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Abstract

This paper examines the stability of vortices in a two-layer ocean on thef -plane. The mean depth
h̄1 of the upper layer is assumed to be much smaller than the depthh̄2 of the lower layer. Using the
primitive equations, we derive an asymptotic criterion for baroclinic instability of compensated (i.e.
confined to the upper layer) vortices. Surprisingly, it coincides exactly with a similar criterion derived
from the quasigeostrophic equations [Benilov, E.S., 2003. Instability of quasigeostrophic vortices in a
two-layer ocean with thin upper layer. J. Fluid Mech. 475, 303–331]. Thus, to leading order inh̄1/h̄2,
ageostrophy does not affect the stability properties of thin compensated vortices. As a result, whether
a vortex is stable or not, depends on its shape, not amplitude (although the growth rate of an unstable
vortex does depend on its amplitude).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that oceanic vortices (rings) exist for years, whereas almost all theoretical
work indicates that they are unstable. This contradiction has been identified more than 20
years ago, but only recent advances appear to bring it close to resolution. First,Dewar and
Killworth (1995)have demonstrated that the stability properties of rings are very sensitive

E-mail address:eugene.benilov@ul.ie (E.S. Benilov).

0377-0265/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dynatmoce.2005.01.001



212 E.S. Benilov / Dynamics of Atmospheres and Oceans 39 (2005) 211–226

to the ‘deep flow’ (weak circulation in the lower layer). Then,Benilov (2004)found a
particular type of deep flow that always stabilizes the vortex, and also argued that it arises
naturally below oceanic rings.

Still, before one could be convinced that the deep flow is responsible for stability of rings,
it should be demonstrated that the simplest model—that ofcompensated(i.e. confined to
the upper layer) vortices—is exhausted beyond reasonable doubt. And this has not been
done yet, as it is still unclear whether or not a compensated vortex can be stabilized by
ageostrophic effects.

The present paper examines the stability of an ageostrophic vortex in a two-layer ocean
with thin upper layer (most ‘real’ rings are indeed localized in a relatively thin layer). A
very similar problem, but for a quasigeostrophic (QG) vortex, has been previously studied
by Benilov (2003)—and comparison with his results will allow us to find out exactly what
influence ageostrophy has on the stability of rings.

In the next section, we shall formulate the linearized equations for harmonic disturbances
(eigenmodes), superposed on a compensated vortex in a two-layer ocean. In Section3, we
shall classify the eigenmodes, and, in Sections4 and 5, examine their stability.

2. Governing equations

Consider a two-layer ocean on thef-plane with rigid lid and flat bottom, and let the
layers’ densities beρ1,2 (where 1 marks the upper layer). We shall use polar coordinates
(r, θ) and characterize the motion of the layers by the radial velocitiesu1,2, swirl velocities
v1,2, pressuresp1,2 and depthsh1,2 of the layers. Finally, we shall introduce the time
variablet.

Assume that the layers have non-zero mean depthsh̄j (j = 1,2 is the layer number) and
define the deformation radius based onh̄1,

Rd =
√
g′h̄1

f0
,

whereg′ = g (ρ2 − ρ1) /ρ2 is the reduced gravity andf0 is the Coriolis parameter. Then,
we can introduce the following non-dimensional variables:

t∗ = f0t, r∗ = r

Rd
, θ∗ = θ, (uj∗, vj∗) = (uj, vj)√

g′h̄1
,

pj∗ = pj

ρ2g′h̄1
, hj∗ = hj

h̄j
.

Omitting the asterisks, we can write the governing equations in the form

∂uj

∂t
+ uj ∂uj

∂r
+ 1

r
vj

(
∂uj

∂θ
− vj

)
+ ∂pj
∂r

= vj, (1)

∂vj

∂t
+ uj ∂vj

∂r
+ 1

r
vj

(
∂vj

∂θ
+ uj

)
+ 1

r

∂pj

∂θ
= −uj, (2)
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r
∂hj

∂t
+ ∂

∂r
(rujhj) + ∂

∂θ
(vjhj) = 0, (3)

p2 = p1 − h1, εh1 + h2 = 1 + ε. (4)

where

ε = h̄1

h̄2

is the depth ratio. We shall also impose the usual smoothness conditions and the center of
the vortex,

∂uj

∂θ
− vj → 0,

∂vj

∂θ
+ uj → 0,

∂hj

∂θ
→ 0,

∂pj

∂θ
→ 0 as r → 0, (5)

which guarantee that Eqs.(1)–(3)do not have a singularity atr = 0.
Eqs.(1)–(4)admit an exact solution describing a steady axisymmetric vortex,

uj = 0, vj = Vj(r), pj = Pj(r), hj = Hj(r),

where the functionsVj, Pj, andHj satisfy the so-called cyclostrophic relations,

dPj
dr

= Vj + 1

r
V 2
j , P2 = P1 −H1, εH1 +H2 = 1 + ε. (6)

We shall assume thatVj(r) are smooth functions, decaying asr → ∞ and vanishing at
r = 0 (the latter condition guarantees that the vortex is smooth at its centre). Note also that
the scaling ofh1 implies that

H1 → 1 as r → ∞.

In order to examine the stability of vortex(6), seek a solution in the form

uj(r, θ, t) = u′
j(r, θ, t), vj(r, θ, t) = Vj(r) + v′j(r, θ, t), (7)

pj(r, θ, t) = Pj(r) + p′
j(r, θ, t), hj(r, θ, t) = Hj(r) + h′

j(r, θ, t), (8)

where the primed variables describe a small disturbance. Substituting(7)–(8)into (1)–(4),
we obtain (primes omitted)

∂uj

∂t
+ 1

r
Vj

(
∂uj

∂θ
− vj

)
− 1

r
vjVj + ∂pj

∂r
= vj, (9)

∂vj

∂t
+ uj ∂Vj

∂r
+ 1

r
Vj

(
∂vj

∂θ
+ uj

)
+ 1

r

∂pj

∂θ
= −uj, (10)

r
∂hj

∂t
+ ∂

∂r
(rujHj) + ∂

∂θ
(Vjhj + vjHj) = 0, (11)
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p2 = p1 − h1, εh1 + h2 = 0. (12)

We shall consider eigenmodes, i.e. disturbances with harmonic dependence ont andθ,

uj(r, θ, t) = ũj(r)eikθ−iωt, vj(r, θ, t) = ṽj(r)eikθ−iωt, (13)

pj(r, θ, t) = p̃j(r)eikθ−iωt, hj(r, θ, t) = h̃j(r)eikθ−iωt, (14)

whereω andk are the frequency and azimuthal wavenumber. Substitution of(13) and (14)
into (9)–(12)yields (tildes omitted)

i

(
k

r
Vj − ω

)
uj −

(
1 + 2

r
Vj

)
vj + dpj

dr
= 0, (15)

i

(
k

r
Vj − ω

)
vj +

(
1 + 1

r
Vj + dVj

dr

)
uj + ik

r
pj = 0, (16)

i

(
k

r
Vj − ω

)
hj + 1

r

d

dr
(rujHj) + ik

r
vjHj = 0, (17)

p2 = p1 − h1, εh1 + h2 = 0. (18)

These boundary conditions for disturbances at the center of the vortex follow from(5),

ikuj − vj → 0, ikvj + uj → 0, hj → 0, pj → 0 as r → 0.

(19)

We shall also impose the boundedness conditions at infinity,

uj, vj, hj, pj → 0 as r → ∞. (20)

(15)–(20)form an eigenvalue problem, whereω is the eigenvalue. If Imω > 0, the vortex
is unstable.

In some cases, it is convenient to eliminateuj andvj. To do so, these variables should
be expressed from(15) and (16)and substituted into(17), which yields

d

dr

(
rFj

dpj
dr

)
−



k2

r
Fj +

d

dr

[
k

r
(r + 2Vj)Fj

]

ω − k
r
Vj


pj − rhj = 0, (21)

where

Fj = Hj(
1 + 1

r
Vj + dVj

dr

)(
1 + 2

r
Vj

)
−
(
k

r
Vj − ω

)2
. (22)

3. Classification of the eigenmodes

Consider a compensated vortex, i.e. put

V2 = 0. (23)
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To examine its stability, it is convenient to use Eqs.(15)–(17)(j = 1) for the upper layer
and Eq.(21)(j = 2) for the lower layer, with the appropriate boundary conditions resulting
from (19) and (20). Replacingh1 with p1 − p2 [see(19)], we obtain

i

(
k

r
V1 − ω

)
u1 −

(
1 + 2

r
V1

)
v1 + dp1

dr
= 0, (24)

i

(
k

r
V1 − ω

)
v1 +

(
1 + 1

r
V1 + dV1

dr

)
u1 + ik

r
p1 = 0, (25)

i

(
k

r
V1 − ω

)
(p1 − p2) + 1

r

d

dr
(ru1H1) + ik

r
v1H1 = 0, (26)

iku1 − v1 → 0, ikv1 + u1 → 0, p1 → 0 as r → 0, (27)

u1, v1, p1 → 0 as r → ∞, (28)

ω
d

dr

[
r (1 − εH1)

dp2

dr

]
−
[
ωk2

r
(1 − εH1) − εkdH1

dr

]
p2

+εω
(
1 − ω2

)
r (p1 − p2) = 0. (29)

p2 → 0 as r → 0,∞. (30)

Next, substitution of(23) into the cyclostrophic relations(6) yields

dH1

dr
= V1 + 1

r
V 2

1 . (31)

Everywhere in this paper, we assume that the upper layer is much thinner than the lower
layer, i.e.ε� 1. Then, seek a solution in the form

u1 = u(0)
1 + εu(1)

1 + · · · v1 = v(0)
1 + εv(1)

1 + · · · p1 = p(0)
1 + εp(1)

1 + · · ·
p2 = p(0)

2 + εp(1)
2 + · · · ω = ω(0) + εω(1) + · · ·

First of all, consider the zeroth order of the lower layer problem(29) and (30),

ω(0)

[
d

dr

(
r
dp(0)

2

dr

)
− k

2

r
p

(0)
2

]
= 0. (32)

p
(0)
2 → 0 as r → 0,∞. (33)

Clearly, ifω(0), p
(0)
2 
= 0, problem(32) and (33)has no solution.1 Hence, eitherp(0)

2 , orω(0),
or both, have to be zero, depending on which we shall distinguish three types of modes:

1 If ω(0) 
= 0, the solution of(32)isp(0)
2 = const1 rk + const2 r−k , which never satisfies both boundary conditions

(33).
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1. If

p
(0)
2 = 0, ω(0) 
= 0,

the upper layer problem(24)–(28), to leading order, decouples from the lower layer
and describes the usual equivalent barotropic motion. Its solutions will be referred to as
upper layer dominated (ULD) modes.

2. If

p
(0)
2 
= 0, ω(0) = 0,

the lower layer problem(29)–(30), to leading order, decouples from the upper layer:

ω(1) d

dr

(
r
dp(0)

2

dr

)
−
(
ω(1)k2

r
− kdH1

dr

)
p

(0)
2 = 0, (34)

p
(0)
2 → 0 as r → 0,∞. (35)

and fully determinesω(1).
Eqs.(34)–(35)describe oscillations in a layer with non-even upper boundary, and

its solutions will be referred to aslower layer dominated (LLD) modes.They exist due
to the curvature of the interface and, to leading order, are not sensitive to the flow in
the upper layer. The leading-order upper layer equations in turn, describe a disturbance
forced by the pressure variations in the lower layer.

3. If

p
(0)
2 = 0, ω(0) = 0,

the eigenvalueω, to leading order, drops out from the upper layer problem,

ik

r
V1u

(0)
1 −

(
1 + 2

r
V1

)
v

(0)
1 + dp(0)

1

dr
= 0, (36)

ik

r
V1v

(0)
1 +

(
1 + 1

r
V1 + dV1

dr

)
u

(0)
1 + ik

r
p

(0)
1 = 0, (37)

ik

r
V1p

(0)
1 + 1

r

d

dr

(
ru

(0)
1 H1

)
+ ik

r
v

(0)
1 H1 = 0. (38)

iku(0)
1 − v(0)

1 → 0, ikv(0)
1 + u(0)

1 → 0, h
(0)
1 → 0,

p
(0)
1 → 0 as r → 0, (39)

u
(0)
1 , v

(0)
1 , p

(0)
1 → 0 as r → ∞. (40)
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ω(1) is determined by the next-order equations:

− iω(1)u
(0)
1 + ik

r
V1u

(1)
1 −

(
1 + 2

r
V1

)
v

(1)
1 + dp(1)

1

dr
= 0, (41)

− iω(1)v
(0)
1 + ik

r
V1v

(1)
1 +

(
1 + 1

r
V1 + dV1

dr

)
u

(1)
1 + ik

r
p

(1)
1 = 0, (42)

− iω(1)p
(0)
1 + ik

r
V1

(
p

(1)
1 − p(1)

2

)
+ 1

r

d

dr

(
ru

(1)
1 H1

)
+ ik

r
v

(1)
1 H1 = 0, (43)

ω(1) d

dr

(
r
dp(1)

2

dr

)
−
(
ω(1)k2

r
− kdH1

dr

)
p

(1)
2 + ω(1)rp

(0)
1 = 0. (44)

Importantly,(41)–(44)include characteristics of both layers—hence, the corresponding
solutions will be referred to asmixed (M) modes.

Observe that the last two types of modes are slow (ω ≈ εω(1) � 1) and are responsible
for baroclinic instability—whereas fast ULD-modes (ω ≈ ω(0) ∼ 1) are responsible for
equivalent-barotropic instability. Thus, a barotropically unstable ring would disintegrate on
the timescale off−1

0 , i.e. within days. It has also been shown(Benilov, 2003)that, at least
for quasigeostrophic rings, ULD-modes exist only for vortices with a radius less than half
of the deformation radius. Given that the latter is, typically, 10–50 km, ULD-modes do not
play an important role for mesoscale oceanic rings, and we shall concentrate on the other
two types.

Observe also that the above types of eigenmodes are similar to their QG analogues
(seeBenilov, 2003). This can be partly explained by the fact that, for the two slow
types of modes, the lower layer flow is quasigeostrophic (indeed, since the upper layer
is thin, the displacement of the interface is much smaller than the lower layer’s depth).
It should be emphasized, however, that the upper layer is ageostrophic in all three
cases.

Finally, note that our classification does not include the eigenemodes associ-
ated with radiation of internal waves—the (dimensional) frequency of these modes
is much greater thanf0, which makes them inconsistent with out scaling. These
modes have been studied byFord (1994), Plougonven and Zeitlen (2002), and
Schecter and Montgomery (2004).

4. Mixed modes

In this section, we shall examine the stability of a compensated vortex with respect to
M-modes. LLD-modes will be examined in Section5.
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4.1. Leading-order results

The zeroth-order problem(36)–(40)appears to have a solution only for the first azimuthal
wavenumber,2

k = 1,

in which case, one can verify by inspection that

u
(0)
1 = − i

r
V1, v

(0)
1 = dV1

dr
, p

(0)
1 = dH1

dr
. (45)

Strictly speaking, in order to justify linearization, solution(45) should be multiplied by a
small constant—however, given the linearity of the problem, this constant can be omitted.

Substituting(45) into the first-order upper layer Eqs.(41)–(43), we obtain

i

r
V1u

(1)
1 −

(
1 + 2

r
V1

)
v

(1)
1 + dp(1)

1

dr
= ω(1)

r
V1, (46)

i

r
V1v

(1)
1 +

(
1 + 1

r
V1 + dV1

dr

)
u

(1)
1 + i

r
p

(1)
1 = iω(1) dV1

dr
, (47)

i

r
V1p

(1)
1 + 1

r

d

dr

(
ru

(1)
1 H1

)
+ i

r
v

(1)
1 H1 = iω(1) dH1

dr
+ i

r
V1p

(1)
2 , (48)

and the corresponding boundary conditions follow from the general conditions(27)–(28),

iv(1)
1 + u(1)

1 → 0, p
(1)
1 → 0 as r → 0, (49)

u
(1)
1 , v

(1)
1 , p

(1)
1 → 0 as r → ∞. (50)

Eqs.(46)–(50)form a non-homogeneous boundary-value problem foru
(1)
1 ,v(1)

1 ,p(1)
1 —which

has a solution only subject to a certain orthogonality condition. To derive this condition,
consider

∫ ∞

0
[(46)× irH1 + (47)× rH1 + (48)× r (r + V1)] dr.

Straightforward calculations, involving integration by parts and use of the boundary condi-
tions, yield

ω(1)
∫ ∞

0
r2

dH1

dr
dr +

∫ ∞

0
r
dH1

dr
p

(1)
2 dr = 0. (51)

2 Unfortunately, we have been unable to rigorously prove that no solution exists fork ≥ 2. Instead, an extensive
numerical study has been carried out: for various vortex profiles,(36)–(40)were solved as an eigenvalue problem,
with k being the eigenvalue. In all cases, the only solution found wask = 1. It is also worth mentioning that, for
the QG analogue of(36)–(40), the non-existence of solutions fork ≥ 2 can be proved rigorously(Benilov, 2003).
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Finally, substitutek = 1 and(45) into the first-order lower layer Eq.(44),

ω(1) d

dr

(
r
dp(1)

2

dr

)
−
(
ω(1)

r
− dH1

dr

)
p

(1)
2 + ω(1)r

dH1

dr
= 0, (52)

which is to be solved with

p
(1)
2 → 0 as r → 0,∞. (53)

(51)–(53)form an eigenvalue problem forp(1)
2 andω(1), and it is identical to its QG analogue

(seeBenilov, 2003)!
We comment that the coincidence of Eq.(52) with its QG counterpart is not all that

surprising, as the flow in the lower layer is indeed quasigeostrophic (see the comment in
the end of Section3). But the upper layer is ageostrophic—therefore, the coincidence of
the (upper layer) Eq.(51)with its QG counterpart does come as a surprise.

The similarity between the present problem and its QG analogue enables us to use the
properties of(51)–(53)established byBenilov (2003):

1. problem(51)–(53)admits infinitely manyreal eigenvaluesω(1) converging to zero;
2. if dH1(r)

dr is sign definite (which is always the case oceanographically), all eigenvalues

have the same sign asdH1(r)
dr .

Thus, Property 1 guarantees that all M-modes are, to leading order, neutrally stable.

4.2. Higher order results: the effect of critical levels

As follows from the cyclostrophic relation(31), the angular velocity1
r
V1 has the same

sign asdH1
dr —hence, due to Property 2 above, it has the same sign as the frequencyω.

Observe also that1
r
V1 varies from zero (at infinity) to an order-one value (in the core of the

vortex), whereasω ≈ εω(1) is small. Then, there exists a critical level (radius), i.e. a point
r = rc such that

k

rc
V1(rc) = Reω.

Most importantly, the smallness ofω implies that the critical level is located where1
r
V1 is

also small, i.e. at the periphery of the vortex.
Note also that, in the leading-order Eqs.(36)–(38), the terms involvingω were omitted,

and those involving1
r
V1, retained—which is clearly inconsistent near the critical level. We

conclude that our expansion describes the critical level incorrectly.
Still, the fact that the critical level has not been ‘captured’ by the leading-order expansion

indicates that its effect is weak— after all, the critical level is located at the periphery of the
vortex, where the disturbance rapidly decays. We can safely assume that its contribution to
the eigenvalue is small—but no matter how small, it can be imaginary and, hence, cause
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instability. Mathematically, this means that one of the higher order corrections toω can be
complex.

To take into account the effect of critical levels, we shall use an asymptotic approach used
by Schecter et al. (2001), Schecter and Montgomery (2003), andBenilov (2003)for simi-
lar vortex problems. It is applicable to the present problem as well—but, unfortunately, is
associated with extremely cumbersome algebra. Accordingly, non-mathematically minded
readers are advised to jump to the next subsection, where the asymptotic results are sum-
marized. First of all, use(18) to eliminatehj from Eq.(21), which then yields

d

dr

(
rF1

dp1

dr

)
−



k2

r
F1 +

d

dr

[
k

r
(r + 2V1)F1

]

ω − k
r
V1


p1 + r (p2 − p1) = 0, (54)

d

dr

(
rF2

dp2

dr

)
−



k2

r
F2 +

d

dr

[
k

r
(r + 2V2)F2

]

ω − k
r
V2


p2 + εr (p1 − p2) = 0, (55)

whereF1,2 are defined by(22). Next, consider

Im
∫ ∞

0
[ε(54)j=1p

∗
1 + (55)j=2p

∗
2]dr,

where the asterisk denotes complex conjugate. Integrating by parts, using boundary condi-
tions(19)–(20), and puttingV2 = 0, we obtain∫ ∞

0
r

[
FI

(∣∣∣∣dp1

dr

∣∣∣∣
2

+ k
2

r2
|p1|2

)
− 2H1

ωRωI∣∣1 − ω2
∣∣2
(∣∣∣∣dp2

dr

∣∣∣∣
2

+ k
2

r2
|p2|2

)]
dr

−
∫ ∞

0

ωI
d

dr

[
k

r
(r + 2V1)FR

]
+
(
k

r
V1 − ωR

)
d

dr

[
k

r
(r + 2V1)FI

]
(
ωR − k

r
V1

)2

+ ω2
I

× |p1|2 dr + kωI
1 − 3ω2

R + ω2
I∣∣ω (1 − ω2

)∣∣2
∫ ∞

0

dH1

dr
|p2|2 dr = 0, (56)

where

FR = ReF1, FI = ImF1, ωR = Reω, ωI = Imω.

In what follows,(56) will be simplified and, eventually, transformed into an equation for
ωI .

Since we deal with M-modes, we can put

k = 1, ωR ≈ εω(1), (57)
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whereω(1) is determined by problem(51)–(53). Then, recall that, to leading order,ω turned
out to be real, which implies

|ωI | � |ωR| .

Now, we can reduce(22)(j = 1) to

FR ≈ H1

B
, FI ≈ −2V1H1

rB2
ωI, (58)

where

B = 1 + 3

r
V1 + 1

r2
V 2

1 + dV1

dr
+ 2

r
V1

dV1

dr
. (59)

To further simplify Eq.(56), we shall use the leading-order approximations of the eigen-
functions,

p1 ≈ p(0)
1 = dH

dr
, p2 ≈ εp(1)

2 , (60)

where the former is given by(45), and the latter is determined by(51)–(53). Note that equal-
ities (60)are not valid near the critical level—recalling that that is located at the periphery
of the vortex, we subdivide the region of integration in(56) into coreandperiphery,

k

r
V1 � ωR if r < rb,

and

k

r
V1 � ωR if r > rb,

whererb is an approximate boundary separating the two regions. Observe, however, that
this needs to be done only in the second term of(56), which involves

1

(ωR − (k/r)V1)2 + ω2
I

.

Indeed, near the critical level, this factor becomes large and, hence, increases the error
resulting from the ‘incorrect’ expression forp1—whereas the errors introduced by the
other two terms of(56)are much smaller.

Now, take into account(57), separate (where necessary) the core from periphery, and
use(60) in the former—after which(56)becomes

εωIIcore+ Iperi = 0, (61)

where

Icore ≈ −
∫ ∞

0
r
2V1H1

rB2

[(
dH1

dr2

)2

+ 1

r2

(
dH1

dr

)2
]

dr
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−
∫ rb

0

d

dr

[
1

r
(r + 2V1)

H1

B

]
− 1

r
V1

d

dr

[
1

r
(r + 2V1)

2V1H1

rB2

]
1

r2
V 2

1

(
dH1

dr

)2

dr

+ 1

ω(1)2

∫ ∞

0

dH1

dr
p

(1)2
2 dr,

Iperi ≈ −
∫ ∞

rb

ωI
d

dr

[
1

r
(r + 2V1)

H1

B

]
−
(

1

r
V1 − ωR

)
d

dr

[
1

r
(r + 2V1)

2V1H1

rB2

]
(
ωR − 1

r
V1

)
+ ω2

I

|p1|2dr.

Now, observe that integration in the second term ofIcorecan be extended to infinity (which
is allowable since the integrand decays rapidly asr → ∞). Then, the first two terms can
be grouped together and rearranged using the cyclostrophic relation(31)and integration by
parts,

Icore = −
∫ ∞

0

2V1H1

rB2

{
r

(
dH1

dr2

)2

+1

r

(
dH1

dr

)2

+
(

1+2

r
V1

)
d

dr

[
1

r
V1 (r+V1)2

]}
dr

+
∫ ∞

0

[(
1 + 2

r
V1

)
H1

B
− 1

]
d

dr

[
(r + V1)2

]
dr + 1

ω(1)2

∫ ∞

0

dH1

dr
p

(1)2
2 dr

(it is implied here thatH1 → 1 asr → ∞). Then, taking into account the identity

r

(
dH1

dr2

)2

+ 1

r

(
dH1

dr

)2

+
(

1 + 2

r
V1

)
d

dr

[
(r + V1)

(
V1 + 1

r
V 2

1

)]

= B d

dr

(
rV1 + V 2

1

)
(which can be verified using the cyclostrophic relation and definition(59)of B), we obtain

Icore = −
∫ ∞

0
r2

dH1

dr
dr +

∫ ∞

0

dH1

dr

(
p

(1)
2

ω(1)

)2

dr. (62)

Finally, rewrite equality(51)as follows:

2
∫ ∞

0
r2

dH1

dr
dr +

∫ ∞

0
2r

dH1

dr

p
(1)
2

ω(1)
dr = 0,

and use it to rewrite(62) in the form

Icore =
∫ ∞

0

dH1

dr

(
r + p

(1)
2

ω(1)

)2

dr.
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Next, to simplify Iperi, observe that the main contribution to this term comes from the
region near the critical level, where the denominator of the integrand is small. Hence,
we can:

1. expand the integrand aboutr = rc,
2. and extend integration to infinity (since the integrand decays rapidly with distance from
r = rc, this will cause only a small error).

Then, we obtain

Iperi ≈ −
{
|p1|2 d

dr

[
1

r
(r + 2V1)

H1

B

]}
r=rc

×
∫ ∞

−∞
ωI dr{[

d

dr

(
1

r
V1

)]
r=rc

(r − rc)
}2

+ ω2
I

. (63)

The integral in(63) can be evaluated, and the rest of the expression can be simplified by
taking into account that, in the periphery,

|H1 − 1| � 1.

Hence, the flow is weak, and the cyclostrophic relation reduces to the geostrophic one,
V1 ≈ dH1

dr . Eventually, we obtain

Iperi ≈ −π sign(ωI )



V1 − 1

r

d

dr

(
r
dV1

dr

)
+ 1

r2
V1∣∣∣∣ d

dr

(
1

r
V1

)∣∣∣∣
|p1|2



r=rc

. (64)

Now, substituting(62) and (64)into (61), we obtain

|ωI |
∫ ∞

0

dH1

dr

(
r + p

(1)
2

ω(1)

)2

dr = −π


 Q′

1∣∣∣∣ d

dr

(
1

r
V1

)∣∣∣∣
|p1|2



r=rc

, (65)

where

Q′
1 = 1

r

d

dr

(
r
dV1

dr

)
− 1

r2
V1 − V1 (66)

is the the upper layer PV gradient.3

3 To be precise, we should callQ′
1 quasigeostrophicPV gradient—but, in the periphery of the vortex, the exact

and QG expressions for PV are approximately equal.
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Eq. (65) should be treated as an equation forωI . As before,dH1
dr is assumed to be a

sign-definite function ofr, in which case(65)has a solution if and only ifdH1
dr and

(
Q′

1

)
r=rc

are of opposite signs. If they indeed are, two solutions exist forωI , corresponding to two
complex-conjugate eigenvalues, one of which is unstable. If, on the other hand,dH1

dr and(
Q′

1

)
r=rc are of the same sign, no solutions exist forωI . This means that our boundary-

value problem does not have eigenvalues (stable or unstable), which should be interpreted
as stability.

Observe, however, that the right-hand side of(65)depends on the unknown quantitiesrc
and(p1)r=rc, which do not allow one to actually findωI . rc can be determined approximately
from the equation(

k

r
V1

)
r=rc

≈ εω(1), (67)

whereas finding (p1)r=rc is less straightforward, as its leading-order approximation(45) is
inapplicable near the critical level.

However, if we use(65) as a stability criterion, the explicit expression for(p1)r=rc will
not be needed.

4.3. Summary of the asymptotic results

Given the profileH1(r) of a compensated vortex, its stability with respect to M-modes
can be examined through the following steps:

1. solve eigenvalue problem(51)–(53)and find the leading-order frequencyω(1),
2. substituteω(1) into (67)and determine the position of the critical levelrc,
3. check the sign of the upper layer PV gradient atr = rc—if it is the same as that ofdH1

dr ,
the vortex is stable with respect to M-modes (and vice versa).

Note that the above criterion implies thatdH1
dr does not change sign, i.e.H1(r) is a

monotonic function. Observe also that, to ensure convergence of the integral on the left-
hand side of(65), we should require

∫ ∞

0

dH1

dr
r2 dr <∞.

or, equivalently,

∫ ∞

0
(H1 − 1) r dr <∞.

This condition is not very restrictive, as it simply guarantees that the net ‘mass’ of the vortex
is finite.

Physical aspects of the above results will be discussed in Section6.
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5. Lower layer dominated modes

This case is similar to that of M-modes, and we shall not dwell on it in detail. We shall
only mention that LLD-modes may exist only fork ≥ 2 and, in this sense, complement
M-modes (which may exist only fork = 1). The LLD equivalent of the M-mode stability
criterion(65)has the form

k |Imω|
∫ ∞

0

dH1

dr

(
p

(0)
2

ω(1)

)2

dr = −πε2
[

Q′
1

|(d/dr)((1/r)V1)| |p1|2
]
r=rc

, (68)

wherep(0)
2 andω(1) satisfy the leading-order problem(34)–(35). Hence, the stability cri-

terion for LLD-modes is exactly the same as that for M-modes: the vortex is stable if and
only if the sign of the upper layer PV gradient

(
Q′

1

)
r=rc coincides with that ofdH1

dr .

6. Discussion and concluding remarks

We have derived the following stability criterion for a compensated vortex with a mono-
tonic profileH1(r), in a two-layer ocean with thin upper layer:

If the sign of the upper layer PV gradient of the vortex at the critical level is the same as
that of dH1

dr ,the vortex is baroclinically stable and vice versa.
This criterion implies the knowledge of the position of the critical level—which is deter-

mined by problems(51)–(53), (34) and (35)(for mixed and lower layer dominated modes,
respectively), and Eq.(67).

The most remarkable feature of the above criterion is that it coincides exactly with its QG
analogue(Benilov, 2003). The coincidence can be partly explained by the fact that, since
the upper layer is thin, the displacement of the interface is much smaller than the depth of
the lower layer—hence, the flow there is indeed quasigeostrophic. It should be emphasized,
however, that the flow in theupperlayer isageostrophic.

Note that the leading-order M and LLD problems,(51)–(53)and(34)–(35), are invariant
with respect to simultaneous change

dH1

dr
→ const× dH1

dr
, (69)

ω(1) → const× ω(1). (70)

Note also that, at the periphery of the vortex, velocityV1 is weak and the (non-linear) cy-
clostrophic relation reduces to the (linear) quasigeostrophic one, while the exact expression
for the PV gradientQ′

1 reduces to the (linear) QG formula(66). As a result, change(69)
entails

V1 → const× V1 at the periphery of the vortex, (71)

Q′
1 → const×Q′

1 at the periphery of the vortex. (72)

Now, (70) and (71)indicate that the position of the critical level remains approximately the
same, whereas(69) and (72)guarantee that the relative signs of

(
Q′

1

)
r=rc and dH1

dr remain
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the same. Hence, if a vortex with a certain profiledH1(r)
dr is baroclinically stable, thenany

profile of the form const× dH1(r)
dr is stable [as long as it complies with the thin-upper layer

requirement and corresponds to a positiveH1(r)].4 In other words, whether a vortex, in
an ocean with thin upper layer, is stable or not, is determined by its shape, not amplitude
(although the growth rate of an unstable vortex does depend on its amplitude).

Finally, observe that the similarity between quasigeostrophic and ageostrophic vortices
applies only tobaroclinic instability, as the above stability criterion does not include up-
per layer dominated (equivalent barotropic) disturbances. On the other hand, equivalent
barotropic instability does not seem to be overly important for mesoscale oceanic rings, as
it affects only small vortices(Benilov, 2003).

References

Benilov, E.S., 2003. Instability of quasigeostrophic vortices in a two-layer ocean with thin upper layer. J. Fluid
Mech. 475, 303–331.

Benilov, E.S., 2004. Stability of vortices in a two-layer ocean with uniform potential vorticity in the lower layer.
J. Fluid Mech. 502, 207–232.

Dewar, W.K., Killworth, P.D., 1995. On the stability of oceanic rings. J. Phys. Oceanogr. 25, 1467–1487.
Ford, R., 1994. The response of a rotating ellipse of uniform potential vorticity to gravity wave radiation. Phys.

Fluids 6, 3664–3704.
Plougonven, R., Zeitlen, V., 2002. Internal gravity wave emission from a pancake vortex: an example of wave–

vortex interaction in strongly stratified flows. Phys. Fluids 14, 1259–1268.
Schecter, D.A., Montgomery, M.T., 2003. On the symmetrization rate of an intense geophysical vortex. Dyn.

Atmos. Oceans 37, 55–88.
Schecter, D.A., Montgomery, M.T., 2004. Damping and pumping of a vortex Rossby wave in a monotonic cyclone:

critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids 16, 1334–1348.
Schecter, D.A., Montgomery, M.T., Reasor, P.D., 2001. A theory for the vertical alignment of a quasigeostrophic

vortex. J. Atmos. Sci. 59, 150–168.

4 The same does not apply to the swirl velocityV1, as, in the core of the vortex, it is related todH1
dr by the

non-linear(cyclostrophic) relation(31).


	The effect of ageostrophy on the stability of thin oceanic vortices
	Introduction
	Governing equations
	Classification of the eigenmodes
	4Mixed modes
	Leading-order results
	Higher order results: the effect of critical levels
	Summary of the asymptotic results

	Lower layer dominated modes
	Discussion and concluding remarks
	References


