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Stout beers show the counter-intuitive phenomena of sinking bubbles, while the beer is settling.

Previous research suggests that this phenomenon is due to the small size of the bubbles in these

beers and the presence of a circulatory current, directed downwards near the side of the wall and

upwards in the interior of the glass. The mechanism by which such a circulation is established and

the conditions under which it will occur has not been clarified. In this paper, we use simulations

and experiments to demonstrate that the flow in a glass of stout beer depends on the shape of the

glass. If it narrows downwards (as the traditional stout glass, the pint, does), the flow is directed

downwards near the wall and upwards in the interior and sinking bubbles will be observed. If the

container widens downwards, the flow is opposite to that described above and only rising bubbles

will be seen. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4769377]

I. INTRODUCTION

Stout beers, such as Guinness, foam due to a combination
of dissolved nitrogen and carbon dioxide,1 as opposed to most
other beers which foam due to dissolved carbon dioxide alone.
The use of nitrogen results in a range of desirable characteris-
tics of the beer, including a less bitter taste and a creamy
long-lasting head which can be attributed to the low solubility
of nitrogen and small size of the bubbles.2,3 This small bubble
size is also responsible, at least in part, for another intriguing
characteristic of stout beers: the phenomenon of sinking bub-
bles, observed while the beer is settling, i.e., between the
pouring of the beer and the formation of the head.4

Experimental studies5 have demonstrated that the phe-
nomenon of sinking bubbles is real and not an optical illu-
sion, while simulations6 show that the bubbles are driven by
a downward flow, the velocity of which exceeds the upward
velocity of the bubble due to the Archimedean force. The ex-
istence of such a flow near the wall of the glass implies that
there must be an upward flow somewhere in the interior. The
mechanism of this circulation is, however, unclear, as is the
role of the shape of the glass.

Understanding these types of bubbly flows is important
for a number of applications, such as manufacturing cham-
pagne glasses engraved with nucleation sites,7 widget and
similar technologies for promoting foaming in stouts,8,9

designing glasses which minimize the settling time of stouts
and, generally, for industrial processes involving bubbly
flows (e.g., bubble columns10).

In this paper, we put forward an explanation for the sink-
ing bubbles in Guinness, which takes into account the role of
the shape of the glass. In Sec. II, we describe the properties
of Guinness as a two-phase medium. In Sec. III, we present
the results of numerical simulations for several shapes of the
glass. In Sec. IV, we explain the basic mechanism that drives
bubbles downwards and describe a simple experiment that
can be used to confirm our hypothesis. Finally, we give our
conclusions in Sec. V.

II. PROPERTIES OF GUINNESS

We shall model Guinness as a liquid of density ql and vis-
cosity ll, with randomly distributed bubbles of gas of density
qg and viscosity lg. For a temperature of 6 �C (recommended

for consumption of Guinness by its producer “Diageo”12)
and normal atmospheric pressure, we have

ql ¼ 1007 kg m�3 ll ¼ 2:06� 10�3 Pa; (1)

qg ¼ 1:223 kg m�3 lg ¼ 0:017� 10�3 Pa; (2)

where the values for ql and ll have been measured by our-
selves and verified against the extrapolation formula given in
Ref. 4.

To check whether the bubble shapes differ from spheres,
we introduce the Bond number

Bo ¼ qlgd2
b

r
; (3)

a dimensionless number describing the importance of
gravity relative to surface tension in determining the shape
of a bubble or droplet. Here, db is the characteristic diame-
ter of a bubble, r is the surface tension of the liquid/gas
interface, and g is the gravitational field strength. Assuming
db ¼ 122 lm (as reported in Ref. 11) and r ¼ 0:0745 N m�1

(which corresponds to an water/air interface), we obtain
Bo � 0:002—a value sufficiently small to show that the
effects of surface tension are dominant and will give rise to
spherical bubbles.

As with the vast majority of “real” liquids Guinness con-
tains a lot of surfactants, which make the bubbles behave as
rigid spheres.13 This property allows one to estimate the
characteristic bubble velocity ub using the Stokes formula
for a rigid sphere

ub ¼
ðql � qbÞgd2

b

18ll

� 3:96 mm=s: (4)

Estimating the corresponding Reynolds number

Re ¼ qlubdb

ll

� 0:24; (5)

confirms that the Stokes formula yields a qualitatively cor-
rect value for ub. Furthermore, the fact that ub is much
smaller than the speed of sound shows that the gas can be
treated as incompressible.
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Finally, we introduce the void fraction f, the ratio of
gas volume to the total volume of the liquid/gas mixture
(a measure of bubble density). For canned Guinness
f � 0:05 (see Ref. 11), whereas for draught Guinness served
in pubs f � 0:1 (according to our own measurements). We
note, however, that traditionally, bartenders first fill, say,
80% of the glass and wait until it has fully settled (all the
bubbles have gone out of the liquid into the head) before

filling the remainder of the glass. Thus, when Guinness is
served to a customer the void fraction can be estimated to be
f � 0:02, which is the value used in this work.

III. NUMERICAL MODELING OF THE LIQUID/

BUBBLE CIRCULATION

To simulate flows in Guinness, we use the finite element
model for bubbly flows included in the COMSOL Multiphysics
package. The model’s physical foundations are discussed in
Appendix and described in detail in Ref. 16. In this model,
all of the bubbles are assumed to be the same size. In view of
the problem’s axial symmetry, the axi-symmetric version of
the model is used.

Two geometries of the holding container are examined
(see Fig. 1): a pint and an anti-pint (i.e., a pint turned upside-
down). In both cases, the initial distribution of bubbles is
assumed to be uniform and the physical parameters of Guin-
ness are as described above.

The results of typical simulations are shown in Figs. 1 and
2. One can see that an elongated vortex arises near the slop-
ing part of the pint container (left panel). Because the down-
ward velocity due to the vortex (3 cm=sÞ is much greater
than the upward Stokes velocity of the bubbles relative to the
flow (4 mm=s), we see a downflow of bubbles along the wall
of the pint container (top-left panel of Fig. 2). A similar vor-
tex also exists in the anti-pint but it rotates in the opposite
direction and, thus, causes an upward flow near the wall
(right panel of Fig. 1 and top-right panel of Fig. 2).

Another important feature to be observed is the narrow
region of low bubble density along the wall of the pint con-
tainer (left panel of Fig. 1 and the lower-left panel of Fig. 2).
In the anti-pint container the bubble density increases near
the wall; although it is not visible in the right panel of Fig. 1,
it can be clearly seen in the lower-right panel of Fig. 2.

We have also examined the evolution of the global void
fraction for the pint and anti-pint, as well as for a cylindrical
container of the same volume. Figure 3 shows that while the
global void fractions can be significantly different, all three
geometries provide more-or-less the same settling time Ts.

Fig. 2. The half-height (z ¼ 8 cm) cross-sections of the vertical velocity u and the void fraction f for the pint and anti-pint geometries (these graphs correspond

to the (r, z) diagrams shown in Fig. 1). The dotted lines in the upper panels separate the regions of upward/downward flow.

Fig. 1. (Color online) Numerical simulations of bubbly flows for the pint

and anti-pint. The curves show the streamlines for the bubbles, the shading

(color) shows the void fraction f. The snapshots displayed correspond to

t ¼ 4 s. Observe the region of reduced f near the wall of the pint; the corre-

sponding near-wall region of increased f in the anti-pint is not visible in this

figure but can be observed in Fig. 2.
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(For a glass of stout, a smaller Ts is generally regarded as an
advantage). The settling time is defined here such that
f ðt ¼ TsÞ ¼ 10�6.

We can use Ts to explore the extent to which our results
depend on the void fraction f and the bubble size db (the only
parameters with “uncertain” values). Surprisingly (although
perhaps suggested by Fig. 3), it turns out that the dependence
of Ts on f is very weak—an increase in f from 0.02 to 0.05
results in an increase in Ts from 43 to 46 s. On the other
hand, the dependence of Ts on db is much stronger—a
decrease in db from 122 to 90 lm results in an increase in Ts

from 43 to 83 s. In all cases, we investigated similar flow pat-
terns were observed, and in particular sinking bubbles were
predicted by the simulation.

Note that the settling time of (approximately) 43 s com-
puted for db ¼ 122 lm and the pint container does not agree
with the experimental estimate of approximately 120 s (the
time recommended for pouring a pint of Guinness by Dia-
geo, the manufacturers of Guinness). The difference between
the two results is probably caused by the fact that all bubbles
in our simulations are the same size, whereas in reality they
are distributed with a certain dispersion. One can then con-
jecture that a real glass of Guinness contains some smaller
bubbles that take longer to leave the liquid; this would
account for the difference between the computed and meas-
ured values of Ts.

In what follows, we shall argue that the circulation that
develops in the flow is determined by the near-wall variation
of the bubble density (as suggested previously in Ref. 14 for
bubble columns), and that the bubble density, in turn, is
determined by the shape of the container.

IV. THE MECHANISM OF THE EFFECT

To begin, observe that whichever way the bubbles move
they exert a drag force on the surrounding liquid. This does
not mean that the liquid is necessarily entrained by the
motion of the bubbles. Indeed, consider a uniform distribu-
tion of bubbles that all move in the same direction. In this
case, the drag force would all be in the same direction. If the
liquid was entrained by the motion of the bubbles, then the
liquid particles would all move in the same way, which
effectively means that they cannot move at all due to the
liquid’s incompressibility and the fact that the container has
a bottom. In this case, the drag force would be compensated
by a pressure gradient exerted in the fluid.

Let us now assume that there is a region of low bubble
density near the container’s wall (as there indeed is in the

pint container). In this case, the density of the drag force
near the container’s axis is larger than that near the wall; this
creates an imbalance and thus gives rise to a circulation—
near the axis the liquid flows upwards and near the wall it
flows downwards. If the velocity of the downward flow is
larger than the relative velocity ub of the bubbles, the bub-
bles will be observed to sink. A similar argument indicates
that a near-wall region with higher bubble density gives rise
to an upward flow (precisely what our simulations show for
the anti-pint container).

It still remains to identify the mechanism reducing the bub-
ble density near the wall for the pint geometry and increasing
it for the anti-pint geometry. In Ref. 6, the circulation is attrib-
uted to surface tension slowing down bubbles close to the
wall. Another possibility is based on the “lift” force generated
by the flow around a sphere moving along a rigid boundary;
this force pushes the sphere away from the boundary.15 In the
limit of small Reynolds number, however, the lift force is
weak and estimates show that the resulting reduction in bub-
ble density near the wall is negligible. A further shortcoming
of these two mechanisms is that they do not seem to distin-
guish between the pint and anti-pint geometries.

To explore the effect of the geometry, assume that the
container is not cylindrical but narrows slightly toward its
bottom (as the pint). Then, even if the bubbles were initially
distributed uniformly, their upward motion immediately cre-
ates a bubble-free zone along the wall (see Fig. 4). On the
other hand, in a container that widens toward its bottom (as
the anti-pint), the initially upward motion of bubbles
increases the near-wall bubble density. We believe that this
simple kinematic effect is responsible for the circulation
observed in Guinness.

This effect, although not previously discussed in the con-
text of Guinness, is well known in sedimentation theory as
the Boycott effect.17,18 It was first observed in test tubes con-
taining red blood cells when it was discovered that sedimen-
tation times could be significantly reduced by inclining the
test tubes.

Fig. 3. The global void fraction f (i.e., the proportion of gas in the container)

versus time t, for the three cases: the pint (p) and anti-pint (a), both illus-

trated in Fig. 2, and a cylinder of the same volume (c).

Fig. 4. Schematic diagram of the evolution of bubbles near the wall for: (a)

container narrowing downwards (the bubbles move away from the wall),

and (b) container widening downwards (the bubbles move towards the wall,

and eventually accumulate there) (enhanced online) [URL: http://dx.doi.org/

10.1119/1.4769377.1].
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Finally, our conclusions can be readily verified experi-
mentally. If Guinness is poured into a tall cylindrical con-
tainer (e.g., a laboratory measuring cylinder) and the
container is tilted, bubbles will be observed to move upward
near its upper surface and downward near its lower surface,
in precise agreement with the proposed mechanism.19

V. CONCLUSIONS

The sinking bubbles of Guinness and other stout beers have
intrigued beer-drinking physicists and their students for some
time. Building on previous experimental and simulation work,
we complete the explanation of this phenomenon by describ-
ing the role that the shape of the Guinness pint glass plays in
promoting the circulatory flow responsible for the sinking
bubbles. Interestingly, understanding the physics underlying
the shape of the pint glass raises the intriguing question—is
the shape of the Guinness pint glass the most efficient possi-
ble, or could the settling time be significantly reduced by
some other, possibly non-axisymmetric, shape of pint glass?
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APPENDIX: MODEL DETAILS

The bubbly flow equations treat the liquid and gas phases
as interpenetrating continua, and make use of the following
simplifying assumptions:

(1) The gas density may be neglected in comparison with
the liquid density.

(2) The motion of the bubbles relative to the liquid is deter-
mined by a balance between pressure and viscous drag
forces.

(3) The two phases share the same pressure field.

These assumptions mean that inertial effects associated
with bubble motion are neglected and bubbles instantly ac-
quire the velocity associated with the force balance described
in assumption (2). In particular, no initial condition for bub-
ble velocities is necessary. Furthermore, this eliminates the
need for a bubble momentum equation: momentum
exchange between the gas phase and liquid phase can be
tracked using an overall momentum equation (which by
assumption (1) only includes terms associated with the liquid

phase). Boundary conditions at a wall are zero velocity (no-
slip) for the liquid phase and zero gas flux through the wall
for the gas phase.
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