional growth rate is shown in
Fig. 3for the ‘mean’ vortex(9) and(10): one can see that, for all three upper-layer profiles,
the vortex becomes stable atα≈ 0.65. It is also worth observing that, for 0.45≤α≤ 0.65,
the three curves virtually coincide.

We have also computed the marginal stability curves forα= 0.65 (for the details of the
numerical technique, seeBenilov, 2004). For the Algebraic and Sech upper-layer profiles,
these curves are very close, and we show only the one corresponding to the former (see
Fig. 4b). The Gaussian profile is different (seeFig. 4a), but only as far as barotropic instability
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Fig. 3. The growth rate of the first mode ofk= 2, for the ‘mean’ vortex (ε= 0.075,r0 = 2.47), vs. the amplitude
α of the lower-layer circulation. The lower-layer velocity is determined by(13) (whereα= 0 corresponds to
compensated vortices, andα= 1 corresponds to vortices with uniform PV in the lower layer); ‘G’, ‘A’, and ‘S’
mark the Gaussian, Algebraic, and Sech vortex profiles.

Fig. 4. Stability of non-compensated vortices with respect to the first mode ofk= 2. In the upper layer, the vortex
is determined by(6), (7), or (8), and the lower-layer circulation determined by(13) with α= 0.65. The notation
is the same as inFig. 2. (a) Gaussian vortex [the circles mark vortices with parameters(14) and(15)] and (b)
Algebraic vortex.
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is concerned, whereas the curve separating baroclinically unstable vortices from the stable
ones is almost the same as that in the other two cases.

One can see that, for non-compensated vortices determined by(13) with α= 0.65, the
stability region has noticeably expanded (compareFig. 4a and b to Fig. 2a and b). Moreover,
the growth rate of vortices that are still unstable has fallen dramatically! Indeed, consider
the three rings on the O91 list that have the largest values ofr0,

r0 = 7.105, 6.000, 3.548 (14)

(In Fig. 4a, these values are marked by circles with numbers 1–3, respectively.) The corre-
sponding values of the deformation radius, extracted from O91, are:

Ld = 42, 10, 19 (km).

We shall assume that

ε = 0.1, (15)

which is the most unstable value of theε range considered before. Finally, we put

V∗1 max = 0.25 (m/s),

which is, again, the most unstable value of the range considered. For rings with these param-
eters, with Gaussian profile in the upper layer and profile(13) (α= 0.65) in the lower layer,
the (dimensional) e-folding times are 6.6 months, 8.9 months, and 14.4 years, respectively.

Thus, one of the rings is virtually stable, whereas the lifespan of the other two is suffi-
ciently large to fit with, at least, some observations.

We note that the caseα< 1 can be viewed as a simple model of a non-uniformity of PV
in the lower layer, including those that are caused by background currents (which are often
present in the ‘real’ ocean). The existence of stable vortices withα< 1 demonstrates the
robustness of the suggested mechanism of stabilization and shows that stability persists in
the face of less than ideal conditions.

Finally, note that flow(13) is not the only possibility to stabilize the vortex—after all,
Dewar and Killworth (1995)did show that, for Gaussian vortices, a co-rotating Gaussian
circulation has the same effect. Our point is that(13) stabilizes all vortices regardless of
their profiles, and also appears to be a realistic model of oceanic rings.

4. Asymptotic results

Assume that the upper layer is much thinner than the lower layer,

ε 
 1,

and that the flow in the latter is weak, say,V2= O(ε) (it may or may not correspond to
uniform PV, as we shall first consider the general case). Accordingly,

V2 = εṼ2,
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whereṼ2 = O(1). Rewriting equations(1) and(2) in terms ofṼ2 and omitting the tildes,
we obtain:

(cr − V1)

[
1

r

d

dr

(
r
dφ1

dr

)
− k2

r2
φ1 − φ1 + φ2

]

+
{

d

dr

[
1

r

d

dr
(rV1)

]
− V1 + εV2

}
φ1 = 0, (16)

(cr − εV2)

[
1

r

d

dr

(
r
dφ2

dr

)
− k2

r2
φ2 − εφ2 + εφ1

]

+ε
{

d

dr

[
1

r

d

dr
(rV2)

]
− εV2 + V1

}
φ2 = 0. (17)

Observe that the eigenvalue problems(16)and(17), (3) is satisfied by:

c = 0, φ1 = V1, φ2 = εV2 for k = 1. (18)

(18) corresponds to an infinitesimal shift of the vortex as a whole and has nothing to do
with its stability—it will be referred to as thetrivial solution.

4.1. The classification of modes

Seek a solution in the form:

φ1 = φ
(0)
1 + εφ

(1)
1 + · · · , φ2 = φ

(0)
2 + εφ

(1)
2 + · · · , c = c(0) + εc(1) + · · · ,

To the leading order, the eigenvalue problems(16)and(17), (3) yields:

(c(0)r − V1)

[
1

r

d

dr

(
r
dφ(0)

1

dr

)
− k2

r2
φ

(0)
1 − φ

(0)
1 + φ

(0)
2

]

+
{

d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
φ

(0)
1 = 0,

φ
(0)
1 (0) = φ

(0)
1 (∞) = 0.

c(0)r

[
1

r

d

dr

(
r
dφ(0)

2

dr

)
− k2

r2
φ

(0)
2

]
= 0, (19)

φ
(0)
2 = 0, φ

(0)
2 (∞) = 0. (20)

It follows from (19) and(20) that eitherc(0) = 0, orφ(0)
2 = 0, or both. Accordingly, we

shall distinguish three types of modes.
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(1) If

φ
(0)
2 = 0, c(0) �= 0,

the upper-layer problem, to leading order, decouples from its lower-layer counterpart,

(c(0)r − V1)

[
1

r

d

dr

(
r
dφ(0)

1

dr

)
− k2

r2
φ

(0)
1 − φ

(0)
1

]

+
{

d

dr

[
1

r

d

dr
(rV1)

]
− V1

}
φ

(0)
1 = 0, (21)

φ
(0)
1 (0) = φ

(0)
1 (∞) = 0. (22)

It describes the usual equivalent-barotropic motion, and its solutions will be referred
to asupper layer dominated(ULD) modes.

(2) If

φ
(0)
2 = 0, c(0) �= 0,

the lower-layer problem decouples from its upper-layer counterpart,

(c(1)r − V2)

[
1

r

d

dr

(
r
dφ(0)

2

dr

)
− k2

r2
φ

(0)
2

]
+
{

d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
φ

(0)
2 = 0,

(23)

φ
(0)
2 (0) = φ

(0)
2 (∞) = 0, (24)

and determines the leading-order eigenvaluec(1). It describes oscillations in the lower
layer, and its solutions will be referred to aslower layer dominated(LLD) modes.2

(3) If

φ
(0)
2 = 0, c(0) = 0,

the upper-layer problem becomes:

−V1

[
1

r

d

dr

(
r
dφ(0)

1

dr

)
− k2

r2
φ

(0)
1 − φ

(0)
1

]
+
{

d

dr

[
1

r

d

dr
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]
− V1

}
φ

(0)
1 = 0,

(25)

φ
(0)
1 (0) = φ

(0)
1 (∞) = 0. (26)

2 Althoughψ1 andψ2, in this case, are of the same order, the larger thickness of the lower layer makes it
dominant.
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Observe that the eigenvaluec(1) does not appear in(25)and(26); thus, we shall need to
examine the next order,

c(1)r
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1

r

d

dr
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2

]

+
{
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]
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}
φ
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φ
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2
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)
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]
+
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d
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r

d
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φ

(1)
2 = 0, (29)

φ
(1)
2 (0) = φ

(1)
2 (∞) = 0, (30)

Thus, c(1) depends on both eigenfunctions, and the corresponding solutions will be
referred to asmixed(M) modes.

It turns out that the leading-order problems(25) and(26) have a solution only for the
first azimuthal wavenumber,k= 1, in which caseφ(0)

1 = V1 (seeAppendix A). As a result,
(29)becomes:

c(1)r

[
1

r

d

dr

(
r
dφ(1)

2

dr

)
− 1

r2
φ

(1)
2 + V1

]
+
{

d

dr

[
1

r

d

dr
(rV2)

]
+ V1

}
φ

(1)
2 = 0. (31)

It can also be shown (again, seeAppendix A) that φ(1)
1 can be eliminated form the

first-order upper-layer problems(27)and(28), which can be reduced then to:∫ ∞

0
rV1(c(1)r − V2) dr +

∫ ∞

0
rV1φ

(1)
2 dr = 0. (32)

Equations(30)and(32) form a closed eigenvalue problem forφ(1)
2 andc(1).

4.2. Summary

Thus, the exact eigenvalue problems(16)and(17), (3) has been reduced to three asymp-
totic (leading-order) problems.
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• If the asymptotic problem for ULD-modes,(21) and (22), has one or more complex
eigenvalues, the vortex is unstable, and the growth rate isk Im c= O(1).

• If the asymptotic problems for LLD- and M-modes [(23)and(24), and(30)and(32), re-
spectively] have one or more complex eigenvalues, the vortex is unstable with a relatively
small growth rate,k Im c= O(ε).

• If the three problems have some non-trivial (c �= 0) real eigenvalues, but no complex
ones, no definitive conclusion can be drawn. The vortex can be either stable, or weakly
unstable due to the higher-order corrections.3

• If the three problems have neither complex nor non-trivial real eigenvalues, the vortex is
stable.

In the next subsection, we shall demonstrate that mesoscale vortices with uniform PV in
the lower layer fall into the last category.

4.3. Vortices with uniform PV in the lower layer

Consider the eigenvalue problems(23)and(24) for LLD-modes and assume

d

dr

[
1

r

d

dr
(rV2)

]
+ V1 = 0 (33)

(which is what the condition of uniform lower-layer PV amounts to in the leading order).
Then,(23)yields:

1

r

d

dr

(
r
dφ(0)

2

dr

)
− k2

r2
φ

(0)
2 = 0.

One can readily see that this equation has no bounded solutions.
Next, to prove the stability of M-modes, substitute(33) into the M-mode equation(31)

and rewrite it in the form:

d

dr

[
1

r

d

dr
(rφ(1)

2 )

]
+ V1 = 0.

Comparing this equation with(33), one can deduce that

φ
(1)
2 = V2 + Ar + B

r
. (34)

To satisfy the boundary conditions(30), put

A = 0, B = 0. (35)

3 In principle, these corrections can be examined through an asymptotic approach used for similar problems by
Schecter et al. (2001), Balmforth et al. (2001), Schecter and Montgomery (2003)andBenilov (2003).
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Finally, we substitute(34)and(35) into (32)and obtain:

c(1)
∫ ∞

0
r2V1 dr = 0. (36)

Since the net upper-layer angular momentum is non-zero [see(4)], it follows from (36)
thatc(1) = 0, which is, in fact, the trivial solution(18)and should be discarded.

Thus, for monopolar vortices with uniform PV in the lower layer, the M-problem admits
only the trivial solution, and the LLD-problem does not admit any solutions at all. We
conclude that vortices with uniform PV are baroclinically stable.

As for ULD-modes, these are not sensitive to deep flow [observe thatV2 does not appear
in equation(21)]; hence, the barotropic stability of a vortex is determined by its profile
in the upper layer. We shall not discuss ULD-modes in more detail, as barotropic effects
play no part in the instability of mesoscale rings (recall that, out of the three vortex profiles
considered, only the Gaussian profile was barotropically unstable and, even in this case,
none of the ‘real’ rings fell into the region of barotropic instability; seeFigs. 2a and 4a).

5. Concluding remarks

Thus, we have examined two-layer vortices with uniform PV in the lower layer, with
respect to linear harmonic disturbances (normal modes). Both numerical and asymptotic
studies showed that such vortices are stable, providing a model, which consistently describes
the observed lifespans of oceanic rings.

It should be emphasized that, everywhere in this work, the upper layer of the ocean was
assumed thin(ε=H1/H2 
 1). Given this assumption, thestrongeffect of aweakdeep flow
should not come as a surprise: after all, the lower layer is thick, and its net characteristics
(e.g. angular momentum) can be comparable to, or even exceed, those in the upper layer.

Appendix A. Properties of the eigenvalue problems(25)–(30)

First, we shall prove that the leading-order problems(25)and(26)have a solution only
for the first azimuthal wavenumber,

k = 1. (A.1)

Indeed, introduceχ such that

φ
(0)
1 = V1χ (A.2)

and rewrite(25)and(26) in the form:

d

dr

(
rV 2

1
dχ

dr

)
− k2 − 1

r
V 2

1χ = 0, (A.3)
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V1χ → 0 as r → 0,∞. (A.4)

Multiply (A.3) byχ* and integrate over 0 <r <∞. Integrating by parts (twice) and using
(A.4), we obtain:∫ ∞

0
V 2

1

(
r

∣∣∣∣dχdr
∣∣∣∣
2

+ k2 − 1

r
|χ|2

)
dr = 0.

Clearly, if k �= 1, then,

dχ

dr
= 0, χ = 0, at all points whereV1 �= 0,

which makesχ zero everywhere (if a solution and its derivative of a second-order ODE with
continuous coefficients are both zero at the same point, this solution is zero identically).
If, however,k= 1, the solution evidently exists:χ= const. Putting const = 1 and recalling
(A.2), we obtain:

φ
(0)
1 = V1. (A.5)

Now, substitution of(A.1) and(A.5) into the lower-layer equation(29)yields(31).
Finally, we shall eliminateφ(1)

1 by integrating(27) over 0 <r <∞. Integrating by parts
(twice), using the boundary conditions(28), and taking into account(A.5), we obtain equa-
tion (32).
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